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The presence of abnormal gene expression signatures is a well-described feature of

the oligoarticular and polyarticular forms of juvenile idiopathic arthritis. In this review, we

discuss how new insights into genetic risk for JIA and the three dimensional architecture

of the genomemay be used to develop a better understanding of the mechanisms driving

these gene expression patterns.
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The completion of the first assembly of the human genome was accompanied by considerable
surprise with the discovery that only ∼2% of the genome contained protein-encoding genes (1).
The lay press seized on these findings and disseminated the idea that 98% of human genomes
contained so-called “junkDNA,” on the assumption that the only things of interest in genomes were
the protein-coding sequences. Subsequent genome annotation efforts, such as the Encyclopedia
of DNA Elements (ENCODE) and Roadmap Epigenomics in the United States and Blueprint
Epigenomics in Europe, demonstrated that much of this so-called “junk DNA” actually encoded
RNA molecules (2, 3) or contained regulatory regions that played critical roles in fine-tuning
transcription during development, cell differentiation, and in response to external stimuli (4).

The era of genome-wide association studies (GWAS), which were undertaken to better
understand the genetic contribution to a broad range of complex traits, brought additional
surprises. Investigators were perplexed to find that the strongest genetic associations occurred
with single nucleotide polymorphisms (SNPs) that were located within non-coding regions of the
genome. Indeed, taken together, GWAS SNPs are far more likely to occur in intronic or intergenic
regions than in either exons or gene promoters (4).

These findings provide the basis for our inquiry into the causes of the well-described
transcriptional abnormalities in JIA. In this paper, we will review the wealth of literature
demonstrating abnormal patterns of gene expression in the peripheral blood cells of children with
juvenile idiopathic arthritis (JIA). We will then discuss the role of non-coding genomic elements
(especially enhancers) in regulating transcription and how an understanding of these mechanisms
may allow a deeper understanding of the JIA-associated transcriptional patterns and/or the genetics
of JIA.

In this review, we will focus on the oligoarticular and polyarticular, RF-negative subtypes of JIA,
as these subtypes appear to represent a continuous spectrum of shared genetic risk (5). In contrast,
systemic-onset (6) and RF+ polyarticular disease (7) show unique clinical and genetic features. We
should note, however, that many of the broad ideas that we will present in this review are relevant
to these other two JIA subtypes, as they are to most complex genetic traits.
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TRANSCRIPTIONAL ABNORMALITIES IN
JIA: LESSONS LEARNED FROM GENE
EXPRESSION PROFILING

The emergence of technologies to assess transcription on a
genome-wide basis was initially met with considerable optimism
that these tools could be used to develop clinical biomarkers (8),
to classify heterogeneous patient populations more accurately
(9, 10), to develop a better understanding of the mechanisms of
therapeutic response (11–13) and to better understand disease
pathogenesis (14). Different groups have reported a broad range
of transcriptional abnormalities in patients with polyarticular
and oligoarticular JIA. These transcriptional abnormalities can
be observed in whole blood (12), unsorted white blood cells
(buffy coats) (15), peripheral blood mononuclear cells (PBMC)
(9, 16), neutrophils (17), and CD4+ T cells (18). These studies
have generally identified clusters of interferon gamma (IFNg) and
tumor necrosis factor alpha (TNFa) regulated genes that display
differential expression in children with active polyarticular JIA
when they are compared to healthy control children. An IL8
“signature” can also be seen in both neutrophil (19) and whole
blood (14) gene expression studies. In general, whole blood
expression studies have suggested complex interactions between
innate and adaptive immunity in JIA (14, 20). It is curious
to note that, even though the oligoarticular and polyarticular
rheumatoid factor (RF)-negative subtypes share common genetic
risk loci, the largest published study comparing these two
phenotypes found that each was distinguishable from the other
at the gene expression level (21). Similarly, RF-negative and
RF-positive subtypes, which are genetically distinct (7), have
remarkably similar gene expression profiles on whole blood
microarray analysis. Thus, it is clear that genetic factors are not
the sole drivers of the gene expression abnormalities observed in
oligoarticular and polyarticular JIA.

