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Abstract

Elucidating the chromatin dynamics that orchestrate embryogene-
sis is a fundamental question in developmental biology. Here, we
exploit position effects on expression as an indicator of chromatin
activity and infer the chromatin activity landscape in every line-
aged cell during Caenorhabditis elegans early embryogenesis.
Systems-level analyses reveal that chromatin activity distinguishes
cellular states and correlates with fate patterning in the early
embryos. As cell lineage unfolds, chromatin activity diversifies in a
lineage-dependent manner, with switch-like changes accompany-
ing anterior–posterior fate asymmetry and characteristic land-
scapes being established in different cell lineages. Upon tissue
differentiation, cellular chromatin from distinct lineages converges
according to tissue types but retains stable memories of lineage
history, contributing to intra-tissue cell heterogeneity. However,
the chromatin landscapes of cells organized in a left–right symmet-
ric pattern are predetermined to be analogous in early progenitors
so as to pre-set equivalent states. Finally, genome-wide analysis
identifies many regions exhibiting concordant chromatin activity
changes that mediate the co-regulation of functionally related
genes during differentiation. Collectively, our study reveals the
developmental and genomic dynamics of chromatin activity at the
single-cell level.
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Introduction

Chromatin state regulates diverse biological processes by controlling

gene expression potential. During in vivo development, specific cells

with identical genotypes differentiate into different cell types

through the spatiotemporal expression of distinct sets of genes

(Yadav et al, 2018; Packer et al, 2019). Elucidating how dynamic

and cell-specific chromatin states regulate in vivo cell differentiation

processes has been a fundamental question in the fields of epigenet-

ics and developmental biology (Yadav et al, 2018). Accurate assess-

ments of chromatin state are essential to understanding how it

functions in development. A combination of molecular approaches

and high-throughput sequencing has been widely used to analyze

the biochemical and biophysical properties of chromatin, including

histone modifications, chromatin accessibility, and the spatial orga-

nization of chromatin (Goodwin et al, 2016). These epigenomic

approaches have significantly enhanced the molecular profiling and

mechanistic analysis of chromatin regulation during cell differentia-

tion (Nicetto et al, 2019).

In addition to the epigenomic approaches described above,

another powerful strategy for elucidating the functional state of

chromatin is position-effect variegation (Schotta et al, 2003; Elgin &

Reuter, 2013), which is a classic phenotype associated with Droso-

phila eye color. The white-eyed mutant phenotype is caused by the

epigenetic silencing of normally active white genes, which is due to

misplacement in heterochromatin regions (Timms et al, 2016).

These findings established that chromatin environments exhibit

strong positional effects on modulating the expression potential of

nearby genes. The eye color phenotype provides a straightforward

readout of the functional state of chromatin; thus, it has been widely

used in genetic screens to identify potential regulators of chromatin

activity. These efforts have identified many critical chromatin regu-

lators that constitute much of our current knowledge of chromatin

biology, including heterochromatin protein 1 (HP1) (James & Elgin,

1986), tri-methylation of histone H3 at lysine 9 (Rea et al, 2000),

and histone deacetylase (Mottus et al, 2000). Furthermore, the posi-

tion effects on reporter gene expression have also been used to iden-

tify novel chromatin regulators in higher organisms, such as the

human silencing hub complex HUSH (Blewitt et al, 2005; Ashe et al,

2008; Tchasovnikarova et al, 2015). In addition to identifying chro-

matin regulators, position effects on gene expression have also been

1 State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, China
2 University of Chinese Academy of Sciences, Beijing, China

*Corresponding author. Tel: +86 10 64801699; E-mail: zdu@genetics.ac.cn
†These authors contributed equally to this work

ª 2021 The Authors. Published under the terms of the CC BY 4.0 license Molecular Systems Biology 17: e10075 | 2021 1 of 24

https://orcid.org/0000-0002-0084-3783
https://orcid.org/0000-0002-0084-3783
https://orcid.org/0000-0002-0084-3783
https://orcid.org/0000-0002-0798-0000
https://orcid.org/0000-0002-0798-0000
https://orcid.org/0000-0002-0798-0000
https://orcid.org/0000-0002-6322-4656
https://orcid.org/0000-0002-6322-4656
https://orcid.org/0000-0002-6322-4656


exploited to elucidate the chromatin activity across the genome. In

these studies, the expression status of the same reporter gene inte-

grated into dozens to thousands of different genomic positions has

been used as a chromatin activity sensor (Gierman et al, 2007;

Akhtar et al, 2013; Chen et al, 2013; Frokjaer-Jensen et al, 2016).

The analysis of position effects across the genome has provided

insight into several aspects of how the chromatin activity is orga-

nized throughout the genome and how it is regulated, including

chromatin domain organization (Gierman et al, 2007; Akhtar et al,

2013), the structural properties of chromatin during the regulation

of gene expression (Gierman et al, 2007), the repressive role of the

lamina during gene expression (Akhtar et al, 2013), and germline

gene silencing (Frokjaer-Jensen et al, 2016).

As compared to existing sequencing-based epigenomic

approaches, the assessment of position effects represents a unique

approach that can be used to measure the functional state of chro-

matin as it measures ultimate gene expression levels, the outcomes

of chromatin state. However, applying this approach to developing

single cells during cell differentiation remains challenging. Previous

large-scale analyses of position effects primarily focused on dissect-

ing the genomic properties and regulation of chromatin activity.

Thus, these studies involved single-cell organisms, cell lines, and

measuring reporter gene expression in multicellular organisms at

the tissue/organism level. A systematic analysis of position effects

associated with single cells during in vivo differentiation has not

been previously performed.

In this work, we exploited the position effects in single cells to

elucidate the chromatin activity landscape during embryogenesis of

Caenorhabditis elegans, a widely used multicellular model organism

for studying developmental regulation at the single-cell level. Using

a live-imaging approach, we quantified the expression levels of a

reporter gene that was integrated into more than 100 positions

throughout the genome, and the resulting data were used to infer

chromatin activity landscapes (changes in reporter expression levels

across genomic positions) corresponding to all lineaged single cells

during C. elegans early embryogenesis. We revealed the general

dynamic patterns of chromatin activity accompanying critical

processes of in vivo cell lineage differentiation, including lineage

commitment, anterior–posterior fate asymmetry, tissue differentia-

tion, cell heterogeneity, and bilateral symmetry establishment. Our

findings contribute to a systems-level understanding of the develop-

mental and genomic dynamics of chromatin activity at the single-

cell level.

Results

Quantification of the position effects on reporter gene
expression in lineage-resolved single cells

A collection of transgenic C. elegans strains (integrants) has been

previously generated (Frokjaer-Jensen et al, 2014), each containing

a single copy of the same GFP-expressing cassette driven by a ubiq-

uitous promoter (eef-1A.1, a translational elongation factor) and

integrated throughout the genome (Fig 1A and Dataset EV1). Imag-

ing representative integrants revealed strong position- and cell-

dependent variation of GFP expression (Fig 1B), which suggests that

Peef-1A.1::GFP is highly responsive to different chromatin environ-

ments that environment exhibits cell specificity.

To allow single-cell GFP quantification, another nucleus-local-

ized, ubiquitously expressed mCherry transgene was crossed into

the above strains for nuclei identification and tracing (Dataset EV1).

We performed 3D time-lapse imaging to record embryogenesis at

high spatiotemporal resolution, and images were analyzed to deter-

mine GFP expression in individual cells (Fig 1C) (Murray et al,

2008; Du et al, 2014). Cell lineages were reconstructed based on the

automatic identification and tracing of all cells via the mCherry

signal using StarryNite and AceTree software (Bao et al, 2006; Boyle

et al, 2006; Santella et al, 2010; Santella et al, 2014; Katzman et al,

2018), followed by multiple rounds of manual curations (Fig 1D).

Simultaneously, the intensity of GFP in each traced nucleus at each

time point was measured and averaged to indicate chromatin activ-

ity at a certain genomic position (Fig 1D and E). On average, GFP

expression was measured at 38 consecutive time points (range

13–83) for each traced cell (Figs 1D and EV1A). In total, we

measured GFP expression in 268 embryos to quantify chromatin

activity at 113 genomic positions (at 0.88-Mb resolution) in 722 line-

aged cells (364 traced terminal cells), which covers all cells up to

the 350-cell stage, at which tissue fate specification is completed

(Appendix Fig S1 and Dataset EV2).

▸Figure 1. Construction of chromatin activity landscapes in lineage-resolved single cells.

