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Abstract: This paper investigates the optimal design of a hierarchical cloud-fog&edge computing
(FEC) network, which consists of three tiers, i.e., the cloud tier, the fog&edge tier, and the device
tier. The device in the device tier processes its task via three computing modes, i.e., cache-assisted
computing mode, cloud-assisted computing mode, and joint device-fog&edge computing mode.
Specifically, the task corresponds to being completed via the content caching in the FEC tier, the
computation offloading to the cloud tier, and the joint computing in the fog&edge and device
tier, respectively. For such a system, an energy minimization problem is formulated by jointly
optimizing the computing mode selection, the local computing ratio, the computation frequency, and
the transmit power, while guaranteeing multiple system constraints, including the task completion
deadline time, the achievable computation capability, and the achievable transmit power threshold.
Since the problem is a mixed integer nonlinear programming problem, which is hard to solve with
known standard methods, it is decomposed into three subproblems, and the optimal solution to each
subproblem is derived. Then, an efficient optimal caching, cloud, and joint computing (CCJ) algorithm
to solve the primary problem is proposed. Simulation results show that the system performance
achieved by our proposed optimal design outperforms that achieved by the benchmark schemes.
Moreover, the smaller the achievable transmit power threshold of the device, the more energy is
saved. Besides, with the increment of the data size of the task, the lesser is the local computing ratio.

Keywords: fog&edge computing; cloud computing; content caching; computation offloading;
energy minimization

1. Introduction

1.1. Background

With the rapid development of wireless communications technologies and the wide deployment of
mass smart devices, a large number of emerging applications [1], such as artificial intelligence (AI) [2],
augmented reality (AR) [3], and virtual reality (VR) [4], have been arising in Internet of Things (IoT)
networks, which put forward higher requirements for computation capability and transmit power
to the smart device in the IoT network [5]. As we all know, most smart devices usually have limited
communication, computation, storage, and energy resources, which is a huge challenge to complete
such computation-intensive and delay-sensitive applications [6–10].

To solve these problems, fog&edge computing (FEC) is regarded as a potential solution via
providing computing service to smart devices on the edge of the network, which meets the
requirements of the smart device for processing the computation-intensive and delay-sensitive tasks
in real time [11–13]. The FEC has two advantages: (i) Compared with local computing by the device
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itself [14], FEC enables the limited computation capabilities of the smart devices. (ii) Compared with
cloud computing [15], FEC reduces the delay caused by long distances and traffic congestion for
offloading to the cloud server.

Apart from computation offloading in the FEC, content caching is another promising technology
to solve the limited computation capability of the device and reduce the transmission delay [16].
Significantly, an important part of the delay is caused via the redundant transmission and computation
of a few popular files, such as the files for rendering scenes in the typical VR application scenario [17].
Therefore, caching popular content in the fog&edge tier is an effective way to avoid duplicate
transmission and computation.

To face the challenge of completing the computation-intensive and delay-sensitive applications,
integrating three such technologies, i.e., cloud computing, fog&edge computing, and content
caching, into a single network system could bring strong performance improvement, which is of
great significance.

1.2. Related Work

Over the past few years, a large number of research works has investigated cloud
computing [18–20], fog&edge computing [21–29], and content caching [30–32]. However, most
of these works involved these three technologies separately.

Then, the combination of two technologies began to be studied; see, e.g., [13,21,22,33–41].
Specifically, in [33], the authors investigated an energy efficiency maximization problem in a
cloud-assisted FEC system. In [34], the authors proposed a cloud-assisted mobile edge computing
(MEC) framework designed to guarantee user service quality with minimal system cost. In [35],
the authors investigated a heterogeneous cloud-MEC two-tier offloading framework, and an computing
offloading scheme was designed to minimize overall energy consumption. In [36], the authors
proposed an integration framework of the cloud, MEC, and IoT to solve the scalability problem of MEC
and designed a selective offloading scheme to achieve the minimum energy consumption of mobile
devices while meeting the delay requirements. In [37], the authors investigated the optimal workload
allocation problem in a fog-cloud computing system toward the minimal power consumption with
constrained service delay. However, non of the above works involved content caching.