The question arises as to whether these transcriptional
abnormalities reflect intrinsic defects in gene regulation in the
cells of interest, or merely reflect the inflammatory milieu to
which these cells are exposed. After all, elevated levels of a broad
range of inflammatory mediators can be observed in the serum
(22) or plasma (23) of children with JIA. On the other hand, our
group has shown that the transcriptional abnormalities observed
in JIA neutrophils are accompanied by aberrations in the
metabolism of glucose via the hexose monophosphate shunt (19).
Similarly, Throm and colleagues have shown distinct aberrations
in interferon gamma-mediated (IFNg) signaling pathways in
JIA T cells (24) studied in vitro. Finally, neither PBMC nor
neutrophil signatures “normalize” after children have achieved
clinical remission on medication (CRM), although it’s curious to
note that the neutrophil aberrations are more prominent (13).
We should also note that the intrinsic defect vs. externally-driven
hypotheses to explain the distinct transcriptional profiles of JIA
peripheral blood cells are not mutually exclusive. Although we
are coming to understand the strong effect that the environment
(broadly considered) has on peripheral blood gene expression
(25), underlying genetics and the immediate external milieu
to which the cells are exposed may both play a role in the

transcriptional patterns observed in peripheral blood leukocytes
of children with JIA.

We were naturally led us to ask whether the emerging
knowledge of the genetics of JIA might provide a useful
framework from which to understand the mechanisms driving
the transcriptional abnormalities in JIA peripheral blood cells.
This necessarily leads to a brief discussion of the genetics on
JIA. This discussion will not be comprehensive, and the reader
wishing to have a deeper understanding is invited to read the
recent reviews available on this subject (26, 27).

GWAS AND THE GENETICS OF JIA

Using candidate gene approaches, GWAS, and genetic fine
mapping studies, investigators have identified >30 genetic loci

associated with JIA (26–28). Each of these 3 approaches queries
a single or small groups of SNPs (candidate gene approaches)
or large numbers of SNPs (GWAS and genetic fine mapping

studies) and asks whether specific alleles occur more frequently
in individuals with a specific disease or phenotype than they do in
controls (29) to identify alleles that have a strong association with

the disease or trait of interest. It is important to note, however,
that SNPs identified by such studies may not be the actual genetic

variants that exert the biological effects that confer risk. This
is because the so-called tag SNPs (or candidate SNPs used in
candidate gene approaches) are in linkage disequilibrium (LD)

with hundreds or thousands of other SNPs in the same region,
any one of which may exert risk-enhancing biological effects.
To use an analogy, GWAS can be understood as something

like a crude global positioning satellite (GPS) that can tell
you, say, that you are on the M1, somewhere between London
and Sheffield, assuring you that you are not in Cornwall, but
not providing any information as to whether you’re actually
closer to Leicester or Nottingham. Thus, GWAS have merely
identified regions of the genome where genetic risk may be
exerted. These regions can be referred to as “LD blocks” or,
more commonly, risk haplotypes. It is common to refer to
the risk haplotypes in JIA (and other complex traits) by the
gene nearest to the tag SNP, and this has led to the common
misunderstanding that the GWAS SNP: (1) is the one that
actually exerts the relevant biological effects and (2) exerts
those effects on the nearest gene. Neither is necessarily the
case.

Figure 1 illustrates this point. IL6R is a haplotype that was
identified on the genetic fine mapping study published by
Hinks et al. (5). The haplotype spans the region marked by
the genomic coordinates, chr1:154291718-154392674, a length
of >100,000 bp. The reader will also note that there are
functional elements other than the coding genes (ATP8B2 and a
portion of IL6R); this region is also characterized by prominent,
overlapping H3K4me1/H3K27ac histone marks (for simplicity,
only the H3K27 marks are shown in the figure), and dense
transcription factor binding even in non-coding regions (i.e.,
within introns and the intergenic area). These chromatin features
are commonly associated with enhancers, about which it is useful
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FIGURE 1 | Genome browser screen shot showing the JIA-associated IL6R locus, identified by the tag SNP, rs11265608, and encompassing the region

