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Abstract: The determination of an optimal volatile sampling procedure is always a key question in
analytical chemistry. In this paper, we introduce the application of a novel non-parametric statistical
method, the sum of ranking differences (SRD), for the quick and efficient determination of optimal
sampling procedures. Different types of adsorbents (Porapak Q, HayeSep Q, and Carbotrap) and
sampling times (1, 2, 4, and 6 h) were used for volatile collections of lettuce (Lactuca sativa) samples.
SRD identified 6 h samplings as the optimal procedure. However, 1 or 4 h sampling with HayeSep
Q and 2 h sampling with Carbotrap are still efficient enough if the aim is to reduce sampling time.
Based on our results, SRD provides a novel way to not only highlight an optimal sampling procedure
but also decrease evaluation time.

Keywords: adsorbent; GC–MS; lettuce; sample throughput; VOC

1. Introduction

Volatile and semi-volatile compounds play key roles in food chemistry as primarily
important cues for monitoring product quality and sensory attributes such as freshness
and rotten odor [1]. There are several volatile extracting methods, but over the last few
years, the stir-bar sorptive, headspace sorptive extraction, solid-phase microextraction,
and dynamic headspace system sampling techniques have become the most popular. With
these methods, volatiles are collected either in or above the food matrix of commonly
used absorptive and adsorptive materials [2]. One of the most commonly used volatile
trapping methods is the dynamic headspace system (DHS). The DHS has the advantages
of a gas flow that helps to efficiently accumulate analytes in the adsorbent phase and a
wide variety of ready-to-use adsorbents, e.g., activated charcoal, Porapak Q, Carbotrap,
HayeSep, and Tenax. The selectivity for certain compounds depends on the adsorbent type,
so one’s research question determines the type one uses [1,3].

To achieve appropriate volatile organic compound (VOC) analysis, it is necessary to
optimize the sampling process. There are several possibilities for visualization that allow
for the graphic evaluation of data. It has recently become common practice to visualize all
reliable data (including optimization data) and thereby facilitate the understanding and
enhance the usability of a dataset for practitioners. Therefore, response surface methodol-
ogy has become one of the most widespread visualization tools [4–6]. Although response
surface plots are spectacular, it is sometimes difficult to choose only one optimal condition
from among various factors. Multicriteria optimization provides a solution for this problem.
During multicriteria decision making, one must choose one criteria from the alternatives
by considering multiple independent variables. In recent years, sum of ranking differences
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(SRD) has been proven to be a simple yet effective method to compare multiple subjects
based on a variety of criteria [7]. SRD has been extensively used in analytical chemistry,
e.g., for model comparison [8], nutritional composition comparison [9], and binary similar-
ity metrics comparison in cheminformatics [10]. A recent comprehensive paper introduced
the applicability of SRD in almost all subfields of food sciences, including the solid-phase
microextraction sampling of food samples [11].

In our study, we provide a fast and reliable methodology for appropriate comparisons
of different sampling processes based on the most intense plant-emitted volatile organic
compounds. To fulfill our aims, Lactuca sativa (lettuce) was chosen as a model plant due
to its volatile composition. Despite its fast growth rate and easy handling, there have
been a surprisingly low number of scientific papers regarding lettuce volatiles as food.
In our paper, volatiles were examined from a cut lettuce plant, lettuce oil, and lettuce
seeds [12–14].

2. Materials and Methods
2.1. Sample

Lactuca sativa ‘Rivalda’ was purchased from Rijk Zwaan Budapest Ltd. (Budapest,
Hungary) ‘Rivalda’ was chosen due to its good shelf-life and outstanding resistance,
e.g., it is not susceptible to diseases. Seeds were planted in 1.7 L pots using potting soil in
a greenhouse (natural light), with temperatures of 18–25 ◦C. The relative humidity was
approximately 40%. To avoid soil volatiles in the headspace sample, the soil was covered
with thin layers of aluminum foil after germination, only letting the lettuce plant protrude
through a 2 cm diameter hole in the middle.

