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Abstract

The Multi-Criteria Decision Analysis (MCDA) procedure was used to compare waste man-

agement options for kraft pulp mill sludge following its anaerobic digestion. Anaerobic diges-

tion of sludge is advantageous because it produces biogas that may be used to generate

electricity, heat and biofuels. However, adequate management of the digested sludge is

essential. Landfill disposal is a non-sustainable waste management alternative. Kraft pulp

mill digested sludge applied to land may pose risks to the environment and public health if

the sludge has not been properly treated. This study is aimed to compare several recycling

alternatives for anaerobically digested sludge from kraft pulp mills: land application, landfill

disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae.

The MCDA procedure considered nine criteria into three domains to compare digested

sludge recycling alternatives in a kraft pulp mill: environmental (CO2 emission, exposure to

pathogens, risk of pollution, material and energy recovery), economic (overall costs, value

of products) and technical (maintenance and operation, feasibility of implementation). The

most suitable management options for digested sludge from kraft pulp mills were found to

be composting and incineration (when the latter was coupled with recycling ash to the

cement industry). Landfill disposal was the worst option, presenting low performance in fea-

sibility of implementation, risk of pollution, material and energy recovery.

Introduction

Brazil holds one of the world’s major shares in the pulp and paper export market with 17.2 mil-

lion tons of pulp produced annually [1]. Kraft pulping, the most common pulp producing pro-

cess in Brazil, demands approximately 30 m3 of water per ton of pulp produced. This process

generates effluent with high organic content that cannot be discharged without treatment [2;

3]. A typical kraft pulp mill effluent treatment plant produces about 40 kg of primary sludge
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and 15 kg of secondary sludge per ton of dry pulp. In countries like Brazil, China and USA,

both sludges are normally disposed into landfills, but could be used to produce biogas [2,3].

The waste stream that is digested to produce biogas produces a waste stream that is dewa-

tered, resulting in a liquid and a solid fraction (biosolids). The liquid fraction is typically used

to product biofuel and fertilizer, while the solid fraction is typically disposed of by land appli-

cation, incineration or landfilling (S1 Fig) [3–5].

The objective of this study was to investigate, compare and select, the most suitable options

for managing anaerobically digested primary and secondary sludges from kraft pulp mills,

using the Multi-Criteria Decision Analyzing (MCDA) procedure.

Material and methods

Six alternatives for recycling pulp mill digested sludge were examined, based on the most com-

mon management alternatives adopted in the USA, China and Brazil: land application, landfill

disposal, composting, incineration, pyrolysis/gasification, and biofuel production by algae

[2,6,7,8]. The study data were obtained from published literature, and the recycling alternatives

were compared using MCDA, a procedure widely accepted in solid waste management studies

[9,10]. The method compares various alternatives and considers the opinion of stakeholders.

To evaluate the recycling alternatives, were considered environmental, economic and tech-

nical aspects, in order to find the best alternatives for sludge treatment. The environmental cri-

teria considered possible environmental damage from sludge treatment, including the

following decision criteria: CO2 emission; exposure to pathogens; pollution risks; material

recovery; and energy recovery. The CO2 emissions were calculated using previously developed

equations for landfill disposal, land application, and composting [11]. Exposure to pathogens,

risk of pollution, and material and energy recovery were based on the data in published litera-

ture and previous research [12–18].

The overall costs criteria (costs for operation, maintenance, transportation, labor, energy

demand and, in some cases, quality control or soil testing) and product value were selected

based on the economic criteria. The costs for all alternatives except algae production, were

selected based on data from Stamatelatou and Tsagarakis [16]. The product value was calcu-

lated using the average market value in the USA of the product recovered [13–16].

Technical criteria were selected to ensure the feasibility of each recycling option for the

kraft pulp mill industry. The criteria for maintenance and operation, and for the feasibility of

implementing an option in kraft pulp mills, were chosen for this purpose. Maintenance and

operation refers to the recycling process and to the complexity of the alternatives proposed.

Implementation feasibility for kraft pulp mills refers to the viability of adapting available man-

agement options to a typical kraft pulp mill.

The criteria were assigned different weight factors (WF1, WF2 or WF3) to denote the per-

ceived importance of the criteria. The feasibility of implementing a digested sludge alternative

in kraft pulp mills (WF3) was designated as the most important criterion, because it integrated

the feasibility and adaptability of the technology to current industry practices. The overall

costs, product values, and maintenance and operation criteria were each assigned a weight fac-

tor of two (WF2), according to their economic attractiveness and feasibility importance. The

weight factor of one (WF1) was assigned to criteria for CO2 emission, exposure to pathogens,

pollution risks, material recovery, and energy recovery.

