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1. Background

National Natural Science Foundation of China (NSFC), Beijing-Hong
Kong Academic Exchange Centre (BHKAEC), and the Chinese Univer-
sity of Hong Kong (CUHK) jointly organized a two-day Academic Sym-
posium on Bone and Joint Degeneration and Regeneration at Cho Yiu
Conference Hall of CUHK on November 10 and November 11 (2022),
aiming at promoting and/or consolidating Mainland–Hong Kong col-
laborations among scientists in the musculoskeletal basic and clinical
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research field. Such collective efforts would facilitate scientific & tech-
nological innovation and clinical translation for preventing degeneration
and enhancing regeneration of musculoskeletal disorders, a major health
challenge in our aging society. The symposium was hosted by CUHK, co-
organized by the China Engagement Office and the Department of Or-
thopaedics and Traumatology (ORT) of CUHK, as well as Journal of
Orthopaedic Translation (JOT). It was held in a hybrid mode, including a
physical meeting in CUHK for Hong Kong participants and online
participation by mainland institutions, with a total of 33 speakers from
opaedic Society. This is an open access article under the CC BY-NC-ND license
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Hong Kong and Mainland China. It was a milestone event during the
challenging pandemic period. Many hot topics were funded by NSFC [1]
and the Research Grant Council (RGC) of Hong Kong [2].

2. Opening ceremony

Professor Rocky S. Tuan, Vice-Chancellor and President of CUHK, Mr.
Yongtao Zhang, Director of the Hong Kong, Macao and Taiwan Affairs
Office of NSFC, Mr. Maozhou Liu, the inspector of the Department of
Education and Technology of the Liaison Office of the Central People's
Government in the Hong Kong Special Administrative Region, Mr. Hoi
Shan Hsu, President of the Beijing-Hong Kong Academic Exchange
Centre delivered opening speech. As VIP, Professor Mai-Har Sham,
Chairman of the Academic Advisory Committee and Pro-Vice-Chancellor
(Research) of CUHK, and Professor Ling Qin, President of the Symposium
Organizing Committee, Assistant Dean (Mainland Affairs) of Faculty of
Medicine, and Choh-Ming Professor of Orthopaedics and Traumatology
of CUHK witnessed the opening ceremony.

Professor Rocky S. Tuan emphasized that the degeneration and
regeneration of bone and joint is one of the key research directions of
innovative biomedicine. He briefly introduced the exciting achievements
made in these areas in recent years. In addition to supporting more
cutting-edge research, CUHK has been actively promoting knowledge
translation of R&D results, facilitating R&D practice, and enhancing
collaboration with industries. CUHK is always open to collaborative
scientific research with experts and scholars in the related fields.

Mr. Yongtao Zhang highlighted that the theme of this symposium on
bone and joint degeneration and regenerationwas of great significance to
people's life and health. He trusted that the symposium would provide a
platform for sharing and exchange of scientific research between Main-
land and Hong Kong, promote more collaboration opportunities, and
contribute to biomedical innovation and development in China.

Mr. Hoi Shan Hsumentioned in his speech that this symposiumwould
bring together experts and scholars from Hong Kong and Mainland to
pursue greater breakthroughs based on cutting-edge biotechnologies, to
address the unmet clinical needs. Such efforts would accelerate China's
development into a leading country in biomedical and health
technologies.

3. Keynote speeches

Professor Rocky S. Tuan, Professor Yingze Zhang (academician of the
Chinese Academy of Engineering), and Professor Lin Chen (distinguished
scholar at the Third Affiliated (Daping) Hospital of the Third Military
(Army) Medical University, delivered keynote speeches in the
symposium.