2.2. Sampling Design

Volatile collection from the whole lettuce plants was done on the 60th day after
sowing. The plant was wrapped with a Nalophane NA foil tube (20 µm; Kalle Hungaria
Kft., Budapest, Hungary) a day before measurements. Continuous charcoal-filtered airflow
(1 L min−1) was pulled through the system using a vacuum pump (Thomas G 2/02 EB,
Garder Denver Thomas GmbH, Fürstenfeldbruck, Germany). Volatile collection traps
filled with 50 mg of Porapak Q (80–100 mesh), 50 mg of HayeSep Q (60–80 mesh), and
50 mg of Carbotrap (20–40 mesh) adsorbents (Supelco, Sigma-Aldrich, 595 North Harrison
Road, Bellefonte, PA, USA) were used to collect the headspace volatiles for 1, 2, 4, or 6 h.
The sampling temperature of all volatile collections was maintained at 25 ± 1 ◦C. Before
each volatile collection, the adsorbent filters were cleaned, as described by Molnár [15].
The collected volatiles were immediately extracted with 300 µL of n-hexane into a 1.5 mL
vial and kept at −18 ◦C until gas chromatography-mass spectrometry analysis.

2.3. Analytical Measurements

An Agilent 6890 gas chromatograph (GC) coupled with a 5975 C MSD mass spec-
trometer (MS) was used with a non-polar HP-5 UI ((5%-phenyl)-methylpolysiloxane;
30 m × 0.25 mm × 0.25 µm film; J&W, Santa Clara, CA, USA) capillary column to analyze
collected volatiles. A 1 µL sample was injected into the GC injector operated in the splitless
mode for 30 s, with the injector temperature set to 250 ◦C. The oven temperature program
began at 50 ◦C (hold for 5 min), and it was increased to 210 ◦C at 5 ◦C min−1 and then to
300 ◦C at 20 ◦C min−1 (hold for 1 min). Helium was used as carrier gas with a constant
1.0 mL min−1 flow. The MS source temperature was set to 230 ◦C, and the quadrupole
temperature was held at 150 ◦C. Positive electron ionization (EI+) was used with an electron
energy level of 70 eV. The detector was used in scan mode between 35 and 500 m/z. The MS
was tuned using perfluorotributylamine (PFTB) before measurements. Agilent Enhanced
MSD ChemStation software handled the GC and MS parameters. Agilent MassHunter
Workstation Qualitative Analysis B.08.00 software was used for the evaluation and com-
parison of the chromatograms. The Agilent NIST 2017 Mass Spectral Library was used
for compound identification, and two other libraries (W9N08 and W10N11) were used to
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verify the identification results. Kováts indices (KIs) were calculated using the C8–C20
alkane calibration standard and the identification was also verified by comparison with KI
values obtained from the NIST webbook.

2.4. Statistical Analysis

The sum of (absolute) ranking differences (SRD) was introduced by Héberger in
2010 [7]. The basic idea of the method is to compare methods/models to a predefined
golden standard using rank numbers. The SRD algorithm consists of five main steps:

• A golden standard (reference, benchmark) should be defined (mean, median, mini-
mum, maximum, or a known standard).

• The rank transformation of the reference column and the sampling techniques should
be calculated.

• The absolute rank differences among each sampling technique and the reference
column should be calculated.

• The rank differences of each sampling technique should be summed. This step results
in the SRD value, which introduces the deviation or distance of a given sampling
technique from the reference one.

• The SRD values should be normalized between 0 and 100 for easy comparability
between various datasets.

The first validation of the SRD method was introduced by Héberger and Kollár-
Hunek in 2011 and is called the comparison of ranks with random numbers (CRRN) [16].
The CRRN generates an SRD distribution based on the number of rows of a dataset.
The problem of repeated values (ties) was solved in 2013, so SRD is capable of handling
datasets where ties are present [17]. Further validation processes, such as data splitting
and resampling techniques, were recently introduced the developers [18]. SRD is freely
available as a Microsoft Excel macro at http://aki.ttk.mta.hu/srd/ (accessed on 11 Febru-
ary 2021), as an R-Shiny online application at https://attilagere.shinyapps.io/srdonline/
(accessed on 11 February 2021), and as Python implementation at https://github.com/
davidbajusz/srdpy (accessed on 11 February 2021). The authors of the present study used
the Microsoft Excel version.

3. Results
3.1. Sampling Optimization Using Sum of Ranking Differences

Altogether, 149 compounds were found during the evaluation of total ion chro-
matograms. SRD was run on all compounds (n = 149). Compound intensity maxima
were used as the reference column for SRD.