A Transgenic strains carrying the same Peef-1A.1::GFP::NLS expression cassette integrated into different genomic positions (green boxes) across the genome. NLS
denotes the nuclear localization signal.

B Representative micrographs showing cellular expression of ubiquitous mCherry (left) and Peef-1A.1::GFP (right) when integrated into different genomic positions.
Scale bar = 10 µm.

C 3D time-lapse imaging of Caenorhabditis elegans embryogenesis. 3D maximum projections show cellular expression of GFP and ubiquitous mCherry (lineage marker)
at five characteristic developmental stages. Scale bar = 10 µm.

D Schematic of automated cell identification (circles), lineage tracing (arrows with bifurcations indicating cell divisions), and continuous quantification of Peef-1A.1::GFP
expression levels (green).

E Quantification of Peef-1A.1::GFP expression in every lineaged cell. The color-coded tree visualizes the single-cell expression of GFP (green) integrated into a position in
all lineaged cells. Vertical lines indicate cells traced over time, and horizontal lines indicate cell divisions.

F Construction of chromatin activity landscape. Left: an example illustrating the inference of chromatin activity landscape by integrating Peef-1A.1::GFP expression
levels across four genomic positions in an equivalent cell (black circle, ABplpappaa). Right: Circos plot showing the cellular chromatin activity landscape, with the
radial line indicating the genomic location and color gradient indicating GFP expression level.

G Images showing expression of ubiquitous mCherry (top) and Peef-1A.1::GFP (bottom) in the ABplpappaa cell at all integration sites on chromosome I. Scale
bar = 1 µm.

H Circos plots showing chromatin activity landscapes of nine representative embryonic cells with color gradient indicating chromatin activity level.
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We validated the accuracy of the annotation of GFP integration

sites that had been done previously (Fig EV1B) and the reliability of

the lineage tracing results (Materials and Methods). Additionally,

we optimized the expression quantification method to compensate

for the attenuation of fluorescence intensity with sample depth

(Fig EV1C–F) and to precisely measure instantaneous GFP
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expression in a single cell (Materials and Methods). These improve-

ments allowed for a more reliable comparison of reporter expression

across cells. Cellular GFP expression was reproducible, with a

median correlation coefficient of 0.83 and a median consistency of

binarized expression of 0.90 between experimental replicates (Fig

EV1G).

Caenorhabditis elegans embryogenesis follows a fixed cell lineage

pattern and generates the same set of differentiated cells in each

embryo, making embryos entirely comparable at single-cell resolu-

tion (Sulston et al, 1983). Thus, although the cellular GFP expres-

sion at each integration site was assayed in individual embryos

(Appendix Fig S1), the invariant lineage allowed a cell-by-cell inte-

gration of GFP expression levels across integrants in lineage-equiva-

lent cells (Fig 1F). Using GFP expression levels at different genomic

positions as a sensor of chromatin activity, we constructed the

distribution of chromatin activity across 113 genomic positions (ter-

med the chromatin activity landscape) for all lineage-traced cells

(Fig 1F–H and Dataset EV3). For multiple replicates of GFP expres-

sion for the same integrant (range 2–8), only those expressed in

more than 60% of replicates were considered as being expressed,

and levels were averaged to represent the consensus chromatin

activity. Aggregating GFP expression across all positions showed

that Peef-1A.1::GFP was predominantly expressed in the majority of

cells from the 350-cell stage (with 364 cells) and onward (Fig

EV1H), making the analysis of chromatin activity in cells from this

stage the most informative. Unless otherwise specified, all analyses

focused on the 364 traced terminal cells.

Position effects on GFP expression reliably indicate
chromatin activity

We systematically validated the biological relevance of the inferred

chromatin activity landscape by determining whether the measured

position effects on Peef-1A.1::GFP expression are concordant with

chromatin features related to its activity in regulating gene expres-

sion (Fig EV2 and Dataset EV4).

First, position effects on GFP levels were consistent with the

known genomic distribution of chromatin activity. Similar to a

previous finding (Frokjaer-Jensen et al, 2016), the average GFP

levels across cells were significantly higher when integrated into

autosomes as compared to the X chromosome and were significantly

higher when integrated into the central region of the chromosome

as compared to the arm region (Fig EV2A and B).

Second, the average GFP levels were consistent with the

biochemical properties of chromatin that are related to its activity.

We examined the correlation between GFP expression and histone

modification, a key determinant of chromatin activity. Prediction of

GFP levels at each integration site using the combination of 19 types

of histone modifications (Ho et al, 2014) revealed that the predicted

values correlated significantly with the measured ones (Fig EV2C;

R = 0.82, P = 8.27E-29). Twelve histone modifications correlated

significantly with GFP levels (Fig EV2D), and perturbing the writers

of representative repressive (tri-methylation of histone H3 at lysine

9, H3K9me3) and activating modifications (acetylation of histone

H4 at lysine 16, H4K16ac) induced expected changes in GFP expres-

sion at multiple integration sites (Fig EV2E and F). These results

confirm that GFP expression is both indicative of and responsive to

chromatin activity. Previous studies have also segregated chromatin

into various states/domains exhibiting differential activity (Ho et al,

2014; Evans et al, 2016). Using the embryonic dataset, we found

that average GFP expression levels were significantly higher when

located in active chromatin domain/states than when located in

silent regions (Fig EV2G and H).

Third, GFP expression was concordant with the biophysical prop-

erties of chromatin that influence its activity. Using previously

generated accessible chromatin by ATAC-seq at several develop-

mental stages (Janes et al, 2018), we found that the average GFP

levels were significantly higher when integrated into accessible

chromatin regions than the rest of the genome (Fig EV2I). More-

over, GFP expression was consistent with the 3D localization of

chromatin. Chromatin regions attached to the nuclear lamina tend

to be heterochromatic and exhibit low transcriptional activity

(Reddy et al, 2008; Kind et al, 2013). We examined whether GFP

expression was reduced when located in the lamina-associated

domain (LAD). LAD information was obtained from a previous

study that determined regions associated with LEM-2, an inner

nuclear membrane protein, in mixed-stage C. elegans embryos

(Ikegami et al, 2010). Indeed, the average GFP levels were signifi-

cantly lower when the transgene was located in the LAD as

compared to non-LAD regions (Fig EV2J).

Conversely, GFP expression was not associated with local genetic

environments. Integrants located in intragenic and intergenic

regions exhibited comparable expression levels (Fig EV2K). Further-

more, no correlation between the average expression level of GFP

and endogenous genes located in a 5-kb interval centered on the

integration sites was observed (Fig EV2L, left, R = 0.13, P = 0.24),

indicating that local genetic environments (cis-elements of endoge-

nous genes) did not significantly influence Peef-1A.1::GFP expres-

sion. This result is consistent with a previous yeast study in which

the position effects on the expression of a kanR gene driven by the

TEF promoter do not correlate with the expression of endogenous

genes at the same position (Chen et al, 2013). We observed a

modest but significant correlation when interval size was extended

to over 100 kb, with the 500-kb interval yielding the strongest corre-

lation (Fig EV2L, right, R = 0.57, P = 3.76E-11). Since gene expres-

sion over a large chromosome domain is more likely to be governed

by chromatin as the influence of cis-elements on gene expression

would be partially normalized, this result again suggests that the

position effects on GFP expression are due to differential chromatin

activity.

Single-cell analysis also supported the reliability of the inferred

chromatin activity landscape. Using endogenous gene expression

over a large genomic interval as proxy for chromatin activity, we

compared GFP expression to single-cell RNA-sequencing (scRNA-

seq) data (Packer et al, 2019). The result showed that cellular GFP

expression across all positions was concordant with endogenous

gene expression in the same cells at the 500-kb interval (Fig EV2M

and Dataset EV5), supporting that the landscapes determined from

position effects on GFP expression in single cells also indicate chro-

matin activity. Due to the scarcity of single-cell chromatin data, we

were unable to assess the relevance of cellular chromatin activity in

the context of other chromatin properties.