On the other hand, in [21], the authors studied joint service caching and task offloading for
MEC-enabled dense cellular networks. In [22], the authors proposed a collaborative offloading scheme
to cache the popular computation results to reduce the task execution delay. In [38], the authors
investigated an optimization problem that considered offloading decisions, computing resources, and
content caching. An alternative direction algorithm based on a multiplier was proposed to solve the
maximize revenue problem. In [39], the authors proposed a joint caching and offloading mechanism
to minimize the average total energy minimization problem. In [40,41], the authors investigated an
energy minimization problem for a cache-aided FEC system. However, none of the above works
involved cloud computing.

Recently, a few works began to study these three technologies in a single system to further improve
system performance, i.e., in [42], the offloading and caching strategy was studied for a cloud-assisted
FEC system to minimize delay, where however, it was not the aim to reduce the energy consumption.
In [43], the offloading and caching decision was investigated for a hybrid cloud/edge computing
system to minimize energy consumption, where however, only the binary decision was considered.

1.3. Motivation and Contributions

As mentioned above, there exist a few works that have studied these three technologies together,
and to the best of our knowledge, no work has been done on the optimal design of a hierarchical
cloud-FEC network with caching to minimize the energy consumption. Therefore, to explore the
benefits of cloud computing, fog&edge computing, and content caching, we study the optimal design
of a hierarchical cloud-FEC network with caching to minimize the energy consumption.
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The main contributions of our work are summarized as follows.

• A three-tier network framework is considered, and correspondingly, we propose three computing
modes to process the computation task of the device, i.e., cache-assisted computing mode,
cloud-assisted computing mode, and joint device-fog&edge computing mode. Specifically, the
task corresponds to being completed via the content caching in the FEC tier, the computation
offloading to the cloud tier, and the joint computing in the fog&edge and device tier, respectively.

• For such a system, an energy minimization problem is formulated by jointly optimizing the
computing mode selection, the local computing ratio, the computation frequency, and the transmit
power, while guaranteeing multiple system constraints, including the task completion deadline
time, the achievable computation capability, and the achievable transmit power threshold.

• Since the problem is a mixed integer nonlinear programming problem, which is hard to solve with
known standard methods, it is decomposed into three subproblems, and the optimal solution to
each subproblem is derived. Then, an efficient optimal caching, cloud, and joint computing (CCJ)
algorithm to solve the primary problem is proposed.

• Simulation results show that the system performance achieved by our proposed optimal design
outperforms that achieved by the benchmark schemes. Moreover, the smaller the achievable
transmit power threshold of the device, the more energy is saved. Besides, with the increment of
the data size of the task, the lesser is the local computing ratio.

The rest of this paper is organized as follows. Section 2 describes the system model, and the
optimization problem is formulated. In Section 3, the closed-form and semi-closed-form solutions to
the three subproblems are derived, and an efficient algorithm, i.e., the CCJ algorithm, is presented.
Section 4 provides some simulation results, and finally, Section 5 summarizes this paper.

2. System Model and Problem Formulation

2.1. System Model

Consider a hierarchical cloud-FEC network as shown in Figure 1, which consists of three tiers,
i.e., the cloud tier, the fog&edge tier, and the device tier. Specifically, in the device tier, the smart
device generates K different computation tasks, which follow the uniform distribution of K, where K
denotes the set of task types with K , {1, ..., K}. Each task is computed locally or offloaded. In the
FEC tier, the FEC server is deployed at the base station (BS), which has the content caching and the
computation capability to process the offloaded tasks. Besides, the BS is connected to the cloud server
in the cloud tier via optical fiber. For any task k, for example, face recognition is a typical application
scenario, which usually consists of five main computing components, including image acquisition,
face detection, preprocessing, feature extraction, and classification. Image acquisition components
can be executed on devices to support the user interface, but other complex computing components,
such as signal processing and the machine learning (ML) algorithm, can be offloaded to the fog&edge
computing or cloud computing to execute. Some of the components are cached in the FEC server in
advance, which could reduce computing delay and energy consumption of the device.