Figure 1 shows the results of the SRD analysis. The 6 h samplings resulted in the
values most similar to the reference values, e.g., the 6 h samplings collected the highest
amount of volatiles. Among these, Porapak Q and HayeSep Q were ranked first, followed
by the Carbotrap adsorbent. However, to maximize daily sampling capacity, one may
look for shorter sampling times. Sampling with the HayeSep Q adsorbent for 4 h (H4h)
also provided acceptable results. Interestingly, the 2 h sampling using Carbotrap (C2h)
adsorbent and the 1 h sampling using HayeSep Q (H1h) overtook the 4 h sampling of
Porapak Q (P4h). Therefore, the H4h, C2h, and H1h volatile collection methods were the
most accurate and efficient of those tested.

http://aki.ttk.mta.hu/srd/
https://attilagere.shinyapps.io/srdonline/
https://github.com/davidbajusz/srdpy
https://github.com/davidbajusz/srdpy
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Figure 1. The scaled SRD values of the sampling procedure based on integrated peak area by sum 
of ranking differences. The maximum values of the compounds (Max) were used as the reference 
(benchmark) column. Scaled SRD values are plotted on the x-axis and left y-axis; the right y-axis 
shows the relative frequencies (black curve). Probability levels of 5% (XX1), median (Med), and 95% 
(XX19) are also given. If a model crosses the cumulative distribution function (XX1), say at p = 0.10, 
then the method ranks the variable as random with a 10% chance. Diagrams were produced by 
compound intensity values on a total ion chromatogram (n = 149). 

To answer the question regarding which adsorbent and sampling time are suitable 
for most volatile, semi-volatile, and less volatile compounds, we split the dataset based on 
the elution order (retention time). Five groups were created, each group containing 30 
compounds except for the last one, which contained 29 compounds. A separate SRD was 
run on each group (Figure 2). Such analysis enabled us to examine the effect of volatility 
on the adsorbent types, as the elution order could indicate volatility willingness. In gen-
eral, the more volatile a compound, the more forward it is on the total ion chromatogram 
(the exact order depends on the column type). 

Figure 1. The scaled SRD values of the sampling procedure based on integrated peak area by sum
of ranking differences. The maximum values of the compounds (Max) were used as the reference
(benchmark) column. Scaled SRD values are plotted on the x-axis and left y-axis; the right y-axis
shows the relative frequencies (black curve). Probability levels of 5% (XX1), median (Med), and 95%
(XX19) are also given. If a model crosses the cumulative distribution function (XX1), say at p = 0.10,
then the method ranks the variable as random with a 10% chance. Diagrams were produced by
compound intensity values on a total ion chromatogram (n = 149).

To answer the question regarding which adsorbent and sampling time are suitable
for most volatile, semi-volatile, and less volatile compounds, we split the dataset based
on the elution order (retention time). Five groups were created, each group containing
30 compounds except for the last one, which contained 29 compounds. A separate SRD was
run on each group (Figure 2). Such analysis enabled us to examine the effect of volatility on
the adsorbent types, as the elution order could indicate volatility willingness. In general,
the more volatile a compound, the more forward it is on the total ion chromatogram (the
exact order depends on the column type).

The most volatile compounds were easily captured by all adsorbent types with a
6 h sampling time (Figure 2a). All other sampling procedures followed 6 h samplings.
In the case of the 4 and 2 h sampling procedures, the intensity values of the most volatile
compounds may decrease on the total ion chromatogram. Semi-volatile compounds
(Figure 2b,c) were also captured with the 6 h sampling time, but in this case, other sampling
procedures, such P1h and H4h (Figure 2b,c) and H1h and C2h (Figure 2c), showed accept-
able performance, with SRD values below 20%. P6h and H6h showed the most similar
characteristics to the reference, while P2h, H2h, and C4h were ranked in the last positions.

Compounds with low volatility (Figure 2d,e) were also captured with a 6 h sampling
time, but in this case, Porapak Q proved to be the best adsorbent (P6h showed the most
similar characteristics to the reference). Surprisingly, H2h performed the worst; this
sampling process got the last position. H4h and C2h can also be accepted, especially if
one wants to shorten the sampling time. These two sampling procedures also showed
good performance when all compounds were analyzed together (Figure 1). In the case of
compounds with low volatility, the SRD value of P4h was around 15% (Figure 1e).