Collectively, systematic comparisons of GFP expression to the

genomic distribution, biochemical, and biophysical properties of

chromatin support that the inferred chromatin landscape using posi-

tion effects on Peef-1A.1::GFP indicates chromatin activity.
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Cellular chromatin activity is dynamic and informative for
distinguishing cellular states

Having established that the inferred chromatin activity is reliable,

we next determined the extent to which the activity changes across

positions and cells (Fig 2A). We first examined whether the expres-

sion of Peef-1A.1::GFP changes considerably with genomic position,

taking the expression variability at each position into account (Fig 2

B). For both quantitative expression and binarized expression, anal-

ysis revealed that the Pearson correlation coefficient (R) of GFP

expression between different integration sites was significantly

lower than that between replicates at a given position (Fig 2C and

D). Pair-wise comparisons likewise showed that the cellular pattern

of GFP expression at a given integration site was, on average,

distinct (R < 0.5) from 40% (quantitative expression) and 92% (bi-

narized expression) of the patterns resulting from other integration

sites. These results suggest that the eef-1A.1 promoter sequence

does not significantly dominate the position effects on GFP expres-

sion. It should be noted that the promoter used in this study is a

well-known strong promoter, which might account for quantitative

reduction in expression being more frequently observed than on/off

changes. Thus, a considerable quantitative reduction in chromatin

activity assayed here could correspond to more dramatic (on/off)

changes in many endogenous contexts.

While GFP expression was generally consistent between experi-

ment replicates (Fig EV1G), highly variable expression was

observed in certain cells at certain genomic positions (Appendix Fig

S2). Because only a small number of experimental replicates were

performed, we selected four insertion strains exhibiting high vari-

ability and quantified GFP expression in more embryos. The correla-

tion of GFP expression between replicates at these positions

remained low (Appendix Fig S2), suggesting chromatin activity in

certain regions could be flexible. Indeed, chromatin state/activity

has been previously shown to be variable and stochastic at certain

positions (Angermueller et al, 2016). Furthermore, when studying

the position-effect variegation phenotype of fly eye color, epigenetic

silencing of the white gene has been shown to be highly stochastic,

causing a variegated red and white color phenotype (Timms et al,

2016).

Qualitatively, chromatin activity is highly dynamic across the

genome and among cells. This was determined by comparing cellu-

lar and positional dynamics of the on/off status of GFP expression.

At each integration site, GFP was expressed in a proportion of the

364 cells (Fig 2E, median = 60%); at only seven positions, GFP was

active (n = 1) or silenced (n = 6) in all cells. It suggests that chro-

matin activity at most genomic positions exhibited cell specificity.

In each cell, GFP was expressed only when it had been integrated

into a fraction of genomic positions (Fig 2F, median = 67%),

suggesting that chromatin activity in a cell is positionally specific. In

only a small number of cells, the GFP was constitutively expressed

or not expressed across all integration sites. Specifically, in < 10%

of the cells (n = 35), GFP was constitutively expressed (expressed

at > 80% of the integration sites), and in < 5% of the cells

(n = 15), GFP was constitutively silenced (expressed at < 20% of

the integration sites). It suggests that when changing the chromo-

some location, eef-1A.1 promoter in a cell could either be on or off,

and that the promoter does not exhibit strong expression bias to

many cells.

We then examined to what extent the cellular chromatin activity

landscape can distinguish individual cells. We compared the GFP

expression patterns across cells and calculated for each pair-wise

comparison the number of integration sites at which the GFP

▸Figure 2. Cellular chromatin activity landscape is informative for distinguishing cells.

A Heatmap showing GFP expression levels in individual cells (n = 364, ordered by lineage origin) when integrated into different genomic positions (n = 113, clustered
based on expression pattern).

B Quantification of GFP expression similarity between integrants. Pearson correlation coefficient is measured to quantify expression similarity across all cells
between experimental replicates at the same integration site and between different integration sites.

C, D Distribution of GFP expression similarity between experimental replicates and between different integrants, calculated using quantitative (C) or binarized (D)
expression levels. Violin plot: The center white point is the median, box limits are the first and third quartiles, box length indicates interquartile range (IQR), and
whiskers either 1.5 times the IQR or the minimum/maximum value if it falls within a factor of 1.5 times of the IQR. Violin plot bandwidth is estimated by “scott”
method.

E Distribution of the proportion of cells that express GFP at each integration site. Schematics on the top show expressing cells (green) of representative integrants.
F Distribution of the proportion of integration sites at which GFP is expressed in each cell. Schematics on the top show the expressed integrants (green) in

representative cells.
G Heatmap showing the number of integration sites at which the on/off expression status of GFP is distinct between each pair-wise cell comparison. Integration sites

that exhibit variable expression status between experimental replicates were not considered. Cells are ordered according to tissue types (Neu, neuronal system;
Pha, pharynx; Ski, skin; Mus, body wall muscle; Int, intestine), with those that do not belong to a specific tissue type omitted.

H Box plots show the fraction of cells of each tissue type whose chromatin activity landscapes are distinct compared with all other cells belonging to the same or
different tissue types (cell numbers: n = 128 for Neu, 44 for Pha, 75 for Ski, 44 for Mus, and 16 for Int). The center band of the box is the median, box limits are the
first and third quartiles, box length indicates IQR, and whiskers either 1.5 times the IQR or the minimum/maximum value if it falls within a factor of 1.5 times of
the IQR. Outliers not shown. A cell is defined as having a distinct chromatin activity landscape if GFP expression at five or more of the 113 assayed genomic
positions exhibits distinct on/off expression status compared with another cell.

I Heatmap showing GFP expression levels in individual cells (n = 364) when integrated into previously defined genomic regions having global silent or active
chromatin state (Ho et al, 2014). On the right are indicated four representative integration sites at which GFP expression is distinct from the global pattern.

J Distribution of Pearson correlation coefficients comparing the observed chromatin activity landscapes in individual cells to those predicted by a combination of 19
types of histone modifications (n = 364).

K Correlation of cellular chromatin activity landscape to the global landscape predicted by histone modifications, contextualized by cell lineage origin and tissue fate.
On the lineage tree, traced terminal cells are color-coded according to the correlation coefficient between observed and predicted chromatin activity; the bottom
25% (blue, n = 91) are considered divergent. The barcode below the cell lineage indicates the tissue fate of each cell.

Source data are available online for this figure.
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expression status is distinct. Intriguingly, for most cell–cell compar-

isons, the binary GFP expression at many integration sites was

distinct, and at a considerable number of integration sites, the expres-

sion status can distinguish a cell from many other cells (Fig 2G). On

average, cellular chromatin activity distinguished a cell from 79.4%

of other cells if the on/off state of chromatin activity at five or more

genomic positions was distinct in a cell–cell comparison. The tissue-

level analysis further showed that chromatin activity landscape not

only distinguished a cell from a large fraction of cells belonging to a

different tissue type but also distinguished it from a considerable frac-

tion of cells of the same tissue type (Fig 2H). The only exception was

the intestine cells, for which distinguishing chromatin activity

occurred at only a few integration sites. One possibility is that intes-

tine cells exhibit limited functional diversification due to being

derived clonally from a single progenitor cell (called E) and all intes-

tine cells or their progenitors uniformly expressing most master regu-

lators of intestine differentiation (Maduro & Rothman, 2002; McGhee,

2007). Thus, in general, the chromatin activity landscape provides

rich information for distinguishing cells at a sub-tissue level.

Finally, the cellular resolution of our data enabled identifying

potential cell- and position-specific chromatin activity that is unable

to be obtained from the bulk data of cell populations. Although the

chromatin activity described here is globally concordant with previ-

ously defined chromatin regions for which a silent/active state is
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evident in bulk epigenomic data (Fig EV2G and H), this activity

exhibited considerable cell specificity at given genomic positions.

For example, certain integrants located in regions with a global

silent/active state exhibited divergent activity in specific cells (Fig 2

I). Moreover, certain cells also exhibited chromatin activity land-

scapes that diverged from those predicted by cell population-based

histone modification datasets (Ho et al, 2014). Correlation analysis

comparing the observed chromatin activity landscape in each cell

with that predicted by a combination of 19 types of histone modifi-

cations revealed that, in certain cells, the predictive power of bulk

histone modifications was low (Fig 2J). Interestingly, these cells

(with an R ranked in the bottom 25%) were significantly enriched

for neuronal cells from the ABal lineage (Fig 2K, 3.36-fold enrich-

ment, P = 4.22E-21, Fisher’s exact test). Thus, a lineage-resolved

single-cell dataset provides the opportunity to pinpoint genomic

regions and cells having distinct chromatin activity.

All told, we generated a lineage-resolved chromatin activity land-

scape that is dynamic, informative, and biologically relevant in indi-

cating the functional state of chromatin and in distinguishing cellular

states. Taking advantage of this cellular landscape and the clarity of

C. elegans cell annotations, we systematically investigate in the

following sections the dynamics and potential implications of chro-

matin activity during cell lineage differentiation, including lineage

specification, anterior–posterior fate asymmetry, tissue differentia-

tion, cell heterogeneity, and bilateral symmetry establishment.