Professor Rocky S. Tuan presented his team's innovative work on the
mini-Joint, a miniature, microfluidics-enabled platform to replicate
human synovial joints. The mini-Joint is the first human cell-derived,
multi-tissue system comprising of engineered osteochondral complex
(OC), synovial-like fibrous tissue (SFT), and adipose tissue, all of which
were bathed in a “simulated synovial fluid” [3]. These tissue components
were engineered from human mesenchymal stem cells (MSCs) over
21–28 days, and could maintain their respective phenotypes in a
“healthy” mini-Joint for four weeks [3]. To model synovitis, a common
manifestation of osteoarthritis (OA), interleukin-1β (IL-1β) was added to
the SFT-specific medium for one week. Pathological changes were
observed in SFT as well as the other tissues, indicating active tissue
crosstalk [3]. Particularly, transcriptomic changes in the chondral
component of OC from the inflamed mini-Joint closely resembled those
in human OA cartilage [3]. Furthermore, as a proof of concept, the
inflamed mini-Joint was employed to test five drugs administered sys-
temically or intra-articularly [3]. Thus, the mini-Joint is a promising
organ-on-a-chip (OoC) platform for investigating joint disease mecha-
nisms and testing potential drugs for the treating osteoarthritis (OA) and
other joint diseases [3,4].
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Professor Yingze Zhang reported that 14.2% of Chinese were elder
than 65 years old in 2021. There are about eighty million patients
suffering from osteoporosis (OP). Over 2 million of them suffered from
OP fractures. The prevalence of OP reached 4.0% per the recent 5 years’
statistics. Meanwhile, there are about 120 million patients suffering from
OA. Given the high morbidity rate, the ageing-related musculoskeletal
disorders have generated heavy burdens to the healthcare system as well
as our society. Professor Zhang and his team have also conducted a
systematic analysis on the OA-related publications. They found that there
are globally over 900 institutions working on OA investigations. About
1050 papers published during 2010–2022 focused on the transplantation
of cartilage, presenting no reliable long-term outcomes. Currently, sur-
gery is still the only therapeutic option for OA [5]. However, the revision
rate at 2 years after total joint replacement is 5%–10% [6,7]. Professor
Zhang recommended eliminating the mechanical imbalance via osteot-
omy at the proximal tibia or fibular at an early stage [8,9]. Accordingly,
they developed an absorbable β-TCP/PLGA spacer (patent ref. No.:
CN206381226U) to cost-effectively provide stability for the tibial
osteotomy gap [10].

Professor Lin Chen introduced the progress in the identification of
stem cells or progenitors related to abnormal bone formation, such as
osteophytes and heterotopic ossification (HO). Per their experience, stem
cells or progenitors, microenvironments, and molecular mechanisms are
the trilogy of abnormal bone formation, which share common features
with bone development. However, there is controversy on the cell origin
of bone development and homeostasis based on commonly used trans-
genic and transplanting techniques, which can be largely clarified by
comprehensive application of multiple techniques such as barcoding-
based single-cell RNA-sequencing, endogenous knock-in CreERT2 mice
and dual Dre and Cre recombinase-related (Dre/ROX and Cre-loxP)
models for more precise genetic modification and lineage tracing. Pro-
fessor Lin Chen reported that Fgfr3 (a key regulator of skeleton devel-
opment) positive cells could be a new subset of skeletal stem cells
contributing to bone homeostasis and abnormal bone formation. In
addition, loss of Fgfr3 result in a pro-inflammatory microenvironment
that promote trauma-induced HO [11] and degeneration-induced
osteophyte [12]. These data provide insights for the prevention and
treatment of ectopic osteogenesis-related diseases by targeting the
Fgfr3þ subset of stem cells or using modulators of FGF signaling.

4. Academic sharing session

In this session, the topics were categorized into four main themes: (i)
The interactive mechanism between bones and other organs, and be-
tween various tissues in bones and joints; (ii) Intrinsic and extrinsic
factors affecting the homeostasis of the musculoskeletal system (precise
regulation of cell biological functions, response to physicochemical
stimuli); (iii) Research status and prospect of tissue engineering and drug
delivery systems in bone and articular cartilage repair; (iv) Translational
application progress driven by basic research and innovative technolo-
gies aiming at clinical problems and new technologies for diagnosis and
treatment that need to be tackled in the future. Of note, most studies were
multidisciplinary that covered more than one theme.