We define task k as τk , {ak, Ck, dk, Tmax
k }, where ak ∈ {0, 1} is the caching indicator. When

ak = 1, it indicates that the kth task has been cached in the FEC tier, and when ak = 0, it indicates that
the kth task has not been cached. Ck is the number of central processing unit (CPU) cycles required
for computing one bit of the kth task; dk is the data size of the kth task; and Tmax

k is the completion
deadline time of the kth task.
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For the FEC tier, due to limited caching space, we assume that the FEC server only caches
several of the most popular files. The popularity of the files follows a Zipf distribution. Therefore,
the popularity of the kth task is described as:

zk =
1
kµ

∑K
k=1

1
kµ

, (1)

where µ is the shape parameter and is regarded as constant [44,45]. For our considered system, denote
Z as the caching threshold according to the popularity. When zk ≥ Z, the kth task is cached; otherwise,
the task is not cached.

Figure 1. Illustration of the hierarchical cloud-fog&edge computing network.

For each task, the transmit protocol is shown in Figure 2. When the task is cached, it is processed
in the caching computing mode.
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Figure 2. Illustration of the transmit protocol for a given time block.
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2.1.1. Caching-Assisted Computing Mode

For the caching-assisted computing mode, the delay includes two parts. One is the task request
time Treq

k , which is too small to be ignored. The other is the result feedback time Tr
k , which depends on

the data size of the results. The delay of task k in the caching-assisted computing mode is given by:

Tcache
k = Treq

k + Tr
k ≈ δdk

B log2(1 +
pFEC|h|2

σ2 )
. (2)

where δ is the data ratio of the results. |h|2, pFEC, f FEC, B, and σ2 are the channel coefficient between
the device and the FEC tier, the transmit power and the computing capability of the FEC server, and
the system bandwidth and the noise power, respectively. The energy consumption of device for task k
in the caching-assisted computing mode is given by:

Ecache
k = pcTcache

k , (3)

where pc is the circuit power of the device for waiting.
When the task is not cached, it is processed in the joint device-fog&edge computing mode or the

cloud-assisted computing mode. Furthermore, we define γk ∈ {0, 1} as the uncached task execution
decision, where γk = 1 indicates that the cloud-assisted computing mode is selected; otherwise,
the joint device-fog&edge computing mode is selected.

2.1.2. Cloud-Assisted Computing Mode

Consider a cloud tier with a strong enough computation capability, so the execute time in the
cloud tier can be neglected. For the cloud-assisted computing mode, the delay includes three parts.
One is the task transmission time between the device and the FEC tier Tts

k . One is the task transmission
time between the FEC tier and the cloud tier Td, which depends on the distance between the FEC tier
and the cloud tier and is regarded as a constant in this work. The other one is the result feedback time
Tr

k . Therefore, the total delay of task k is given by:

Tcloud
k =Ttx

k + Td + Tr
k =

dk

B log2(1 +
ptx

k |h|2
σ2 )

+ Td +
δdk

B log2(1 +
pFEC|h|2

σ2 )
. (4)

Meanwhile, the energy consumption of the device for task k is given by:

Ecloud
k = ptx

k Ttx
k + pcTcloud

k , (5)

where ptx
k is the transmit power of the device for task k.

2.1.3. Joint Device-Fog&Edge Computing Mode

For joint device-fog&edge computing mode, the device portions each task into two parts. One part
executes by local computing. The other one executes by offloading to the FEC tier for computing.

• Local execution

According to most existing related works, to achieve minimal energy consumption, an identical
CPU frequency should be adopted for each CPU cycle. Thus, we denote f loc

k as the average
computation frequency of the device for each bit of the kth task. Therefore, the execution time of
task k is given by:

Tloc
k =

βkCkdk

f loc
k

, (6)
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where βk ∈ [0, 1] is the ratio of task k for local execution at the device and (1− βk) represents the
offloading ratio of task k for FEC execution.

The energy consumption of the device for task k is given by:

Eloc
k = κ f loc3

k Tloc
k = κ f loc2

k βkCkdk, (7)

where κ is the effective switched capacitor depending on the chip architecture.
• FEC execution

The FEC execution delay includes three parts. The first one is task offloading time Ttx
k . The last

one is FEC execution time TFEC
k . The other is the result feedback time Tfd

k . Thus, the delay of FEC
execution for task k is given by:

Toff
k = Ttx

k + TFEC
k + Tfd

k (8)

=
(1− βk)dk

B log2(1 +
ptx

k |h|2
σ2 )

+
(1− βk)Ckdk

f FEC +
δ(1− βk)dk

B log2(1 +
pFEC|h|2

σ2 )
.