The options were ranked from one to six, i.e., from the worst (one) to the best (six), based

on the literature data and calculations. The calculated sum of each recycling alternative was

determined using the weight assigned per criterion. The higher the sum, the better was the

recycling alternative.

A multi-criteria analysis for digested kraft pulp mill sludge
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Delphi questionnaires to MCDA evaluations were prepared [17] and an electronic survey was

sent to a number of academic and non-academic experts in the field from the environmental engi-

neering to support the analysis. The participants were asked to rank the alternatives described per

criterion in a preference order. From them, eight volunteered to contribute with the survey.

An anaerobic digestion model [18] was used with the software Aspen Plus1, System num-

ber: SYS917070, to estimate the digested sludge generation by the anaerobic digestion of kraft

pulp mill primary and secondary sludges, and the mixture between them (2.5:1 ratio, in total

solids basis). The kraft pulp mill in study is located in the state of Minas Gerais, Brazil. Water

[19], proteins [20], lipids [20] and ash content [19] were characterized in the sludge. The cellu-

lose and hemicellulose contents of primary [21] and secondary [22] sludge were based on data

from published literature that examined sludge from kraft pulp mills [8,23,24]. The liquid and

solid fractions of the kraft pulp mill digested sludge were measure from the water fraction pro-

vided by the model in Aspen Plus1.

Results

The characteristics of primary and secondary kraft pulp sludges, and their mixture, are pre-

sented in S1 Table. Both have high concentrations of fibers (cellulose and hemicellulose) that

are potential substrates for bacteria in the anaerobic digestion process. Nevertheless, their pro-

tein content (i.e., nitrogen concentration) is low. The lack of nitrogen impairs biogas produc-

tion, because it is an essential element for bacterial growth.

The characteristics of the digested sludge predicted by the model simulation highlights the

efficiency of anaerobic digestion of secondary pulp mill sludge in comparison with digestion

of primary sludge. More residual solids remained after digestion of the primary sludge com-

pared to secondary sludge, which means that there is unused potential for biogas production

from primary sludge due to the lack of nitrogen in this type of sludge. This fact is verified in

the production of methane, where secondary sludge presents 72% higher production (S2

Table). The production of methane can be an interesting alternative for energy use [25,26].

Using MCDA to evaluate the combined environmental, economic and technical domains

of alternatives, the options were ranked from best to worst as follows: composting (1); inciner-

ation (2); land application (3); pyrolysis/gasification (4); algae production (5) and landfill dis-

posal (6) (S3 Table).

Discussion

CO2 emission

For primary sludge, the CO2 emissions from landfill disposal, land application and composting

were estimated as 0.23, 0.60, 0.16 kg CO2/kg digested sludge, respectively. Cement production was

the worst alternative in terms of CO2 emission [27]. The CO2 emission of crop wastes pyrolysis

was lower compared to fossil fuels [28]. For gasification, the digested sludge is converted into CO,

H2 and CO2 at a high temperature and the mixture of these gasses can be combusted to reduce the

CO2 emission [29]. The CO2 emission reported in literature was 190 kg CO2/MWh from gasifica-

tion of walnut waste [30]. The CO2 emissions from thermal recycling processes and algae produc-

tion were not calculated due to lack of data. However, it is expected that algae production would

emit less CO2 than would pyrolysis/gasification and incineration, because algae capture CO2.

Exposure to pathogens

For landfill disposal, the risk of exposure to pathogens is low if impermeable linings protected

by sand layers are applied to prevent leaching of contaminants to groundwater [31]. Land
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application, without pre-treatment, showed a significantly high risk of pathogen exposure.

Therefore, sludge and digested sludge have to meet quality standards regarding heavy metals,

pathogens and vectors [32]. The high temperatures for thermal recycling alternatives should

inactivate pathogens [33]. Nevertheless, pathogens inactivation also happens at relatively low

temperatures (50˚C) in a composting pile [34]. For algae production, the exposure to patho-

gens could cause occupational health or environmental problems [35].

Risk of pollution

For landfill disposal, harmful contaminants can leach through the soil, polluting groundwater

and surface water. In addition, nutrients (N, P, K, Ca and Mg) at high concentrations can

leach to groundwater [36,37]. The heavy metal content in digested kraft pulp sludge does not

exceed legal limits [38], but potentially toxic elements in the kraft pulp mill digested sludge are

a risk in land application [3]. Heavy metals accumulate in agricultural soil and their persistence

in topsoil causes problems in the food chain [39]. Composting decreases the organic matter

content and dissolved organic carbon, resulting in high heavy metal concentration in the final

compost [40]. Cement production from digested sludge oxidizes organic pollutants and

immobilizes heavy metals [33]. For pyrolysis/gasification, digested sludge is first dried, pressed

to pellets and then combusted. In the combustion, organic pollutants are oxidized, but heavy

metals present in the feedstock will remain in the ash [41]. Algae-bacterial systems can remove

organic pollutants, nutrients and heavy metals from wastewater streams [42]. However, well-

mixed photobioreactors with algal biomass recirculation can protect algae from the toxicity of

the liquid fraction.