In summation, the 6 h sampling time proved to be the most suitable for all volatile
compounds, among which Porapak Q was the best. C4h proved to be suitable for the most
volatile compounds, while H4h, C2h, and H1h could be used for the sampling of semi-
and less-volatile compounds. Using shorter sampling times enables increased sample
throughput, which is an important factor in current analytical laboratories.
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Figure 2. The scaled SRD values of the sampling procedure based on integrated peak area by sum
of ranking differences. The maximum values of the compounds (Max) were used as the reference
(benchmark) column. Scaled SRD values are plotted on the x-axis and left y-axis; the right y-axis
shows the relative frequencies (black curve). Probability levels of 5% (XX1), median (Med), and 95%
(XX19) are also given. If a model crosses the cumulative distribution function (XX1), say at p = 0.10,
then the method ranks the variable as random with a 10% chance. Diagrams were produced by
volatility based on the elution order of total ion chromatogram: (a) the first 30 compounds between
0 and 30; compounds between (b) 30 and 60, (c) 60 and 90, and (d) 90 and 120; and (e) the last
29 compounds between 120 and 149.

In addition to sampling and measurement time, analysis time (data evaluation) could
also be significant. In this study, 149 compounds were analyzed on 48 total ion chro-
matograms. Most of the time, manual integration was also needed, especially when
compounds were around the limit of detection (LOD). Figure 3 illustrates the difficulties
for automatic integration algorithms.

It was complicated to find some compounds at short sampling times (1 and 2 h).
When sampling time was reduced, evaluation time adequately increased. In the next step,
different amounts of compounds were analyzed based on their intensity values to examine
whether evaluation time could be reduced (Figure 3).

According to Figure 4, decreasing the number of evaluated compounds only had a
slight effect on the SRD results. Evaluating only the first 20 most intensive compounds
(highlighted by bold in Table 1) proved to be enough for reliable SRD results. However,
SRD was not able to differentiate the 6 h samplings (C6h, P6h, and H6h) due to the loss of
information (decreased number of compounds), though it still has enough information to
differentiate sampling times. Additionally, the order of procedures did not significantly
change (the tendency was preserved).
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5.32 871 879 o-Xylene C8H10 95-47-6 0.56 >95% 
5.78 894 898 Styrene C8H8 100-42-5 0.17 >90% 

Figure 4. The scaled SRD values of the sampling procedure based on integrated peak area by sum
of ranking differences. The maximum values of the compounds (Max) were used as the reference
(benchmark) column. Scaled SRD values are plotted on the x-axis and left y-axis; the right y-axis
shows the relative frequencies (black curve). Probability levels of 5% (XX1), median (Med), and 95%
(XX19) are also given. If a model crosses the cumulative distribution function (XX1), say at p = 0.10,
then the method ranks the variable as random with a 10% chance. Diagrams were produced according
to intensity values: (a) all compounds (149), (b) the first 100 highest intensity compounds, (c) the first
50 highest intensity compounds, and (d) the first 20 most intensive compounds.
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Table 1. Identified volatile organic compounds in Lactuca sativa. Retention indices written in italics come from the NIST
webbook. The 20 most intensive compounds are marked in bold. nd indicates no data.

RT
(Min)

RI (Cal-
culated)

RI (Liter-
ature) Compound Name Formula CAS Number Area (%) Match Factor

(%)

3.77 775 775 3-Hexanone C6H12O 589-38-8 0.04 >90%
3.83 791 791 2-Hexanone C6H12O 591-78-6 0.06 >85%
3.91 797 797 3-Hexanol C6H14O 623-37-0 0.04 >85%
3.99 803 800 Octane C8H18 111-65-9 0.15 ~90%
4.12 810 805 1,3-Dimethylcyclohexane C8H16 2207-03-6 0.03 >85%
4.68 838 840 Cyclogeraniolane C9H18 3073-66-3 0.03 >85%
4.73 841 842 2,4-Dimethyl-1-heptene C9H18 19549-87-2 0.07 ~90%
5.16 863 860 Ethylbenzene C8H10 100-41-4 0.28 >90%
5.32 871 879 o-Xylene C8H10 95-47-6 0.56 >95%
5.78 894 898 Styrene C8H8 100-42-5 0.17 >90%
5.84 897 885 m-Xylene C8H10 108-38-3 0.21 >95%
5.95 902 900 Nonane C9H20 111-84-2 0.25 >95%