Chromatin activity dynamics correlate with lineage-coupled cell
differentiation

Cell differentiation accompanies lineage progression. The lineage-

based mechanism plays a crucial role in initiating cell differentiation

by assigning distinct fates to progenitor cells in a lineage-dependent

manner, hence diversifying cell fates (Labouesse & Mango, 1999).

Accordingly, it is natural to ask whether the cellular chromatin

activity landscape diversifies during lineage progression and indi-

cates lineage-coupled fate differentiation. We first quantified chro-

matin activity divergence as a function of the lineage relationship

between 364 traced terminal cells. The divergence was measured as

the Euclidean distance between chromatin activities (GFP expres-

sion) across all integration sites in a cell (Fig 3A). Lineage relation-

ship was quantified as cell lineage distance, which was defined as

the total number of cell divisions separating cells from their lowest

common ancestor (Fig EV3A). In the majority of cases, higher diver-

gences were observed between cells with a large lineage distance

and, globally, the divergence increased progressively with cell

lineage distance (Fig 3B and C). Thus, in general, chromatin activity

landscape diversifies gradually across cells during lineage progres-

sion.

We next analyzed the lineage-coupled kinetics of cell differentia-

tion by measuring how cell fates change as a function of the lineage

distance between cells. Based on the lineage tree structure and

tissue types of all terminally differentiated cells, we retrospectively

defined progenitor cell fate as the combinatorial pattern of tissue

types produced by each cell and quantified the fate difference

between cells (Materials and Methods and Fig EV3B). This analysis

showed, generally, as the cell lineage unfolds, cells differentiate

progressively. The fate divergences between cells were proportional

to their lineage distances at different developmental stages, similar

to what was observed with chromatin activity divergences (Figs 3C

and EV3C). To further demonstrate that chromatin activity dynam-

ics were associated with fate changes, we directly analyzed the rela-

tionship between the two using cells with identical lineage

▸Figure 3. Chromatin activity dynamics correlate with lineage-coupled fate differentiation.

A Comparison of chromatin activity divergence between two cells by measuring the Euclidian distance between GFP expression levels at all integration sites.
B Heatmap showing the mean chromatin activity divergence (color gradient) between each of the 364 traced terminal cells (rows) to all other cells at different cell

lineage distances (columns).
C Changes in chromatin (blue) and fate (red) divergences (mean � SD) following an increase in cell lineage distance of paired cells (cell pair numbers from left to

right: n = 179; 341; 666; 1,319; 2,530; 4,680; 8,522; 16,384; 10,752). Because an odd-numbered lineage distance involves cells at different generations, only those
with an even number (80% of the cases) were used to analyze the relationship between cell lineage distance and other cellular attributes.

D Each panel compares changes in fate divergences (mean � 95% CI) between cells that exhibit different chromatin activity divergence levels (divided into three
bins, cell pair numbers within each bin, from left to right: n = 408; 174; 84 for D = 6; n = 265; 902; 152 for D = 8; n = 400; 1,798; 332 for D = 10; n = 2,813; 1,420;
447 for D = 12; n = 894; 4,907; 2,721 for D = 14) for cell pairs having an identical lineage distance (D). Statistics: Mann–Whitney U-test. ***P < 0.001.

E Tree visualization of the inferred chromatin activity transition points (green dots) and associated fate divergence (color-coded vertical lines) between two daughter
cells of each early progenitor cells. Fate divergence (ranging from 0 to 1) was evenly divided into four categories.

F, G Two examples showing the association between chromatin activity transition and anterior–posterior fate asymmetry following EMS (F) and ABprapp (G) cell
divisions. Left: comparison of intra- and inter-daughter–lineage chromatin activity divergences following a cell division (Intra-1, Intra-2 and inter-lineage cell pair
numbers: n = 1,378; 120; 848 for F; n = 6; 6; 16 for G). Right: terminal cell types (colors) produced by the two daughter cells following development. Box plot: The
center band is the median, box limits are the first and third quartiles, box length indicates IQR, and whiskers either 1.5 times the IQR or the minimum/maximum
value if it falls within a factor of 1.5 times of the IQR. Outliers not shown.

H Correlation between chromatin activity transition and fate divergence following early cell divisions (n = 90). Statistics: Pearson correlation.
I Chromatin activity transition is associated with larger transcriptome divergence between two daughter cells. Bar plot shows the number of differentially expressed

genes located within a 1-Mb interval centered on the GFP integration sites whose direction of expression change is consistent with that of chromatin activity
between daughter cells following cell divisions exhibiting chromatin activity transition (red) or non-transition (blue). The mother cell names are shown on the X-
axis. Statistics: Mann–Whitney U-test. The volcano plot in the inset shows the log2(fold change) (expression in the posterior cell divided by that in the anterior cell)
and -log10(Q-value) of all expressed genes following ABplaap cell division that produces an anterior daughter differentiating into mostly neuronal cells and a
posterior daughter differentiating into exclusively skin cells. Arrows highlight two posterior-enriched genes (lin-26 and pax-3) known to regulate skin differentiation.

J Top: Schematic of ABalp-to-ABarp lineage fate transformation (purple arrow) induced by lag-1(RNAi) and the predicted changes in chromatin activity in cells from
the ABalp lineage. Bottom: tree visualization of GFP expression integrated into a position in cells from the ABalp and ABarp lineages before and after lineage fate
transformation. See Fig EV4A–C for the results of all seven integration strains.

K Top: Schematic of MS-to-E lineage fate transformation (purple arrow) induced by pop-1(RNAi) and the predicted changes in chromatin activity in cells from the MS
lineages. Bottom: tree visualization of GFP expression in cells from the MS and E lineages before and after lineage fate transformation. See Fig EV4D and E for the
results of all five integration strains.
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distances. The results showed that a higher chromatin activity diver-

gence was generally associated with a higher fate divergence, espe-

cially between cells at a modest lineage distance (from 6 to 14;

Fig 3D). Thus, chromatin activity dynamics during lineage progres-

sion correlate with lineage-coupled cell differentiation.

An important process of lineage-coupled fate differentiation is

anterior–posterior asymmetric cell division, in which a mother cell

produces two daughter cells with distinct fates (Mizumoto & Sawa,

2007). Since most C. elegans cell divisions occur along the ante-

rior–posterior body axis, this asymmetry is also termed
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anterior–posterior fate asymmetry. We asked whether transitions in

chromatin activity landscape following a cell division correlate with

anterior–posterior fate asymmetry. A cell division is defined as a

transition point for the chromatin activity landscape if the chro-

matin activity divergences between terminal cells generated by dif-

ferent daughter cells (inter-divergence) are significantly higher than

those between terminal cells generated by the same daughter cell

(intra-divergence; Fig EV3D). As exemplified by Fig EV3E, division

of the ABplapp cell is identified as a chromatin activity transition

point, since cells generated by its two daughter cells exhibit distinct

chromatin activity landscapes. Of 90 early cell divisions, 36 (40%)

showed significant chromatin activity transitions (Fig 3E and

Dataset EV6). Within these transition points, we correctly captured

the division of the EMS cell (Fig 3F), which is consistent with the

knowledge that Wnt signaling induces an anterior–posterior fate

asymmetry (Thorpe et al, 1997). We also identified transition points

in many cases in which the cell division produces two daughter cells

with distinct developmental fates. For example, a transition point

was identified during asymmetric cell division of the ABprapp cell

that produces an anterior daughter that exclusively differentiated

into skin cells and a posterior daughter that differentiated into skin

and neuronal cells and cells that undergo programmed cell death

(Fig 3G). Globally, chromatin activity transition correlated signifi-

cantly with the fate divergence between two daughter cells (Fig 3H),

and 86% of the inferred chromatin activity transition points had

concomitant high-fate divergence (≥ 0.5), which incidence was

significantly higher than that observed in non-transition cases

(Dataset EV6, P = 2.95E-4, Fisher’s exact test).

Using scRNA-seq data (Packer et al, 2019), we directly examined

whether transitions in chromatin activity landscape correlate with

larger transcriptome divergences between the two daughter cells.