Material recovery

The disposal of sludge in a landfill is a waste of recyclable material that has both fertilizer and

calorific value [43]. The land application and composting options allow the use of digested

sludge in agricultural production as a low-cost soil amendment, but it is now becoming

restricted due to the risk of pollution [3]. Incineration produces energy and ash from digested

sludge [44], and dried sludge can be used to produce cement [45]. The heating value of the

sludge is lower than the raw sludge due to decreased organic content after digestion, but incin-

eration is still feasible [5]. Concerning pyrolysis, the kraft pulp mill digested sludge can be con-

verted into bio-oil, pyrolysis gas and biochar. Bio-oil can replace crude oil, while pyrolysis gas

can be used to produce energy, and biochar is a good soil conditioner [5]. The gasification pro-

cess produces gas that can be used to produce electricity [46]. Algae production has potential

applications, including biological CO2 sequestration and wastewater treatment [47], but its

most interesting application is for biodiesel production [48].

Energy recovery

Landfill disposal, land application and composting of sludge do not enable energy recovery.

Raw sludge from wastewater treatment plants can be digested and incinerated. Houdková

et al. [49] found the calorific value of digested sludge was only 2.1 MJ/kg. In a study conducted

by Cao and Pawlowski [50], primary and secondary sewage sludges were digested and pyro-

lyzed, producing 0.102 ton bio-oil and 0.207 ton bio-char per ton of primary sludge, and 0.192

ton bio-oil and 0.407 ton bio-char per ton of secondary sludge. Although that study [50] was

conducted using sludge from municipal wastewater treatment, it gives an insight in the energy

production potential from kraft pulp mill digested sludges. Gasification of sludge was found to

produce 8.197 MJ/kg sludge, which was a lower energy value than that of other feedstocks

A multi-criteria analysis for digested kraft pulp mill sludge

PLOS ONE | https://doi.org/10.1371/journal.pone.0188732 January 3, 2018 4 / 10

https://doi.org/10.1371/journal.pone.0188732


such as coal, vegetable oils, straw, wood and plants [51]. Biofuel production from algae grown

using digested kraft pulp mill sludge as a substrate has not been reported.

The high moisture contents of both raw and digested sludges impair energy recovery

through incineration and pyrolysis/gasification processes, but not through anaerobic diges-

tion, which is efficient at relatively high moisture content.

Overall costs

Overall costs of each alternative sludge management option were described in US dollars

(US$) per ton of dry matter (S4 Table).

Overall costs for large-scale algae production from sludge have been poorly studied; how-

ever, these costs were estimated to be high due to maintenance and operation costs. Dewater-

ing the digested sludge might increase the costs associated with incineration and pyrolysis/

gasification due to the expected high moisture content of the kraft pulp digested sludge.

Value of products

The revenue from digested sludge used for land application needs to be better studied; in a

1995 study, a revenue value of US$ 34–36 per ton was found [14]. The inflation from 1995 to

2016 changes this value to US$ 53–100 per ton of digested sludge. However, this was deter-

mined for treated sludge that was free of pathogens, heavy metals and odor; comparable data

are scarce about the value of composted sludge. One ton of sludge dry solids (DS) were con-

verted to 0.81 MWh through incineration [49]. One MWh of biomass or coal was valued in

terms of the Brazilian real (R$) at R$ 251 [15]; therefore, the value of one ton of sludge DS is

valued at R$ 203.31 (US$ 58.18). The ash value of sludge DS was estimated to be US$ 200 per

ton [14]. One ton of digested sludge on a DS basis produced 0.17 ton of ash [49]. Therefore,

the value of one ton of DS was set at US$ 34. Incineration of one ton of sludge DS is worth

US$ 91.83.