6.45 922 949
1,3-Dimethyl-2-(1-
methylethylidene)

cyclopentane
C10H18 61142-31-2 0.12 >80%

6.76 934 936 2,6-Dimethyloctane C10H22 3051-30-1 0.26 ~95%
6.81 936 937 α-Pinene C10H16 80-56-8 0.64 >95%
6.95 942 941 2-Methylheptane-3-ethyl C10H22 14676-29-0 0.54 >80%
7.18 951 961 β-Pinene C10H16 127-91-3 0.03 ~75%
7.30 956 950 Isocumene C9H12 103-65-1 0.30 ~80%
7.50 963 963 p-Ethyltoluene C9H12 622-96-8 0.25 >95%
7.53 965 970 2-Methylnonane C10H22 871-83-0 0.69 >90%
7.68 970 975 Mesitylene C9H12 108-67-8 0.38 ~95%
7.71 972 972 3-Methylnonane C10H22 5911-04-6 0.42 >95%
7.79 975 979 trans-p-Menthane C10H20 1678-82-6 0.29 >90%
7.98 982 979 o-Ethyltoluene C9H12 611-14-3 0.10 >90%
8.13 988 989 cis-p-Menthane C10H20 6069-98-3 0.37 >85%
8.21 992 997 Octahydro-1H-indene C9H16 4551-51-3 0.97 >95%
8.34 997 nd Benzene, 1,2,3-trimethyl- C9H12 526-73-8 1.39 >95%
8.48 1002 1000 Decane C10H22 124-18-5 3.47 >95%
8.94 1019 nd (±) Menthol C10H20O 15356-70-4 0.39 >85%
9.12 1025 1051 4-Methyldecane C11H24 2847-72-5 2.04 >85%
9.19 1027 1030 2-Cyclohexylbutane C10H20 7058-01-7 0.36 >85%
9.31 1032 1028 D-Limonene C10H16 5989-27-5 0.75 >95%
9.77 1048 nd 1,2-Dimethylcyclooctene C10H18 54299-96-6 0.86 >85%
9.85 1051 1051 cis-β-Ocimene C10H16 3338-55-4 0.12 >95%
10.04 1058 1055 Naphthan C10H18 91-17-8 0.63 >90%
10.09 1060 1059 2,5-Dimethylnonane C11H24 17302-27-1 0.83 >80%

10.23 1064 1078 4,7-Methanoindan,
hexahydro- C10H16 6004-38-2 3.48 >95%

10.75 1083 1081 1,1′-Bicyclopentyl C10H18 1636-39-1 1.76 >95%
11.07 1095 1083 3-tert-Butyltoluene C11H16 1075-38-3 0.53 >80%
11.14 1097 nd Unknown1 (135 m/z) 1.12
11.30 1103 1100 Undecane C11H24 1120-21-4 3.22 >90%
12.29 1138 1146 2-Methyldecalin C11H20 2958-76-1 0.72 >90%

12.75 1154 nd Tricyclo[5.2.1.0(2,6)]
decane, 4-methyl- C11H18 2000073-34-9 0.70 >90%

13.39 1176 nd Toluene, p-(1-ethylpropyl)- C12H18 22975-58-2 0.32 >85%

13.65 1186 1178 Benzene,
1-methyl-2-(1-ethylpropyl)- C12H18 54410-74.1 1.03 >85%

14.15 1203 nd Benzene, 1,4-dimethyl-2-(2-
methylpropyl)- C12H18 55669-88-0 1.84 >85%

17.51 1326 1304 2,7-Dimethyltetralin C12H16 13065-07-1 1.73 >85%
17.66 1332 1348 6-Ethyltetralin C12H16 22531-20-0 2.10 >85%
17.87 1339 1354 5-Ethyltetralin C12H16 42775-75-7 1.64 >85%
20.09 1426 1423 β-Caryophyllene C15H24 87-44-5 0.25 ~90%
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Table 1. Cont.