Indeed, transcriptome divergences between daughter cells showing

chromatin activity transitions were significantly larger than between

those without transitions (Fig EV3F). Moreover, we explicitly tested

whether genes near the position exhibiting differential chromatin

activity were differentially expressed between two daughter cells in

the expected direction, and the result supported the expectation

(Fig 3I). Significantly larger numbers of differentially expressed

genes were observed between two daughter cells following a cell

division exhibiting chromatin transition than that of other cell divi-

sions (P = 2.68E-04). For example, expression levels of two genes

involved in skin differentiation (pax-3 and lin-26) genes were signif-

icantly higher in the posterior daughter of ABplaap cell than the

anterior daughter, concomitant with chromatin activity changes, in

which the regions containing the two genes exhibited higher chro-

matin activity in the posterior daughter lineages (Labouesse et al,

1994; Labouesse et al, 1996; Thompson et al, 2016). Consistently,

the posterior lineage differentiates exclusively into skin cells (Fig 3I,

insert). Thus, the inferred chromatin activity transitions correlate

with anterior–posterior asymmetry during lineage progression.

The outcome of lineage-dependent regulation is to specify the

fates of progenitor cells according to their lineage identities. For

example, the fate of ABalp is always to produce pharyngeal and

neuronal cells, whereas the E progenitor cell invariantly differenti-

ates into intestinal cells. First, we determined to what extent charac-

teristic chromatin activity landscapes are established in cells from

different lineages. We divided the entire cell lineage into smaller

lineage groups and compared chromatin activity across all genomic

positions between cells from different lineage groups. We found

chromatin activity landscape differed in cells from different lineage

groups (Fig EV3G), suggesting the establishment of lineage-specific

landscapes. For example, quantification of the fraction of genomic

positions at which the on/off state of chromatin activity was dif-

ferent between two cells showed that when dividing the cell lineage

into 50 groups, chromatin activity at 37% of all positions (ranging

between 7 to 77%) of cells from ABala lineages was different, on

average, as compared to cells from all other lineages.

Next, we performed lineage fate perturbation experiments to test

whether cellular chromatin activity changes accordingly once

lineage fates are switched. We first used the ABalp and ABarp

lineages to address this question because cells derived from the two

lineages exhibited significantly different chromatin activity land-

scapes. RNA interference (RNAi) was used to knock down the func-

tion of the Notch effector lag-1/CLS (Moskowitz & Rothman, 1996),

which induced an ABalp-to-ABarp lineage fate transformation (Fig 3

J). In lag-1(RNAi) embryos, the tree topology and characteristic

programmed cell death of the ABalp lineage were distinct from

normal ABalp but resembled those of the ABarp lineage (Fig EV4A

and B), which confirmed the induction of lineage fate transforma-

tion. Concomitantly, in all seven integrants that were examined,

GFP, which is usually silenced or weakly expressed in ABalp

lineage-derived cells, was highly expressed, similar to the normal

ABarp lineage (Figs 3J and EV4C). These results suggest that chro-

matin activity landscape and cell lineage fate are coupled. This

coupling was confirmed in another developmental context. The fate

of the MS lineage was switched to that of E by knocking down the

pop-1 gene (Lin et al, 1995), a Wnt signaling component (Figs 3K

and EV4D). Concomitantly, in all five tested integrants, GFP expres-

sion was up-regulated in MS lineage-derived cells, resembling that

of typical E lineage-derived cells (Figs 3K and EV4E).

Collectively, the above lineage-centric analyses support that

chromatin activity landscape diversifies considerably across cells

during early lineage progression and is systematically associated

with lineage-coupled fate differentiation, including the global

lineage-dependent diversification of cell fates, anterior–posterior fate
asymmetry, and the establishment of lineage-specific fates.

Tissue-based convergence of cellular chromatin activity
landscape upon differentiation

The lineage-based mechanism archives a global patterning of cell

fates in groups of lineage-related cells. Since most cell types are not

monoclonal, this mechanism alone is not sufficient to generate the

ultimate body plan. Complementarily, there is a tissue-based mecha-

nism of cell differentiation in which cells from different lineages dif-

ferentiate into the same tissue through the co-specification of

identical fates in tissue precursors (Labouesse & Mango, 1999). This

tissue-based mechanism is involved throughout embryogenesis

because most somatic tissues, except the intestine, are derived from

multiple cell lineages (Fig 4A).

As shown above, the chromatin activity landscape generally

diversified across cells from different lineages, which raises the

question of whether the landscapes of cells from distinct lineages

converge according to tissue types. Two recent studies have shown

that cellular gene expression converges upon tissue differentiation

(Packer et al, 2019; Ma et al, 2020), raising the question of whether
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chromatin convergence underpins the convergences of tissue fates

and cellular transcriptomes. If it does, then chromatin activity diver-

gences would be lower between cells of the same tissue (intra-

tissue) as compared to between different tissues (inter-tissue). We

classified all cells into five major tissue/organ types and found that

the divergences were significantly lower for intra-tissue than inter-

tissue comparisons (Fig 4B and Dataset EV7). For example, chro-

matin activity landscapes of skin cells from the Caa and Cpa

lineages were highly similar, despite originating from distinct

lineages; the same was true for landscapes of body muscle cells

(Fig 4C).

The fact that chromatin activity landscape diversifies across cells

in different lineages and that similar landscapes are observed for

tissue cells derived from distinct lineages indicates a tissue-depen-

dent convergence during cell differentiation. Indeed, the chromatin

activity divergences between differentiated intra-tissue cells were

significantly lower than that between their mother cells (Fig 4D),

indicating a progressive convergence of the landscape toward
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terminal tissue differentiation. Tissue fate perturbation experiments

further demonstrated that the tissue-dependent converge of chro-

matin activity landscapes relies on tissue fate. Specifically, a mutant

of the elt-1/GATA1 gene, a specifier of skin fate (Page et al, 1997),

was used to abolish skin differentiation. Using three integrants, we

found that, when skin differentiation was perturbed, chromatin

activity in cells from major skin lineages dramatically changed, and

the chromatin convergence was significantly affected as well (Fig 4E

and F, and Appendix Fig S3). Together, these results reveal a chro-

matin basis for the tissue-based convergence of regulatory states in

cells originating from diverse lineages.

Chromatin activity landscape exhibits “memory” of lineage
origins that contributes to cell heterogeneity

While chromatin activity landscape converges according to tissue

type, the extent of this convergence is highly variable (Fig 4G). For

example, the chromatin activity divergences between neuronal cells

were significantly higher than that between intestinal cells. Further-

more, within the same tissue, the divergences between some cells

were notably higher than that between other cells. Given that cells

of a tissue derive from different lineages, we tested whether lineage

origin accounts for this intra-tissue chromatin heterogeneity. Our

recent finding using cellular protein expression of transcription

factors has revealed that many tissue-specific TFs show lineage-

restricted expression, contributing to a lineage-dependent intra-

tissue heterogeneity in gene expression (Ma et al, 2020). Here, we

further tested whether chromatin changes underlie this pattern.

Interestingly, cell lineage composition was highly predictive of the

chromatin heterogeneity in each tissue, with tissue composed of

cells from diverse lineages exhibiting higher heterogeneity

(R = 0.98; Fig 4H). Quantifying intra-tissue chromatin activity

divergence as a function of cell lineage distance further showed that

intra-tissue cells derived from distant lineages tended to exhibit

higher divergences (Fig 4I); for example, discernible chromatin

heterogeneity was evident in skin cells and pharyngeal cells from

different lineages (Fig 4J and K). However, not all of the 364 traced

terminal cells had completed cell differentiation, raising the question

of whether such effects were stably maintained in terminally dif-

ferentiated cells. We repeated the above analysis focusing on only

post-mitotic cells within the traced cells, which are likely to have

completed terminal differentiation (Dataset EV7). A similar result

was obtained (Fig EV5A), confirming that the lineage effects on

intra-tissue chromatin heterogeneity were also present in mature

cells.

This finding then led to the question of whether lineage-depen-

dent chromatin heterogeneity results in heterogeneity in global gene

expression in addition to transcription factors (Ma et al, 2020).

Using scRNA-seq data, we found that the transcriptome divergences

between intra-tissue cells increased with cell lineage distances not

only at the 350-cell stage but also at the 600-cell stage, when most

cells have almost completed embryonic differentiation (Fig EV5B

and C). To further test whether the observed lineage-dependent

heterogeneity persists after embryogenesis, we analyzed lineage-

resolved expression data at the first larval stage (L1) animals (Liu

et al, 2009) to examine lineage effects on gene expression, from

which we obtained supportive results (Fig EV5D).

Since the chromatin activity landscape exhibits both lineage

dependence and tissue dependence, we assessed whether the chro-

matin-tissue association persists after considering the influence of

lineage. To control lineage distance, chromatin activity divergences

were compared between intra-tissue cells and the lineage distance-

matched inter-tissue cells; this analysis showed that chromatin

activity divergences between intra-tissue cells were significantly

◀ Figure 4. Convergence and lineage-dependent heterogeneity of chromatin activity landscapes during tissue differentiation.