chr1:154291718–154379369. Transcription is from left to right. This locus consists largely of an intergenic region between the IL6R and ATP8B2 genes. The haplotype

block also encompasses the first exon and intron of the IL6R gene and most of the coding sequence of the ATP8B2 gene. The position of the tag SNP, rs11265608,

is indicated by the red arrow. ChIPseq peaks for the histone mark H3K27ac from ENCODE and Roadmap Epigenomics data, are shown with the blue/magenta

peaks. Transcription factor (TF) binding data and DNAse hypersensitivity data (also from ENCODE and Roadmap Epigenomics) are is represented black and gray

boxes at the bottom of the figure. The regions where TF and H3K27ac marks overlap are putative enhancers. Almost identical chromatin architecture is seen in both

CD4+ T cells and neutrophils within this haplotype. Note that neutrophils also express an intergenic RNA molecule at chr1:154350688-154350783 (not shown).

FIGURE 2 | Structure of a typical enhancer. H3K4me1/H3K27ac-marked histones flank a region densely bound by transcription factors (TFs-represented by the

pentagon, hexagon, and trapezoid). The enhancer complex physically interacts with gene promoters, stabilizing TFs within the promoter as well as RNA polymerase

(RNAP) binding, facilitating transcription.

to say more as we query the possible role of genetics in driving
the transcriptional abnormalities observed in JIA.

JIA AND ENHANCERS

H3K4me1 and H3K27ac refer to covalent modifications to the
tails of histones, epigenetic features that typically accompany
enhancers, as noted above. One of the striking features
that emerged from multiple GWAS studies was the high
frequency with which the genetic “hits” occurred within
H3K4me1/H3K27ac-marked regions of pathologically-relevant
cells for the traits of interest (4). The reverse is also true: if
one maps enhancer elements in specific cell types, those mapped
regions are highly enriched in GWAS-identified SNPs (30) for
diseases that affect those cells/tissues. We have reported that
the risk loci for both JIA (31, 32) and systemic lupus (33),

are highly enriched (compared to randomly-selected regions of
functional chromatin) for H3K4me1/H3K27ac histone marks.
These findings have led us to suggest that much of the genetic risk
for JIA is exerted through altered function of these enhancers.

Enhancers are non-coding DNA elements that play an

important role in regulating gene expression, serving as rheostats
that adjust gene expression to fit finely-tuned physiologic

contexts (34). Enhancers have a characteristic structure that
includes the presence of open chromatin bound by multiple
transcription factors (TFs) flanked by H3K4me1/H3K27ac-
marked boundaries (Figure 2). These TFs form a complex that
typically includes p300, mediator, and cohesin, which together
facilitate looping and physical contact with the promoters of
target genes. While many enhancers function constitutively,
others remain latent, activated only by specific cellular or
environmental triggers (35). It is important, from the standpoint
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FIGURE 3 | Regulation of gene expression by enhancers within topologically

associated domains (TADs). The chromatin loop structure facilitates

interactions between the enhancer and some (or all) of the genes within the

same TAD, while constricting the interactions between the enhancer and

genes outside the TAD.

of our understanding the genetics and pathobiology of JIA, to
note that enhancers do not always regulate the nearest gene.
Furthermore, a given enhancer may regulate more than one
gene, and a given gene may be regulated by more than one
enhancer. Although enhancers may not regulate the nearest gene,
they typically regulate genes within the same chromatin loop or
topologically associated domain (TAD). Our understanding of the
three-dimensional structure of chromatin within the nucleus of
eukaryotic cells has expanded significantly in the past 10 years,
and readers interested in learning more on this fascinating topic
and its relation to human disease may wish to consult some of the
recent reviews (36–39). For the purposes of this review, TADs can
be considered the basic chromatin loop structure that regulates
enhancer-promoter interactions, as shown in Figure 3. TADs
can be identified using non-targeted chromatin conformation
techniques such as HiC (40), and visualized using publically
available software such as JuiceBox (41). Figure 4 shows how
the TAD for the IL6R locus can be visualized. The larger loop
contains multiple genes, including IL6R, IL6R-AS1, ATP8B2,
SHE, TDRD10, UBE2Q1, and UBE2Q1-AS1. Any or all of these
genes may be regulated by enhancer(s) within the IL6R locus,
and thus dysregulated by genetic variants that disrupt or alter
enhancer function within this locus.