The energy consumption of the device in FEC execution for task k is given by:

Eoff
k = ptx

k Ttx
k + pcToff

k . (9)

As a result, the total delay of task k in the joint device-fog&edge computing mode is:

Tjoint
k = max

{
Tloc

k , Toff
k

}
, (10)

and the energy consumption of the device for task k in this mode is given by:

Ejoint
k = Eloc

k + Eoff
k . (11)

Denote K1, K2, K3 as the set in the caching-assisted computing, cloud-assisted computing, and
joint device-fog&edge computing mode, respectively. |K1|, |K2|, and |K3| are the element number of
K1, K2, and K3, respectively. Then, the average energy consumption of the device is given by:

Eave =
∑K1

k Ecache
k + γk ∑K2,K3

k Ecloud
k + (1− γk)∑K2,K3

k Ejoint
k

|K1|+ |K2|+ |K3|
,K1 ∪K2 ∪K3 = K. (12)

2.2. Problem Formulation

Our goal is to minimize the average energy consumption of the device in the hierarchical
cloud-FEC system. Mathematically, the average energy minimization problem is formulated as:
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P0 : min
β,γ,ptx,f loc

Eave (13)

s.t. Tcache
i ≤ Tmax

i , ∀i ∈ K1, (13a)

Tcloud
j ≤ Tmax

j , ∀j ∈ K2, (13b)

Tjoint
k ≤ Tmax

k , ∀k ∈ K3, (13c)

0 ≤ f loc
k ≤ f max, ∀k ∈ K1,K2,K3, (13d)

0 ≤ ptx
k ≤ pmax, ∀k ∈ K1,K2,K3, (13e)

βk ∈ [0, 1], ∀k ∈ K3, (13f)

γk ∈ {0, 1}, ∀k ∈ K2,K3, (13g)

where β , [β1, β2, ..., βK]
T , γ , [γ1, γ2, ..., γK]

T , ptx , [ptx
1 , ptx

2 , ..., ptx
K ]

T , and f loc , [ f loc
1 , f loc

2 , ..., f loc
K ]T

denote the local computing ratio, the computing mode selection, the transmit power, and the
computation frequency of the device, respectively. f max and pmax denote the maximal achievable
computation frequency and transmit power of the device, respectively. Constraints (13a), (13b),
and (13c) mean that the delay in the three computing modes cannot exceed the completion deadline
time, respectively. Constraints (13d) and (13e) represent the computation capability constraint and
transmit power of the device, respectively.

3. Optimal Solution Approach

In this section, in order to solve Problem P0, we shall first decompose it into three subproblems.
Then, by respectively solving them, the optimal solution to Problem P0 is derived.

3.1. Optimization of the Caching-Assisted Computing Mode

As mentioned above, when zi ≥ Z, i ∈ K1 and the caching-assisted computing mode is employed.
In this mode, the optimal energy consumption is:

Ecache
i =pcTr

i =
pcδdi

B log2(1 +
pFEC|h|2

σ2 )
. (14)

Proposition 1. When pFEC has its maximal achievable threshold, Ecache
i achieves the optimal value.

Proof of Proposition 1. The larger pFEC is, the smaller Tr
i is, and the smaller Ecache

i is. Therefore,
when pFEC is with its maximal achievable threshold, the energy consumption of the device reaches its
minimum value. Therefore, the optimal Ecache

i can be obtained. Thus, Proposition 1 is proven.

3.2. Optimization of the Cloud-Assisted Computing Mode

When zj < Z and γj = 1, j ∈ K2 and the cloud-assisted computing mode is employed. In this
mode, the optimal problem is expressed as:

P1 : min
ptx

j

Ecloud
j (15)

s.t. Tcloud
j ≤ Tmax

j , (15a)

0 ≤ ptx
j ≤ pmax. (15b)
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By expanding the expressions of the variables of Problem P1, it is equivalently rewritten as:

P1_A : min
ptx

j

pc(
dj

B log2(1 +
ptx

j |h|2

σ2 )
+ Td +

δdj

B log2(1 +
pFEC|h|2

σ2 )
) + ptx

j
dj

B log2(1 +
ptx

j |h|2

σ2 )
(16)

s.t.
dj

B log2(1 +
ptx

j |h|2

σ2 )
+ Td +

δdk

B log2(1 +
pFEC|h|2

σ2 )
≤ Tmax

j , (16a)

0 ≤ ptx
j ≤ pmax. (16b)

Lemma 1. Problem P1_A is a convex optimization problem.