Joint injury and degeneration Osteoarthritis (OA) is considered as a
whole organ disease, affecting not only cartilage itself [13], but also
synovium [14], meniscus [14], and ligaments [15]. Professors Di Chen
and Guozhi Xiao reported the crucial roles of Wnt/β-catenin and
kindlin-2 (focal adhesion protein) in OA. Professor Jian Luo identified
that a novel small molecule HL-43 could enhance articular cartilage
regeneration via antagonizing prostaglandin E receptor 4 (EP4) [16].
Professor Weiguo Zou found that deficiency of ZMPSTE24 was a key
mechanism behind the ageing-related catabolism of cartilage. Professor
Jing Qu found that the stabilization of heterochromatin by CLOCK pro-
moted stem cell rejuvenation and cartilage regeneration [17]. CLOCK
mRNA was decreased in the joint of 15-month-old mice as compared to
1-month-old mice. Lentivirus mediated over-expression of CLOCK gene
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attenuated ageing-related articular degeneration in mice. In another
study, Professor Jing Qu reported that reactivation of endogenous ret-
roviruses (ERV) might be a potential driver for ageing-related articular
degeneration, and intra-articular injection of either lentivirus delivered
CRISPR-dCas9/sgERV or Abacavir could attenuate OA, suggesting that
resurrection of ERV contributes to OA development and progression
[18]. Professors Changhai Ding and Guanghua Lei have conducted
extensive clinical studies. For example, Lei found that among patients
aged 50 years and older with osteoarthritis, initial prescription of tra-
madol was associated with a significantly higher rate of mortality over 1
year of follow-up compared with commonly prescribed nonsteroidal
anti-inflammatory drugs [19]. Based on clinical evidence, Ding found
that greater infrapatellar fat pad (IPFP) volume was associated with
greater knee cartilage volume and fewer structural abnormalities, sug-
gesting a protective role of IPFP size in knee OA [20], while IPFP signal
intensity alteration and texture score predicted knee structural changes
and OA incidence [21,22]. Therefore, we must pay special attention to
IPFP in the clinical settings for avoiding resection of normal IPFP in knee
surgery. As the debate on the efficacy of hyaluronic acid for OA con-
tinues, Professor Hongwei Ouyang and his colleagues have implemented
the integration of meta-analysis with bioinformatics analysis [23]. The
results suggested that the administered HA activated both systemic and
local pro-inflammatory immune responses, possibly limiting its efficacy.
In addition, Professors Ouyang and Dongquan Shi also made efforts to
classify OA. Indeed, there are distinct types of OA based on the molecular
signatures [24,25]. Such data are of importance for guiding future clin-
ical practices, matching well with the expectation of individualized
treatment.

Both professors Jiakuo Yu and Qing Jiang focused on the tissue en-
gineering of the meniscus [26,27]. Professor Quanyi Guo has established
a non-invasive magnetic resonance imaging (MRI) method to quantita-
tively and dynamically evaluate the clinical outcomes of
tissue-engineered cartilage [28]. The roadmap and experience on how to
get the mentioned protocol recommended as a standard by International
Organization for Standardization is a good reference for peers [28].
Professors Barbara Pui Chan and Patrick Shu-hang Yung have collabo-
rated for fabricating an all-in-one osteochondral complex in GMP facil-
ities and started to recruit cases in local hospitals (https://www.hku.hk/
press/press-releases/detail/13743.html).