QUERYING THE RISK HAPLOTYPES FOR
DIFFERENTIALLY EXPRESSED GENES

Now we return to the question of the role of genes vs.
environment (broadly considered) in driving the gene expression
abnormalities in JIA. We recently reported on results of
whole blood expression studies from children enrolled in
the NIH-funded Trial of Early Aggressive Therapy in JIA
(TREAT trial) (14). In that study, we identified 158 genes that
showed differential expression when we compared children with
new-onset polyarticular JIA with healthy controls. We then
used conventional computational techniques to intersect the

FIGURE 4 | Juicebox software visualization of the topologically associated

domain (TAD) containing the JIA-associated IL6R haplotype. Data are from HiC

analysis of K562 cells. The cursor (crossed blue lines) is set at the center of a

putative enhancer in the region spanning chr1:154, 353, 745–154, 361, 534.

Three distinct chromatin loops are identified, as indicted by the gray, green,

and yellow triangles, suggesting complex chromatin architecture in this region.

differentially expressed genes with the known JIA haplotypes.
We were unable to identify a single differentially expressed gene
within the known JIA haplotypes.We have subsequently repeated
this technique using all publically available gene expression data
from children with oligoarticular and polyarticular JIA and
gotten the same result. This has led us to the conclusion that
if genetic variants associated with JIA influence the observed
transcriptional patterns, they must either do so within specific
leukocyte subsets that are not detectable using whole blood,
or they must act on longer-range chromatin interactions. Once
again these are not mutually exclusive considerations. We
anticipate that the emergence of single-cell technologies and
perhaps the development of disease-specific three-dimensional
chromatin maps will allow us to understand the genetic
contribution (if any) to the observed peripheral blood expression
abnormalities.

BRINGING IT ALL BACK HOME: A
BROADER LOOK AT THE JIA RISK LOCI

Let us return to Figure 1, which shows the multiple features
within the IL6R haplotype, which occupies the genomic
coordinates chr1:154291718-154392674 and spans >100,000 bp.
This risk locus is representative of the other JIA risk loci, which
almost invariably show the same of similar chromatin features
(31, 32).

The reader will note immediately that the haplotype contains
only a portion of the IL6R gene as well as an additional gene,
ATP8B2. The protein product of ATP8B2 is an ATPase, and the

Frontiers in Immunology | www.frontiersin.org 4 December 2018 | Volume 9 | Article 2964

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Kessler et al. Genetics and Transcription in JIA

gene is expressed in both lymphoid cells as well as inmyeloid cells
such as macrophages (42); its exact role in these cells has not been
investigated in any detail, although it is reasonable to speculate
that it is involved in cellular energy production and utilization.
Using RNA sequencing in human neutrophils, we have also
shown that the haplotype also contains at least one non-coding
intergenic RNA (ncRNA), a species of RNAs that are important
in regulating both three dimensional chromatin architecture
(43) and gene expression (44). We have previously shown that
the presence of ncRNA molecules expressed in neutrophils is
a common feature within the JIA risk loci (31, 32) and the
presence of such RNA species in pathologically relevant cells is a
characteristic that the JIA risk loci share with those of most other
complex traits.

Finally, we note once again the rich in H3K4me1/H3K27ac
histone marks, which overlap with abundant transcription factor
binding sites, features that can be observed particularly in CD4+
T cells (ENCODE and Roadmap Epigenomics data) as well as
our own neutrophil ChIP-seq data (31). Indeed the chromatin
architecture at this locus suggests the presence of multiple
intronic and intergenic enhancers in both cell types.