Proof of Lemma 1. Denote f (ptx
j ) = pc(

dj

B log2(1+
ptx

j |h|
2

σ2 )

+ Td +
δdj

B log2(1+
pFEC |h|2

σ2 )
). The second order

derivative of f (ptx
j ) is always larger than zero, so the objective function of Problem P1_A is convex.

The first constraint is rewritten as g(ptx
j ) ≤ 0, i.e.,

dj

B log2(1+
ptx

j |h|
2

σ2 )

+
δdj

B log2(1+
pFEC |h|2

σ2 )
+ Td − Tmax

j ≤ 0,

and its second order derivative is also always larger than zero. Therefore, the first constraint is also
convex. Therefore, Problem P1_A is a convex optimization problem. Lemma 1 is proven.

With Lemma 1 and the derivative of g(ptx
j ) = 0, the optimal solution to Problem P1_A is that

ptx∗
j = min

{
(Npc−1)W(0,exp(−1)(Npc−1))−1

N , pmax
}

, where N = |h|2
σ2 .

3.3. Optimization of the Joint Device-Fog&Edge Computing Mode

When zk < Z and γk = 0, k ∈ K3 and the joint device-fog&edge computing mode is employed.
The optimization problem can be expressed as:

P2 : min
βk ,ptx

k , f loc
k

Eloc
k + Eoff

k (17)

s.t. Tjoint
k ≤ Tmax

k , (17a)

0 ≤ f loc
k ≤ f max, (17b)

0 ≤ ptx
k ≤ pmax, (17c)

βk ∈ [0, 1]. (17d)

We design an alternating iteration method to solve Problem P2. Firstly, we fix βk, and the primal
Problem P2 becomes a sub-problem in terms of ptx

k and f loc
k . Then, we substitute the optimal values of

ptx
k and f loc

k into Problem P2, and Problem P2 is reformulated as a subproblem in terms of βk. Hence,
Problem P2 is divided into two sub-problems as follows, i.e., Problem P3 w.r.t. the transmit power ptx

k
and computation frequency f loc

k and Problem P4 w.r.t. the local computing ratio βk.

Let β
(0)
k be the feasible point to Problem P2. Problem P2 is re-expressed as:

P3 : min
ptx

k , f loc
k

Eloc
k + Eoff

k (18)

s.t. Tloc
k ≤ Tmax

k , (18a)

Toff
k ≤ Tmax

k , (18b)

0 ≤ f loc
k ≤ f max, (18c)

0 ≤ ptx
k ≤ pmax. (18d)
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To solve Problem P3, we expand the expressions of the variables of Problem P3 to be:

P3_A : min
ptx

k , f loc
k

κ f loc2
k β

(0)
k Ckdk +

ptx
k (1− β

(0)
k )dk

B log2(1 +
ptx

k |h|2
σ2 )

+ pc(
(1− β

(0)
k )dk

B log2(1 +
ptx

k |h|2
σ2 )

(19)

+
(1− β

(0)
k )Ckdk

f FEC +
δ(1− β

(0)
k )dk

B log2(1 +
pFEC|h|2

σ2 )
)

s.t.
β
(0)
k Ckdk

f loc
k

≤ Tmax
k , (19a)

(1− β
(0)
k )dk

B log2(1 +
ptx

k |h|2
σ2 )

+
(1− β

(0)
k )Ckdk

f FEC +
δ(1− β

(0)
k )dk

B log2(1 +
pFEC|h|2

σ2 )
≤ Tmax

k , (19b)

0 ≤ f loc
k ≤ f max, (19c)

0 ≤ ptx
k ≤ pmax. (19d)

Lemma 2. Problem P3_A is a convex optimization problem.