A The relationship between cell lineage identities (13 founder cells) and tissue fates. Dea, cell death; Ger, germ cell.
B Comparison of chromatin activity divergences (mean � 95% CI) between intra- and inter-tissue cells (gray) for each tissue (cell numbers, n = 128 for Neu, 44 for

Pha, 75 for Ski, 44 for Mus, and 16 for Int). Statistics: Mann–Whitney U-test, ***P < 0.001.
C Convergence of chromatin activity landscapes in skin and body wall muscle cells from the C lineage. Left: chromatin activity landscapes (Circos plot) of individual

skin and muscle cells. Right: comparison of chromatin activity divergences (mean � 95% CI) between skin cells (intra-skin, n = 13), between body wall muscles
(intra-mus, n = 16), and between skin and muscle cells (ski-mus, n = 29). Statistics: Mann–Whitney U-test.

D Compassion of chromatin activity divergences (mean � 95% CI) between differentiated intra-tissue cells and between their mother cells. The neuronal and
pharyngeal cells are not included because of a small number of differentiated cells at the 350-cell stage. Statistics: Mann–Whitney U-test.

E Tree visualization of GFP expression at an integration site in cells from the ABarp, ABpla, and ABpra lineages before and after perturbing skin differentiation using
an elt-1 mutant. See Appendix Fig S3 for the results of all three integration strains.

F Comparison of chromatin activity divergences (mean � 95% CI) between ABarp-, ABpla-, and ABpra-derived skin cells (n = 54) before and after perturbing skin
differentiation. Statistics: Mann–Whitney U-test.

G Comparison of chromatin activity divergences between all cells (cell pair number: n = 66,066) and intra-tissue cells (cell pair numbers: n = 8,128 for Neu; 946 for
Pha; 2,775 for Ski; 946 for Mus; 120 for Int). The center band is the median, box limits are the first and third quartiles, box length indicates IQR, and whiskers either
1.5 times the IQR or the minimum/maximum value if it falls within a factor of 1.5 times of the IQR. Each dot represents one cell pair.

H Correlation between average lineage distance and chromatin activity divergence between intra-tissue cells for all tissues (different colors). Statistics: Pearson
correlation.

I Changes in chromatin activity divergences (mean � 95% CI) following the increase in cell lineage distance between intra-tissue cells (cell pair numbers, from left to
right: n = 60; 106; 193; 333; 609; 1,198; 1,990; 4,556 for Neu; n = 25; 46; 77; 133; 141; 110; 276; 735 for Pha; n = 28; 52; 72; 120; 286; 54; 303; 816 for Pha; n = 18; 33;
54; 28; 73; 48; 96 for Mus; n = 8; 16; 32; 64 for Int).

J, K Two examples show lineage-dependent heterogeneity in chromatin activity landscapes of skin (J) and pharyngeal cells (K) originated from different cell lineages. In
each example, the left penal shows the chromatin activity landscapes of cells from corresponding lineages (marked by different numbers), and the right panel
shows the comparison of chromatin activity divergences (mean � 95% CI) between cells from the same lineage group (1 and 2; cell numbers: n = 6 and 4 for J; 5
and 4 for K) and from different lineage groups (1–2; cell numbers: n = 10 for J; 9 for K). Statistics: Mann–Whitney U-test. ***P < 0.001; **P < 0.01.

L Convergence and lineage-dependent heterogeneity of cellular chromatin activity landscapes during tissue differentiation. Top: tissue differentiation of terminal cells
(rectangles) from progenitor cells (circles) derived from different cell lineages. Progenitor and terminal cells that differentiated into the same tissue type are marked
in red. Bottom: changes in chromatin activity divergences between progenitor and terminal cells that differentiate into the same tissue type.
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lower than the control cells for all tissue types (Appendix Fig S4A).

Furthermore, the relative pair-wise chromatin activity divergences

between cells were quantified by normalizing the divergence to the

average divergence of all cells at the same lineage distance. Unsu-

pervised clustering of cells using these lineage effects controlled

chromatin activity divergence revealed seven broad clusters, each of

which was significantly enriched for cells of certain tissue types

(Appendix Fig S4B and C, Dataset EV7). These results confirm a

tissue-based chromatin convergence, even though the precise extent

of that convergence is affected by lineage origin.

While a specific tissue type was enriched in most cell clusters,

both pharynx and body wall muscle fates were co-enriched in cells

from cluster 3. Interestingly, most of the pharyngeal and muscle

cells in this cluster are from the MS lineage (Dataset EV7), suggest-

ing a lasting influence of lineage effects on tissue differentiation.

Although muscle fate was enriched in cells from cluster 4, it

explained only a minority (39%) of cell fates. Given that cells in this

cluster exhibit very diverse lineage and fate compositions (Dataset

EV7), the implications of a relatively similar chromatin activity land-

scape being shared by these seemingly unrelated cells remain to be

determined.

Taken together, we reveal tissue- and lineage-dependent dynam-

ics of chromatin activity during tissue differentiation in which the

chromatin activity landscapes of cells from distinct lineages

converge on tissue-specific patterns but retain stable memories of

each cell’s lineage history, contributing to cell heterogeneity within

a tissue (Fig 4L). This lineage-dependent tissue heterogeneity raises

the possibility that the lineage origin of cells may drive the func-

tional diversification of cell types within a tissue through a chro-

matin-based mechanism.

Predetermination of chromatin activity landscape during
left–right symmetry establishment

With a bilateral body plan, many cells of a given tissue are orga-

nized in a pattern having left–right (L–R) morphological symmetry.

L–R cells are usually organized as pairs of symmetric lineages, in

which all cells located on the left are derived from one lineage while

the corresponding cells on the right are derived from another (Fig 5

A). In addition to being the same cell type, the vast majority of the

cells on the left side are indistinguishable from their right-side coun-

terparts in terms of anatomy and function (Sulston et al, 1983).

Given the high functional similarity between L–R cells, we deter-

mined whether they exhibit higher chromatin similarity than non-

L–R cells. Some of the traced terminal cells are L–R cells or progeni-

tor cells in the corresponding L–R symmetric lineages (L–R progeni-

tors; Dataset EV8). Interestingly, chromatin activity divergences

between pairs of L–R cell/progenitors were lower than those

observed in other intra-tissue comparisons having a matched

lineage distance for 91% of the cases (P = 2.42E-21; Fig 5B and C,

Dataset EV8). Nevertheless, the L–R cells per se do not fully account

for the higher chromatin similarity observed between cells of the

same tissue. Chromatin activity divergences between intra-tissue

cells were significantly lower than that between inter-tissue cells

after removing the L–R cells (Appendix Fig S5A). Furthermore, this

pattern was also evident in the cellular gene expression data from

L1 stage animals (Liu et al, 2009), in which gene expression diver-

gences between L–R cells were significantly lower than those

between other cells having matched lineage distance within a tissue

(Appendix Fig S5B).

Intriguingly, while cells in many L–R pairs have distinct lineage

origins, the lineage-dependent differences in cellular chromatin

activity diminished, in which the divergences between L–R cell pairs

at distinct lineage distances were highly comparable (Fig 5D). As

exemplified by Fig 5E, chromatin activity divergences between L–R
cells are independent of cell lineage distance, as the divergences

between L–R cells/progenitors separated by eight generations (lin-

eage distance = 16) are highly comparable to those separated by a

less number of generations (lineage distance = 12, 8, and 4). More-

over, such a pattern was also observed by comparing gene expres-

sion divergence in the L1 stage animals (Appendix Fig S5C). This

finding suggests that chromatin activity dynamics during symmetry

establishment are distinct from regulation during general tissue dif-

ferentiation.

Two mechanisms are possible: the predetermination of analo-

gous chromatin activity landscapes in early progenitors of L–R cells,

or a more robust convergence of chromatin landscapes during

symmetry establishment. Upon comparing chromatin activity land-

scapes at different stages, the results favored the predetermination

model. Out of all traced cells, 48 L–R pairs completed embryonic

mitosis, and so likely represented cases where the regulation of

symmetry establishment had been completed. We found that chro-

matin activity divergences were highly comparable between these

differentiated L–R cells and between their mother cells (P = 0.15;

Fig 5F). We were unable to use Peef-1A.1::GFP to compare chro-

matin in many early L–R progenitors because it was not expressed

during very early embryogenesis (Fig EV1H). We instead used the

promoter of another ubiquitously expressed gene (nhr-2) (Zacharias

et al, 2015) to generate 13 integrants that expressed GFP and exhib-

ited position effects in early embryos (Appendix Fig S5D and E).