Pyrolysis of one ton of digested primary sludge (DS basis) resulted in 0.102 ton bio-oil and

0.207 ton bio-char. The selling price for bio-oil and bio-char are US$ 0.66/L and US$ 0.4/kg,

respectively [52]. The value of one ton digested primary sludge is US$ 80.84 for bio-oil, and

US$ 82.80 for bio-char considering the density of the bio-oil to be 1.2 kg/L, resulting in a total

value of US$ 163.64 per ton of digested primary sludge. One ton of digested secondary sludge

(DS basis) produced revenue of US$ 314.96 [52]. Energy production from gasification was esti-

mated to be 8,197 MJ per ton sludge, i.e., 2.277 MWh per ton sludge (DS) [51]. The Brazilian

value of one MWh (R$ 251) [53] yields a revenue of R$ 571.53 (US$ 163.56) per ton dry

sludge.

For algae production, 4,558.71 m3 of wastewater is needed for 1 m3 of biodiesel, and 1 m3 of

biodiesel results in revenue of US$ 636.65. Therefore, 1 m3 of digested sludge (liquid fraction)

is valued at US$ 7.16 [16].

Maintenance and operation

In-situ composting is the preferred alternative regarding the maintenance and operation crite-

rion. Neither land application nor landfill disposal is complicated, but each requires more

maintenance in terms of professionals and quality control than does composting. Application

of the digested sludge on land requires managers to minimize odor potential, pathogens and

other harmful constituents in sludge to acceptable levels and frequently monitor possible envi-

ronmental impacts using soil and groundwater analyses [54]. The kraft pulp mill digested

sludge is too wet and needs to be dewatered [55]. The dewatering method needs to be further

studied for kraft pulp mill waste because the anaerobic digestion process changes the capillary

A multi-criteria analysis for digested kraft pulp mill sludge
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structure of the digested sludge, i.e., digestion alters the binding of water inside crevices and

interstitial spaces that exist on and between particles and organisms [56].

Thermal treatment alternatives and algae production are more complex to operate than

other alternatives. The kraft pulp mill digested sludge needs to be dewatered prior incinera-

tion. The dewatering requirement constitutes a major challenge because kraft pulp mill

digested sludge has high moisture content. Gaseous emissions require air pollution control

equipment. A major advantage of the thermal treatment alternative is to incinerate the kraft

pulp mill in a biomass boiler. The bottom ash, a solid residue after incineration, can be used in

cement production.

The relative complexity of pyrolysis processing equipment is the major disadvantage of this

process. Pyrolysis involves a complex series of chemical reactions to decompose organic mate-

rials and produce oils, gases and char [57].

The major challenge of algae production is to implement an integrated system that combines

large-scale production and algae harvesting to produce biofuels. Further investigation and

development of large-scale production and harvesting methods for biofuels are necessary [58].

Feasibility of implementing kraft pulp mill digested sludge

Landfilling of kraft pulp mill digested sludge is easily implemented; however, this alternative is

outdated and has environmental risks, and does not accrue economic profits or facilitate any

material or energy recovery. Land application of kraft pulp mill digested sludge is feasible to

implement, but the possible pathogen contamination and heavy metal content need to be stud-

ied. Heavy metal content of raw kraft pulp sludge is low [38]. Composting allows reactors (i.e.,

compost piles) to be placed and operated on-site at a kraft pulp mill, if area is available. Incin-

eration (which can take place in the biomass boiler of a kraft pulp mill) combined with ash uti-

lization (in the cement industry) are promising solutions for managing kraft mill sludge.

Pyrolysis and gasification of the digested sludge, when compared to incineration, have the dis-

advantage of being difficult to implement on-site at a kraft pulp mill [59]. In addition, these

alternatives require high-cost investments. Thermal treatment is also an alternative of ques-

tionable feasibility because of the high moisture content in the kraft pulp mill digested sludge.

Algae production seems a promising alternative, but more research is needed to determine its

feasibility for managing digested sludge from a kraft pulp mill, since this type of sludge lacks

some essential constituents, such as nitrogen. An option for solving this problem would be to

apply a thermal pre-treatment [60] or ultrasound treatment [61] to solubilize the sludge.

Conclusions

• Composting is the most suitable alternative for recycling the anaerobically digested sludge

from kraft pulp mills.

• Composting is safe and produces low-cost fertilizer for agriculture. There is no energy recov-

ery, but the overall costs are low and the process is feasible to implement.

• The incineration alternative may be easy to implement at a kraft pulp mill biomass boiler,

because it includes energy recovery, and the ash generated can be recycled into cement pro-

duction. Nevertheless, the incineration process is more complex and has higher costs com-

pared to composting.

• The only difference between the opinion survey and the research based on literature and cal-

culations was the score determined for the land application alternative, which was consid-

ered by the survey participants to be a better alternative than incineration.
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• This study gave an insight into the advantages and disadvantages of various alternatives for

managing anaerobically digested kraft pulp mill sludge.
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