These observations raise multiple questions regarding the
mechanism(s) through which genetic variants within this locus
impinge on immune function. Do genetic variants alter the
structure of the ncRNA or its regulation? Do they alter the
expression of ATP8B2 or IL6R through alterations in their
promoters? Do they alter the function of one or more of the
enhancers? If so, what genes are dysregulated by altered enhancer
function? If genetically-mediated dysregulation isn’t exerted on
peripheral blood cells, then where is it exerted?

These aren’t either/or questions. That is, different genetic
variants in different individuals might alter one or more of the
genomic functions within the JIA haplotypes to different degrees.
This might explain, for example, the considerable differences we
see between individuals with JIA at both the phenotypic and
gene expression levels. Indeed, we believe that one of the reasons
why there is so much overlap in the genetic associations seen
for a broad range of autoimmune/inflammatory diseases in the
fact that these loci contain multiple important genomic elements
which, if perturbed, could lead to an immune phenotype.

WHERE DO WE GO FROM HERE?

We are still rather in the dark as to the origin of the
abnormal transcriptional signatures in JIA. It’s clearly not
as straightforward as we initially thought it might be: that
polymorphisms in gene promoters, for example, would lead to
alterations in gene expression that might be easily observed in
cells or in serum protein levels. It should also be sufficiently
clear to the reader that there is limited, if any, utility in trying
to understand genetic mechanisms in JIA by focusing solely
on the coding functions of the genes in close proximity to the
SNPs identified on GWAS and genetic fine mapping studies. This
“nearest gene” focus ignores the broader chromatin architecture
in which the biologically relevant variants are likely to operate.
We propose that future studies of individual JIA-associated loci
consider not only the entire risk haplotype and the multiple
genomic elements contained within it, but also broaden the

inquiry to include three dimensional chromatin architecture and
the genes included within the TADs that incorporate the risk
haplotypes. This means that there is going to be a lot of work
to do at each risk locus.

Enhancers seem to be the logical place to start, given their
demonstrated importance in JIA (31, 32) and rheumatic diseases
in general (45, 46).While the chromatin signatures within the JIA
risk loci are strong indicators that these regions have enhancer
function, the specific functional regions will need to be identified
and verified empirically using reporter assays. Once the specific
functional regions are identified, it will be a straightforward task
to clarify the effects of genetic variants within these functional
regions. Publically available data like the 1000 Genomes Project
will give investigators a large but finite number of common
genetic variants (allele frequencies >1%) to test within the
defined regions. Our recent whole genome sequencing data
from children with polyarticular, RF-negative JIA (47) have been
made available to investigators through the National Center
for Biotechnology Information (https://www.ncbi.nlm.nih.gov/
bioproject/?term=PRJNA343545) and will provide the scientific
community with a rich list of rare variants to interrogate.

Once enhancer function is confirmed and the biologically-
relevant genetic variants identified, we still have before us the task
of identifying the genes (dys)regulated by the enhancers on which
genetic variance operates. To accomplish this aim, our laboratory
is taking advantage of the fact that most enhancers regulate genes
within the same TAD. We are therefore using an epigenome
editing approach (48) to attenuate enhancer function and identify
genes whose expression is altered when specific enhancers are
attenuated.

CONCLUSION

The identification of aberrant transcriptional patterns in the
peripheral blood cells of children with JIA has opened the
door to intriguing inquiries into the epigenetics and genetics of
this family of diseases. With regard to the latter, our growing
understanding of the structure and function of mammalian
genomes makes it imperative that we broaden our investigations
beyond the “nearest gene” to GWAS tag SNPs. Rather, developing
a mechanistic understanding of how and where genetic variants
alter transcription and immune function will require a complete
understanding of the range of genomic functions altered by
variants within the risk haplotypes. Furthermore, the field
will require a detailed understanding of the larger chromatin
“neighborhoods” within which each of the haplotypes resides.
These are reachable goals that are most likely to be achieved by
a focused and coordinated effort among the different pediatric
rheumatology genetics research consortia to prioritize loci, share
expertise and reagents, and develop plans for using genetic
information to inform clinical care.
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