4.1. Bone physiopathology and regenerative strategies

Professor Xianghang Luo shared two papers recently published in Cell
Metabolism [29,30]. The first one was about the identification of gran-
calcin (GCA) as a negative regulator of bone [29]. In aged rats and mice,
the accumulative macrophages and neutrophils in the bone marrow
secreted abundant GCA. Genetic deletion of Gca in neutrophils and
macrophages delayed skeletal aging. In terms of mechanisms, grancalcin
binds to the plexin-b2 receptor and inactivates the phosphorylation of
FAK, SRC, and YAP [29]. Another paper reported that bone marrow
macrophages-secreted reticulocalbin-2 (RCN2) increased during exercise
and further promoted lipolysis, osteogenesis, and lymphopoiesis after
binding to its functional receptor composed of neuronilin-2 and integrin
β1 to activate cAMP-PKA signaling pathway [30]. Importantly, either
grancalcin-neutralizing antibody or recombinant RCN2 can effectively
attenuate ageing-related bone loss [29,30]. Professor Chao Wan pre-
sented his unpublished findings that global knockout of Cathepsin D
(CtsD) dramatically decreased bone mass in mice. At the molecular level,
the inactivation of CtsD in MC3T3-E1 cells attenuated osteoblastic dif-
ferentiation and downregulated LC3B expression, which was accompa-
nied by decreased levels of P62, p-Akt, and p-GSK3β in osteoblasts.
Intriguingly, the inactivation of CtsD in RAW264.7 cells increased oste-
oclast differentiation with decreased LC3B expression but upregulated
P62. The results suggest that CtsD mediated autophagy pathway plays
important role in regulating of bone mass and homeostasis through the
distinct mode of action in osteoblasts and osteoclasts. Professor Xiaochun
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Bai found that chaperone-mediated autophagy (CMA), a subclass of ly-
sosomes, can degrade a variety of proteins that hinder osteogenic dif-
ferentiation, such as adipogenic and chondrogenic differentiation
determinants TLE3, ZNF423, and SOX9, thus balancing the
osteogenic-adipogenic differentiation of stem cells. Furthermore,
Professor Bai found that the deletion of RanGAP1 in the fast-proliferating
osteogenic precursor cells (Osx-Cre) caused excessive activation of the
spindle checkpoint, unbalanced separation of sister chromatids, chro-
mosome instability and formation of aneuploidy, and uncontrolled cell
proliferation, resulting in rapid formation of osteosarcoma (7 days after
birth). In contrast, when RanGAP1 was knocked out in mature osteo-
blasts (Ocn-Cre), mice did not appear with bone tumors. RanGAP1 was
commonly expressed in human osteosarcoma tissue cells, suggesting that
loss of RanGAP1 may be a key driver of osteosarcoma development.
Professor Liu Yang focused on the effects of sulfation on bone and joint
degeneration. Through a variety of genetically modified mice and animal
disease models, she identified key pathogenic mechanisms of sulfation
defect, such as endoplasmic reticulum stress response in growth plate
chondrocytes, osteoblast mechanosensitivity and lipid metabolism in
articular chondrocytes, leading to skeleton development disorder and
degeneration of bone and joint. These basic studies provide a valuable
theoretical basis for future drug discovery of sulfation disorders.

Professor Jiacan Su integrated the emerging 3D printing skills and
cell-based bottom-up fabrication to establish bone organoids, which
construct biomimetic and hierarchical structures, including biomineral-
ization and spatiotemporally features [31]. To tackle the challenging
drawbacks of exogenous origins and variable composition of Matrigel,
his team has also developed various hydrogel alternatives with adjust-
able material properties (stiffness, viscoelasticity, and charge), including
polyethylene glycol (PEG), collagen, skin fibroin, alginate, gelatin, chi-
tosan, and DNA derivative hydrogels, which have shown a promising
application in organoid cultures [32]. Future efforts will no doubt bring
them closer to model development and disease, as a tool for drug testing,
and as a therapeutic approach.