Proof of Lemma 2. Let the objective function as β
(0)
k h1( f loc

k ) + (1− β
(0)
k )h2(ptx

k ), where h1( f loc
k ) =

κ f loc2
k Ckdk and h2(ptx

k ) = ptx
k

dk

B log2(1+
ptx

k |h|
2

σ2 )
+ pc( dk

B log2(1+
ptx

k |h|
2

σ2 )
+ Ckdk

f FEC + δdk

B log2(1+
pFEC |h|2

σ2 )
). The second

order derivatives of h1( f loc
k ) and h2(ptx

k ) are respectively given by:

∂2h1( f loc
k )

∂ f loc2
k

> 0,
∂2h2(ptx

k )

∂ptx2
k

> 0, (20)

which means that the objective function is convex. The first constraint is re-written as β
(0)
k h3( f loc

k ) +

(1 − β
(0)
k ){h4(ptx

k ) +
dk

B log2(1+
ptx

k |h|
2

σ2 )
+ Ckdk

f FEC + δdk

B log2(1+
pFEC |h|2

σ2 )
− Tmax

k } ≤ 0. The second order

derivatives of h3( f loc
k ) and h4(ptx

k ) are respectively derived as:

∂2h3( f loc
k )

∂ f loc2
k

> 0,
∂2h4(ptx

k )

∂ptx2
k

> 0. (21)

Therefore, the constraint is also convex. Lemma 2 is proven.

Lemma 2 indicates that Problem P3 is a joint convex optimization problem w.r.t. f loc
k and ptx

k ,
which can be solved by using some standard convex optimization tools, such as CVX. According to
Proposition 1, when pFEC = pmax and f FEC = f max, the optimal Ejoint

k can be achieved.
By substituting the optimal solution of f loc

k and ptx
k into Problem P3 to get Eloc(0)

k and Eoff(0)
k ,

we have:

P4 : min
βk

βkEloc(0)
k + (1− βk)Eoff(0)

k (22)

s.t. Tjoint
k ≤ Tmax

k , (22a)

βk ∈ [0, 1]. (22b)

Since the objective function of Problem P4 is linear w.r.t. βk, it is solved by several well-studied
method.
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Algorithm 1 Optimal caching, cloud, and joint computing (CCJ) algorithm.

1: Initialize Ci, di, pc,K1 = 0,K2 = 0,K3 = 0, and other known parameters;
2: for i = 1 : |K| do

3: if ak = 1 then

4: Calculate Ecache
k according to (14);

5: k→ K1;
6: else

7: Calculate Ecloud
k according to (15);

8: Calculate Ejoint
k according to (17);

9: if Ecloud
k < Ejoint

k then

10: γk = 1;
11: k→ K2;
12: else

13: γk = 0;
14: k→ K3;
15: end if
16: end if
17: end for
18: Calculate ∑K1

i Ecache
i , ∑K2

j Ecloud
j , ∑K3

i Ejoint
k

19: Calculate Eave according to (13);

With the closed-form or well-structured solutions to the cloud-assisted computing mode and the
joint device-fog&edge computing mode in Sections 3.2 and 3.3, the minimal energy consumption (i.e.,
Ecloud

j and Ejoint
k ) can be calculated. Therefore, for uncached task k, ∀k ∈ K2,K3, the computing mode

selection can be determined by:

γk =

{
0, if Ecloud

k > Ejoint
k ,

1, otherwise.

In order to show our proposed algorithm clearly, i.e, the optimal caching, cloud, and joint
computing (CCJ) algorithm, we summarize it as shown in Algorithm 1. It is able to converge to the
global optimal solution with low computational complexity.

4. Simulation Results

4.1. Simulation Setup

In this section, we present some numerical results to discuss the performance of the hierarchical
cloud-FEC system. We considered a centralized FEC network covered by a 200 m × 200 m area,
where the BS was connected to the cloud server via optical fiber. In the device tier, the number of
tasks requested by the device was K = 10. The input data size of the task was randomly distributed
within [100, 1000] MB, and the data ratio of the result δ was 0.1. The corresponding number of required
CPU cycles was distributed within [0.2, 1] G-cycles. The maximum achievable transmit power of the
device was set as pmax = 0.1 W. The circuit power of the device was pc = 0.01 W. In the FEC tier, the
maximum achievable transmit power and computation capability of the FEC server was pFEC = 1 W
and f FEC = 5 G-cycles, respectively. In the cloud tier, since the calculation delay in the cloud server
was ignored, we set Td = 0.2 s, which was the transmission delay regarding the distance between the
FEC tier and the cloud tier. In terms of communication, the system bandwidth was set as B = 3 MHz,
and the white Gaussian noise was set to be σ2 = 10−8 W [29]. In addition, the channel gain was
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modeled by h = 127 + 30× log d with independent Rayleigh fading, where d is the distance between
the device and the FEC server. According to the realistic measurements in [46], we set the effective
switched capacitor κ = 10−26. In the caching policy, we set the shape parameter µ = 0.56 and the
caching threshold Z = 0.16. In this paper, all experiments were implemented in MathWorks MATLAB
R2016b on a laptop equipped with a 12.00 GHz Corei5-3337U CPU and 128 GB random access memory.
Every point in the figures was the result averaged over 104 independent channel realizations.