With these strains, we validated that chromatin activity divergences

between L–R cell/progenitor pairs were significantly lower than in

lineage distance and fate-matched cells (Appendix Fig S5F). Further-

more, the divergences between L–R progenitor cells at earlier devel-

opmental stages were similarly low as between L–R cells at the 350-

cell stage (Fig 5G and H, and Dataset EV9), supporting the predeter-

mination model. Consistently, the cellular transcriptomes of paired

progenitors of L–R cells were broadly indistinguishable; cell identity

assignment based on scRNA-seq data showed that the transcrip-

tomes of L–R progenitor cell pairs (91.5%) and of differentiated L–R
cell pairs (92.7%) were highly indistinguishable (Packer et al,

2019).

Together, single-cell analysis of chromatin activity landscapes

reveals a predetermination of cellular chromatin during the estab-

lishment of L–R symmetry, in which highly analogous chromatin

activity landscapes are programmed in the early progenitors of

prospective L–R symmetric cells and maintained during later devel-

opment (Fig 5I).

Chromatin activity co-dynamics inform the functional
coordination of the genome

Having examined the cellular dynamics of chromatin activity, we

sought to investigate its genomic organization. Specifically, we

examined whether concordant changes in chromatin activity

across cells predict the functional relevance of genome regions.
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Figure 5. Predetermination of chromatin activity landscape during L–R symmetry establishment.

A Developmental organization of L–R symmetric cells. Top: tree visualization of the cell lineage until the 350-cell stage. Horizontal lines link four pairs of L–R symmetric
cell lineages (labeled as 1–4). Bottom: embryonic locations of corresponding cells.

B Heatmap comparing chromatin activity divergences between cells in all pairs of L–R symmetric cells/progenitors and between control cells. Statistics: Wilcoxon
signed-rank test, n = 149.

C Micrographs compare the expression of ubiquitous mCherry (bottom) and GFP (top) integrated into 12 representative genomic positions between two L–R symmetric
cells. Scale bar = 1 µm.

D Comparison of chromatin activity divergences (mean � 95% CI) between L–R symmetric cells with different cell lineage distances (cell pair numbers from left to
right: n = 3; 16; 15; 18; 17; 62; 16). Statistics: Pair-wise Tukey-HSD post hoc test, Benjamini–Hochberg-adjusted P-value.

E Figure shows chromatin activity landscapes, chromatin activity divergence scores, and cell lineage distances for four representative L–R symmetric cell pairs.
F Comparison of chromatin activity divergences (mean � 95% CI) between differentiated L–R symmetric cells (D–L–R, n = 48) and between their mother cells (M).

Statistics: Mann–Whitney U-test.
G Comparison of chromatin activity divergences (calculated using Pnhr-2::GFP expression, mean � 95% CI) between differentiated L–R cells at the 350-cell stage and

between L–R progenitor cells at different developmental stages based on the approximate number of cells in the embryo (cell pair numbers: n = 19 for ~ 50C; 45 for
~ 100C; 86 for ~ 200C; 159 for ~ 350C). Statistics: Pair-wise Tukey-HSD post hoc test, Benjamini–Hochberg-adjusted P-value.

H Bar plots show chromatin activity landscapes of cells in two cell tracks that lead to a pair of L–R symmetric cells. Arrow indicates the mother-daughter relationship.
I Predetermination of chromatin activity landscape during L–R symmetry establishment. Figure organization is the same as Fig 4L. L–R symmetric cells/progenitors are

marked in light blue.
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We determined to what extent different genomic regions exhibit

similar chromatin activity changes by calculating the divergences

across cells among the 113 genomic positions (Fig 6A) and identi-

fied nine clusters of genomic regions (720 pairs) exhibiting simi-

lar chromatin activity changes across cells, which we termed

chromatin activity co-dynamic regions (Fig 6B and Dataset EV10).

Interestingly, these activity co-dynamic regions exhibited similar

histone modification profiles (Fig 6C), suggesting they are co-regu-

lated. A small fraction (4%) of chromatin activity co-dynamic

regions were linked on the chromosome at a distance of less than
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Figure 6. Chromatin activity co-dynamic regions are enriched for functionally related genes.

A Strategy to identify chromatin activity co-dynamic regions. GFP expression pattern across cells is compared between integration sites to identify genomic regions
that exhibit similar chromatin activity across cells (chromatin activity co-dynamic regions, connected by red lines).

B Genomic locations of nine clusters of chromatin activity co-dynamic regions. Each block of the barcode represents a chromosome with vertical lines indicating the
location of the reporter integration site. Chromatin activity co-dynamic regions within each cluster are marked in red.

C Comparison of the relative frequency of pair-wise regions exhibiting similar histone modification profiles between chromatin activity co-dynamic regions and
between non-co-dynamic regions. Two regions were considered to exhibit similar histone modification profiles if the Pearson correlation coefficient of the relative
levels of 19 types of histone modifications is > 0.8.

D–G Relative frequency of co-expressed genes (D), interacted genes (E), genes present in the same protein complex (F), and genes with similar functions (G) in all genes
located with 100-kb centered on the reporter integration sites in the chromatin activity co-dynamic (blue) and non-co-dynamic regions (gray). Statistics:
Hypergeometric test.

H Top: tree visualization of clonal tissue lineages (colored circles, coded according to tissue type, n = 37). Bottom: relative enrichment of tissue-specific genes in
genomic regions whose chromatin is activated as compared to those that are silenced in cells from each clonal tissue lineage. Names of the progenitor cells of
clonal tissue lineages are shown on the X-axis. The dashed line indicates the expected enrichment score. Statistics: Wilcoxon signed-rank test.

I Clusters of chromatin activity co-dynamic regions (barcodes) are enriched in all genomic regions that exhibit active (purple lines) or silent (cyan lines) chromatin
activity in individual cells from corresponding clonal tissue lineages.
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one Mb; most (80%) co-dynamic regions were located on dif-

ferent chromosomes.

Do chromatin activity co-dynamics indicate functional relevance?

We tested this possibility by examining whether genes near the

regions tend to be functionally related. Three types of functional

relevance between genes were tested as follows: co-expression, gene

interaction, and functional similarity, and all of the results

supported the hypothesis (Fig 6D–G and Dataset EV10). First, pairs

of chromatin activity co-dynamic regions were significantly enriched

for genes that are co-expressed across more than 900 conditions

(Fig 6D). Second, genes located near pairs of the activity co-

dynamic regions tended to interact with each other (Fig 6E) and

were enriched for proteins that are present in the same complexes

(Fig 6F). Finally, genes near pairs of activity co-dynamic regions

tended to encode proteins with identical functional annotations

(Fig 6G). Since chromatin activity co-dynamic regions are likely to

be co-regulated (e.g., by histone modifications; Fig 6C), these find-

ings raise the possibility that chromatin regulation drives the func-

tional coordination of the genome.

Lastly, we tested whether chromatin activity co-dynamic regions

coordinate the expression of regulatory genes during cell lineage dif-

ferentiation. Since the chromatin activity landscape was associated

with both lineage and tissue, we divided cells into 37 tissue

lineages, each corresponding to a clonal lineage that differentiates

mostly (> 85%) into a single tissue type (Fig 6H, top). We found

that active chromatin regions in cells from each clonal tissue lineage

were significantly enriched for genes that were preferentially

expressed in the corresponding tissue as compared to the silent

chromatin regions (Fig 6H, bottom). Moreover, the activation or

silencing of specific clusters of chromatin activity co-dynamic

regions was widely observed in cells from clonal tissue lineages

(Fig 6I). These results suggest that co-regulation of chromatin activ-

ity invokes functionally related genes during lineage differentiation.