Continuous efforts are made to establish more promising strategies
for accelerating bone repair and even regeneration. Professors Ling Qin,
Yuxiao Lai, and Jiankun Xu have designed and fabricated innovative
magnesium-containing implants and scaffolds [33–43]. Twomulti-centre
clinical trials have been coordinated for the highly pure magnesium
screw and magnesium powder containing polymer-based 3D scaffolds
respectively, under the regulations of the National Medical Products
Administration. In addition, based on preclinical models, magnesium
also works for challenging conditions such as drug-related delayed
fracture healing [40,44] and bone defect after trauma or dissection of
bone tumors [45]. The Hong Kong–Mainland team is exploring more
clinical indications with funding support from the Areas of Excellence
Scheme (Ref. AoE/M402/20) by University Grant Council in Hong Kong,
and the Mainland–Hong Kong Joint Funding Scheme by the Ministry of
Science and Technology (MOST, Mainland) and Innovation and Tech-
nology Commission (ITC, Hong Kong). Professor Xin Zhao delivered an
exciting breakthrough in the translation of the biomimicking hyperbo-
loidal structure with the triply periodic minimal surfaces into
three-dimensional tissue-engineered bone grafts and revealed that such
structure enhanced osteogenesis and angiogenesis to support bone
regeneration [46]. Professor Jiankun Xu presented a series of studies to
shed light on the crucial role of sensory neuropeptide (calcitonin
gene-related peptide, CGRP) on the coupling response of angiogenesis
and osteogenesis, essential aspects towards functional bone regeneration
[37,39,40,47–50].

Nowadays, bone is recognized as an endocrine organ. Professors Hui
Xie and Ren Xu have thoroughly investigated the bone specialized
microenvironment [51,52], subsets of stem cells [53], and the remote
control of osteo-factors [54,55]. Optineurin (OPTN), a macro-autophagy
receptor, is found to play a pivotal role via degrading fatty acid binding
protein 3 (FABP3) in bone metabolism [56]. Extracellular vesicles from a
child gut can inhibit bone loss, suggesting the existence of a Gut-bone
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axis [57]. In contrast, extracellular vesicles derived from aged bone
matrix favour adipogenesis of mesenchymal stem cells and augment the
calcification of vascular smooth muscle cells [58]. More recently, it is
reported that the young osteocyte-derived extracellular vesicles can even
reduce the progress of Alzheimer's disease [54]. Osteocyte neuropeptide
Y promotes bone marrow adipogenesis at the expense of osteogenesis by
mesenchymal stem cells (MSCs) [55]. Osteoblasts, instead of osteoclasts,
are the major source of skeletal SLIT3, an axon guidance cue involved in
osteo-anabolism [59]. At the symposium, Professor Ren Xu also shared
his unpublished work that preosteoblasts-produced SLIT2 could regulate
the browning of adipose tissue and whole-body energy metabolism.
Professor Gang Li has successfully applied the transverse tibial cortex
transport technique to facilitate the healing of diabetic foot ulcers in
patients [60], presenting with possible mechanisms including (a) sys-
temic factors release to promote stem cells mobilization and wound
healing; (b) regulate local inflammation such as macrophages trans-
formation from M1 to M2 phase; (c) improvement in the lymphatic
microcirculation functions. All these studies help delineate the compli-
cated cross-talks between bone and other tissues/organs. New concepts
on the “bone-vessel axis” and “bone-nerve axis” have been proven and
consolidated.
4.2. Physical stimulations

Professor Louis WH Cheung mentioned that ~70% of osteoporotic
hip fracture patients concomitantly suffered from sarcopenia, yet most
clinicians usually ignored sarcopenia when treating these patients as
there was no promising drug for sarcopenia [61]. Professor Cheung and
his team have developed a patented low-magnitude high-frequency vi-
bration treatment to exhibit beneficial effects on accelerating osteopo-
rotic fracture healing, as well as retarding osteoporosis and sarcopenia
progression. The restored function of the neuromuscular junction is
proposed as a key mechanism behind the efficacy. To prove this, Cheung
is coordinating a project supported by a Collaborative Research Fund
(Ref. C4032-21 GF).