We compared our proposed algorithm with three different benchmark schemes as follows:

• No caching (NC) scheme: This scheme supposed that the FEC system did not have a cache
function. Therefore, the task could only be executed through cloud computing mode or joint
computing mode.

• Caching and joint execution (CJE) scheme: This scheme used our proposed cache policy. For the
uncached task, it could be processed by the joint computing mode, that is γ = 0.

• Caching and cloud execution (CCE) scheme: This scheme used our proposed cache policy. For the
uncached task, it could be processed by the cloud computing mode, that is γ = 1.

4.2. Experimental Results

Figure 3 compares the average energy consumption versus different caching popularity thresholds.
It is seen that with the increment of Z, the average energy consumption of the device increased.
The reason is that the larger the Z, the more the task was cached and processed in the FEC tier.
The energy consumption was mainly caused by the circuit consumption of the device during waiting
for the FEC server to execute the task and return the results to the device.
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Figure 3. Average energy consumption on four schemes versus the caching popularity threshold

Figure 4 shows the average energy consumption versus different maximal achievable transmit
powers of the device. It is seen that with pmax increasing, the average energy consumption of the
device decreased and finally tended to be stable. The reason was that the higher the transmit power of
the device, the faster the transmission rate, and the less the transmission time, the lower the energy
consumption of the device. When pmax was relatively small, the optimal solution of the transmit
power was on the boundary, i.e., pmax. When pmax reached a certain value, the optimal solution of the
transmit power shall not change.
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Figure 4. Average energy consumption of the four schemes versus the maximum achievable transmit
power of device pmax.

Figure 5 compares the average energy consumption versus different system bandwidths. It is
seen that with the bandwidth increasing, the average energy consumption decreased. The reason may
be that the larger the system bandwidth, the larger the transmission rate, which resulted in less delay
and lower energy consumption.
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Figure 5. Average energy consumption on the four schemes versus the system bandwidth B.

Figure 6 compares the average energy consumption versus different task data sizes. It is seen that
with the data size increasing, the average energy consumption increased. The reason may be that the
larger the data size of the task, the larger the transmission delay and the calculation delay, which led to
the greater energy consumption of the device.
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Figure 6. Average energy consumption on the four schemes versus the data size dk.

Figure 7 compares the local computing ratio versus different task data sizes. It is seen that with the
increment of the data size of the task, the local computing ratio decreased. The reason was that when
the data size of the task was small, it was computed locally with less energy consumption compared
with offloading. When the data size of the task was large, the computation capacity of the device was
not enough to support the calculation, and more parts of the task should be offloaded to the FEC tier
for computing.
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Figure 7. Average energy consumption on the four schemes versus the data size dk.

5. Conclusions

This paper studied the optimal design of a hierarchical cloud-FEC network with caching. For such
a system, an energy minimization problem was formulated by jointly optimizing the computing mode
selection, the local computing ratio, the computation frequency, and the transmit power of the device,
while guaranteeing multiple system constraints, including the task completion deadline time, the
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achievable computation capability, and the achievable transmit power threshold of the device.Since
the problem was a mixed integer nonlinear programming problem, which was hard to solve, it was
decomposed into three subproblems, and the optimal solution for each subproblem was derived. Then,
an efficient CCJ algorithm to solve the primary problem was designed. Simulation results showed
that the system performance achieved by our proposed optimal design outperformed that achieved
by the benchmark schemes. Specifically, compared with the NC scheme, the energy consumption
reduced by our proposed optimal design by about 56%. Compared with the CJE scheme, the energy
consumption reduced by our proposed optimal design by about 44%. Compared with the CCE scheme,
the energy consumption reduced by our proposed optimal design by about 5%. Moreover, the smaller
the achievable transmit power threshold of the device, the more energy was saved. Besides, with the
increment of the data size of the task, the lesser was the local computing ratio.
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