RT
(Min)

RI (Cal-
culated)

RI (Liter-
ature) Compound Name Formula CAS Number Area (%) Match Factor

(%)

20.32 1435 nd (-)-Isolongifolol, methyl ether C16H28O 999281-62-4 0.24 >85%
20.52 1443 nd Corymbolone C15H24O2 97094-19-4 0.16 >85%
21.14 1467 1460 α-Humulene C15H24 6753-98-6 0.26 ~80%
21.71 1488 1465 γ-Elemene C15H24 3242-08-8 0.44 >75%
22.50 1525 1456 β-Humulene C15H24 116-04-1 1.26 >80%
23.55 1568 nd Unknown2 (135 m/z) - - 4.43 -
23.68 1573 nd Longifolene-I2 C15H24 1000162-76-7 4.88 ~90%

24.38 1606 nd 7-Octylidenebicyclo[4.1.0]
heptane C15H26 82253-11-0 1.42 >85%

25.08 1636 nd

1,4-
Methanobenzocyclodecene,

1,2,3,4,4a,5,8,9,12,12a-
decahydro-

C15H22 74708-73-9 8.23 ~90%

25.30 1645 nd

Cyclobuta[1,2:3,4]dicyclooctene,
1,2,5,6,6a,6b,7,8,11,12,12a,12b-

dodecahydro-,
(6a.α.,6b.α.,12a.β.,12b.β.)-

C16H24 61233-68-9 1.48 >85%

The 6 h sampling proved to be the best process for all adsorbent types; however,
Figure 4d shows that Porapak Q was the best for high intensity compounds.

H4h, C2h, and H1h showed consistent performance even after reducing the number
of compounds included in the analysis to 20. These findings are in accordance with those
we reported earlier in the case of semi-volatiles and compounds with low volatility. H4h,
H1h, and C2h are useful in the case of semi-volatiles, while H4h and C2h are useful in the
case of compounds with low volatility.

An interesting finding was that by reducing the number of compounds according
to their volatility, e.g., keeping only the 20 most volatile compounds, the rank of C4h
decreased. This means that in cases where only the most volatile compounds are in the
focus of analysis, C4h samplings might be a viable option.

3.2. Volatile Compositions of Lactuca sativa

We found 149 volatile compounds during the total ion chromatogram (TIC) analysis.
These compounds were used for data analysis. The number of relevant lettuce compounds
was decreased according to their intensity values (compounds with an integrated area
higher than 0.1% of total integrated area) and their identification match factors (compounds
with an identification match factor higher than 80%). Retention indices (RIs) were also used
for the validation of evaluation. Delta RIs were calculated by comparing the RIs obtained
from the NIST webbook to the calculated RIs. Compounds with delta RIs higher than 10%
were eliminated from the compound list. Exceptions were made when a compound had a
higher than 90% match factor.

Some of the reported compounds have already been discussed in other studies. α- and
β-pinene, D-limonene, and β-caryophyllene were reported in lettuce oil [14]; γ-elemene and
D-limonene were reported in ready-to-use lettuce [13]; and γ-elemene, β-caryophyllene,
and D-limonene were found in cut lettuce [12]. Our study is unique because the whole
lettuce plant was examined. Furthermore, a complete list of volatile organic compounds
has been established.

4. Conclusions

A novel multicriteria evaluation method, SRD, was used for the first time to evaluate
different sampling procedures, and it provided robust and validated results regarding the
rank of the sampling procedures.
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SRD identified 6 h samplings (C6h, P6h, and H6h) as the optimal procedures; however,
if one wants to reduce sampling time (increase sample throughput), H4h, C2h, and H1h
are also viable options.

As expected, the highest differentiation among sampling procedures was achieved
when all 149 found compounds were used during SRD analysis. It was found that the
ranks provided by SRD showed just slight deviations when only the first 20 most intensive
compounds were used. This suggests that examining only the first 20 most intensive
compounds might be enough for the determination of an optimal sampling procedure.
Therefore, SRD provides a novel way to not only define the optimal sampling procedure
but also decrease evaluation time.

Due to its non-parametric nature, SRD is capable of determining any sampling proce-
dure, e.g., different volatile collection traps, stir-bar sorptive, headspace sorptive extraction,
solid-phase microextraction, and dynamic headspace system techniques.

An interesting future direction is the SRD analysis of a transposed input matrix. After
a proper grouping of compounds (aldehydes, ketones, terpenes, etc.), SRD ranks them
based on the sampling procedures. This might help to determine which compound types
(groups) are most adsorbed by the procedures.
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