Professor Bing Song used physiological-level electrical stimulation
(direct-current electric fields) to modulate the migration, proliferation,
and differentiation of stem cells prior and after cell replacement therapy
taking place [62]. G protein coupled receptors, PI3K/Akt, and
Wnt/β-catenin signaling are responsible to electrical stimulation [63].
Professor Jiankun Xu also demonstrated that electrical stimulation at the
lumbar dorsal root ganglion could significantly promote osteoporotic
fracture healing in rats by elevating the synthesis and release of CGRP
[64].
4.3. Drug delivery systems

Targeting delivery can improve therapeutic efficacy. Professor Jiang
Xia added CAP to the exosomal membrane protein Lamp2b of exosomes
and such system loading with microRNA-140 could more efficiently bind
to chondrocytes to attenuate OA [65]. Similarly, when stem cell-binding
peptide E7 was added to Lamp2b, the modified exosome exerted tar-
geting capability to synovial fluid-derived MSCs and thus promoted
cartilage regeneration [66]. Professor Chenjie Xu has developed a
micro-needle with FDA-approved liquid crystalline polymer for trans-
dermal drug delivery to reduce scar formation in the rabbit ear hyper-
trophic scar model and patients [67]. To conquer the challenges of cell
delivery, his team designed cryogenic micro-needle patches by stepwise
cryogenic micro-moulding of cryogenic medium with pre-suspended
cells [68]. In the melanoma model of mice, the delivery of
ovalbumin-pulsed dendritic cells via the cryomicroneedles could more
efficiently boost immunological responses and inhibited tumour growth
than intravenous and subcutaneous injections of the cells [68]. These
innovative strategies show great potential to be integrated to promote the
health of the musculoskeletal system.
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5. Round table discussions

Discussions around a number of key issues and hot topics were
chaired by Mainland coordinator Professor Di Chen and Hong Kong
coordinator Professor Ling Qin.

As a novel enabling technology invented by a multidisciplinary team
led by CUHK's President Professor Rocky S. Tuan, the mini-Joint system
represents an emerging in vitro model of joint disorders and attracted lots
of interest from the speakers and audience. Professor Zhong Alan Li from
CUHK's Department of Biomedical Engineering described the technical
details and challenges in developing joint-mimicking OoCs. It was sug-
gested that future improvements to the mini-Joint system could include
the introduction of neuronal components, application of mechanical
signals (e.g., compression and shear), and inclusion of other joint tissues,
such as meniscus and ligament. Similar comments were also provided for
the bone organoid projects.

Precision diagnosis and treatment is the common objective of most
projects as presented in the symposium. Cross-talks between multiple
molecules, cell types, and tissues are the foundations. This symposium
has provided a unique opportunity for sharing the up-to-date findings
from the individual principal investigator. It is apparent that our interests
are partially overlapped. Therefore, we should consider forming task
force groups to investigate each theme as mentioned above.

Professors Hongwei Ouyang and Dongquan Shi emphasized the het-
erogeneity of OA. All the professors agreed that single team could not
resolve all the questions. Professor Guanghua Lei suggested establishing
a Mainland–Hong Kong alliance of OA investigations. The alliance would
be responsible for the central management of the tissue bank, then assign
subgroups of investigators to determine synovium fluid, synovium,
cartilage, subchondral bone, etc, respectively. Through this approach, it
would be also easier to reach a consensus on drug efficacy.

Professor Changhai Ding agreed that revised classifications of OA
could better serve patients. However, there would still be a long way to
go to establish practical guidelines. The bottleneck is a lack of accepted
biomarkers. Approaches from in vitro mini-Joint system and different in
vivo animal models to collecting samples and cohort studies to verify
different phenotypes should be adopted. Professors Qing Jiang, Dong-
quan Shi, and Gang Li suggested that the markers in synovium fluid
should be thoroughly analyzed first to make the classification approach
easy to perform by the clinicians. Professor Di Chen commented that
since it might be difficult to sort out the endogenous marker, alternative,
exogenous labeling approaches would likely be more feasible. Professor
Guozhi Xiao emphasized that whether it is the right time to promote the
revised OA classifications in clinics, anyway, it is worthwhile to imple-
ment more in-depth mechanistic investigations. Professor Lin Chen
addressed that the classifications of OA based on fundamental (molecu-
lar) research should collaborate with the clinically practical (imaging and
pathological) guidelines gradually, and the dynamic changes of OA types,
that is, it may shift to another type after treatment or progression. The
selection of animal models and establishment of new OA models will be
crucial. Therefore, Professor Lin Chen suggested starting experiments in
the “mini-Joint” system reported by Professors Rocky S. Tuan and Zhong
Alan Li.

Professors Hui Xie and Ren Xu also suggested forming a BONE alli-
ance to better understand the complexity of cellular interactions, exo-
somes, and signaling transduction.

Professor Quanyi Guo commented that support from regulatory
bodies is needed to accelerate the clinical translation of magnesium-
based medical implants, and relatively mature products should be pro-
moted to clinical practice as soon as possible to serve the patients. In the
future, efforts should be made to empower structural bionics and indi-
vidual customization.

Last but not the least, Professors Ling Qin and Gang Li introduced the
development of the Journal of Orthopaedic Translation and invited
submissions of high-quality manuscripts, such as perspectives, reviews,
and original work, from the speakers’ groups, for a special issue to be
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published in July 2023. They also announced that CUHK would host the
2023 Tissue Engineering and Regenerative Medicine International Soci-
ety Asia Pacific Conference (TERMIS-AP, conference website: https://
ap2023.termis.org/) and welcomed submissions of relevant work for
sharing with national and international colleagues in the field of tissue
engineering and regenerative medicine. At the end of the NSFC-CUHK
joint symposium, Professor Ling Qin showed a video in which TERMIS-
AP 2023 Conference Chair Professor Rocky Tuan invited all to Hong
Kong for the academic gathering during October 16–19, 2023, at Hong
Kong Science Park.

6. Conclusions and future perspectives

In view of the current statues of basic research, clinical investigation,
and industrial involvement for implementing the concept of precision
medicine in tissue engineering and regenerative medicine, we still need
to strengthen the following aspects in musculoskeletal research:

1) Explore the risk factors that affect the occurrence and development of
bone and joint degeneration in different groups of the population and
formulate more precise prevention and intervention measures from
the micro-level (gene, cell) to the macro-perspective (individual,
group) to attenuate the progression of these diseases.

2) Based on the basic status of the affected individual(s), the severity of
degeneration, functional and imaging-based changes, physical and
chemical indicators, and other factors, an individualized step-by-step
treatment plan can be formulated for the patients.

3) To resolve the deficiencies and drawbacks of surgical (especially
revision surgery) techniques, implants, and instruments, we should
leverage the latest technological development in the fields of mate-
rials, chemistry, physics, and artificial intelligence. Standards,
guidelines, and consensus should be established on top of a series of
proof-of-concept and translational studies to push forward innovative
treatments, technologies, and products. With the guidance and sup-
port from policy makers and regulatory bodies, industry-academia
collaboration and bench-to-bedside translation will be accelerated.

4) Only by employing advanced technologies in related fields and
through multidisciplinary integration, will we be able to clarify the
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spatiotemporal changes accompanying the initiation and develop-
ment of degenerative bone and joint diseases at the molecular,
cellular, and tissue levels from more diverse perspectives and in
broader fields. Such efforts will enable us to better describe the mo-
lecular mechanisms underlying bone and joint diseases, explore
related signaling pathways and key factors, identify more effective
targets for theragnostic, and develop innovative biomaterials and
drugs for treating bone and joint degeneration and disorders.

https://ap2023.termis.org/
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