Discussion

Many sequencing-based approaches efficiently dissect different

aspects of the state of chromatin, such as DNA and histone modifi-

cations (Mikkelsen et al, 2007; Xie et al, 2013; Zhu et al, 2018),

binding of regulatory proteins (Gerstein et al, 2010), accessibility

(Cusanovich et al, 2018a), and spatial organization (Lieberman-

Aiden et al, 2009). However, it is challenging to use these

approaches to elucidate the functional state of chromatin in explicit

single cells during in vivo development. First, the contribution of

chromatin’s biochemical or biophysical states to its activity is highly

multifaceted. For example, the influence of histone modification on

gene expression is highly context-dependent and often relies on

other types of histone modifications (Wang et al, 2008; Karlic et al,

2010). Similarly, high chromatin accessibility does not always corre-

spond to high activity (Arnold et al, 2013). This uncertainty compli-

cates the interpretation of the regulatory role of chromatin if only a

limited number of chromatin properties are evaluated. In this work,

we quantified the position effects on a reporter gene that is highly

responsive to chromatin environments as a direct functional

measurement of chromatin activity. Since the same gene was intro-

duced into many genomic positions and ultimate gene expression

was used as a readout of the chromatin activity, the data described

here represent the functional state of chromatin. Multiple pieces of

evidence demonstrate that position effects on gene expression reli-

ably indicate chromatin activity (Fig EV2). In addition, although the

performance of some of the epigenomic methods mentioned above

has been improved for analyzing low cell numbers or the chromatin

state in single cells (Stevens et al, 2017; Cusanovich et al, 2018a;

Cusanovich et al, 2018c; Zhu et al, 2018; Ai et al, 2019), significant

challenges remain with assigning lineage identities to the measured

chromatin states in individual cells. Here, we applied live imaging

and direct lineage tracing to determine position effects on reporter

expression in precisely traced and lineaged single cells, allowing us

to infer the chromatin activity landscape in specific cells within an

intact embryo (Fig 1). The functional nature, cellular resolution,

and high cell coverage of the chromatin activity landscape provide a

unique opportunity to systematically explore the implications of

chromatin activity dynamics during in vivo development.

While chromatin state provides rich information to regulate gene

expression and to specify cellular regulatory states, to what extent

the regulatory processes that govern in vivo development are

encoded in the chromatin of developing cells remains an open ques-

tion. Lineage-resolved chromatin activity landscape combined with

the extensive prior knowledge of single-cell biology of C. elegans

development allows us to investigate the dynamics of chromatin

activity during cell lineage differentiation in single cells. Through a

multidimensional analysis of the lineage-resolved chromatin activity

landscape, we found that chromatin activity dynamics correlate

with lineage commitment, anterior–posterior asymmetry, tissue fate

specification, cell heterogeneity, and bilateral symmetry establish-

ment (Figs 2–5). This suggests that regulatory events in cell differen-

tiation could be inferred from cellular chromatin. A previous study

that profiled genome-wide maps of DNase I-hypersensitive sites in

diverse human embryonic stem cells and adult primary cells

revealed that the chromatin landscape reflects cell lineage relation-

ships, cell fates, and cellular maturity (Stergachis et al, 2013). Thus,

cellular chromatin provides highly specific information regarding

fate patterning, paralleling the genetic programs of that process (Liu

et al, 2009; Murray et al, 2012; Araya et al, 2014; Packer et al,

2019).

We provide three insights into chromatin activity dynamics

during developmental and genome regulation. First, while the chro-

matin activity landscape of cells from different lineages converge

according to tissue type, cellular chromatin encodes a “memory” of

developmental history that contributes to heterogeneity within func-

tionally related cells (Fig 4). It suggests that differences in develop-

mental histories of cells contribute to cellular heterogeneity within a

tissue type and, more generally, implies that the functional diversifi-

cation of cells at the sub-tissue/cell type level is developmentally

encoded in the cell lineage. A recent mouse study showed that cells

belonging to a given tissue type possess characteristic chromatin

accessibility patterns according to their location in the body (Cusa-

novich et al, 2018b). While the lineage identities of these cells

remain to be determined, it is likely they originate from discrete cell

lineages. Furthermore, in the mammalian nervous system, specific

lineage-related neurons are reported to have higher functional rela-

tion in terms of microcircuit assembly and stimulus feature selectiv-

ity (Li et al, 2012; Yu et al, 2012). Thus, lineage-dependent cell

heterogeneity appears to be evolutionarily conserved. The conver-

gence of chromatin activity landscape during tissue differentiation
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also implies that the pioneer transcription factors responsible for

specifying tissue fate may play an essential role in shaping the char-

acteristic landscapes and that the cooperative interactions between

chromatin and pioneer factors may drive tissue differentiation (Zaret

& Mango, 2016). Important follow-up studies include the following:

identifying which pioneer factors are responsible for remodeling the

chromatin activity landscape; how these pioneer factors co-specify

chromatin activity in functionally related cells from discrete

lineages; and determining how the lineage-dependent heterogeneity

in chromatin activity is established.

Second, convergence and predetermination of the chromatin

activity landscape are differentially utilized during general tissue dif-

ferentiation and bilateral symmetry establishment (Figs 4 and 5).

One possible advantage of the predetermination strategy is specify-

ing primed analogous states in early progenitors of prospective L–R
cells, even in cell pairs that are lineage-unrelated, allowing a robust

generation of functionally equivalent cells on the different sides of

the body. An intriguing question is when and how equivalent chro-

matin activity landscape is precisely specified in early progenitor

cells that are not lineage-related. Since progenitor cells from dif-

ferent cell lineages generally exhibit divergent chromatin activity

and gene expression programs (Packer et al, 2019; Ma et al, 2020),

the specification of equivalent chromatin activity would be a regu-

lated process. In rare cases, L–R symmetric cells exhibit functional

asymmetry (Hobert, 2014). For example, a pair of morphologically

and positionally symmetric neurons (ASEL/R) show differential

chemosensory capacities (Pierce-Shimomura et al, 2001); this asym-

metry is known to be primed in early progenitor cells through a

chromatin-based mechanism (Cochella & Hobert, 2012). Such prede-

termined asymmetry was not evident in the chromatin activity land-

scapes of ASEL/R progenitor cells (ABalpppppp/ABpraaappp),

which exhibit a low chromatin activity divergence comparable to

other L/R symmetric cells/progenitors from the same symmetric

lineages (ABalppp/ABpraaa) that do not have known functional

asymmetry (P = 0.2, Z-test, one-tailed). In addition to the asymmet-

ric ASEL/R, the ABalpppppp/ABpraaappp progenitors also produce

two pairs of L–R neuronal cells, including the AUAL/R cells, which

have been recently shown to exhibit molecular asymmetry (differen-

tial expression of C32C4.16) (Charest et al, 2020) and the ASJL/R

cells, in which no functional asymmetry has been observed. It is

thus possible that the regulation of L–R asymmetry may hinge on

specific chromatin loci rather than the chromatin landscape as a

whole. Indeed, differential chromatin decompaction of the lsy-6

microRNA locus has been shown essential for priming ASEL/R

asymmetry (Cochella & Hobert, 2012).

Finally, chromatin activity co-regulation might participate in coor-

dinate functionally related genomic regions (Fig 6). Many function-

ally related genes, such as tissue-specific genes, tend to be clustered

in discrete genomic regions (Lercher et al, 2002; Roy et al, 2002; Pauli

et al, 2006); the co-activating/silencing of chromatin activity across

the genome could thus provide an effective strategy for invoking

related genes as a cohort during developmental regulation.

Due to low-throughput generation of randomly integrated trans-

genic animals, the genomic resolution of the present chromatin activ-

ity landscape is not high (0.88 Mb). In the future, this limitation

could be improved by using CRISPR/Cas9-mediated genome editing

to integrate reporter genes into a specific region of interest or

throughout the genome at a higher resolution. In addition, the

expression window of the eef-1A.1 promoter in the integrated strains

does not cover early embryonic cells, which prevented us from

measuring cellular chromatin activity during very early embryogene-

sis. This limitation can be resolved by using other promoters that are

responsive to chromatin environments and expressed ubiquitously

during very early development. With suitable promoters, chromatin

activity at any genomic position in any cell and at any developmental

stage will be traceable using our single-cell approach.

Materials and Methods

Caenorhabditis elegans strains and culture

The genotypes of all C. elegans strains used in this study are listed

in Dataset EV1. Some of the strains were obtained from the

Caenorhabditis Genetics Center. Unless otherwise specified, all

strains were cultured in incubators at 21°C on nematode growth

media plates seeded with OP50 bacteria.

Selection and verification of reporter strains

From a previously generated collection of integration strains(Frok-

jaer-Jensen et al, 2014), a total of 116 reporter strains were selected

based on the following criteria (https://wormbuilder.org/old/?pa

ge_id=182): (i) driven by the eef-1A.1 promoter (previously known

as eft-3), (ii) use of GFP as the fluorophore, (iii) containing a nuclear

localization signal, and (iv) with a unique integration site. Three

strains (EG8880, EG8912, and EG8860) exhibited severe growth and

developmental defects and were removed. Each of the 113 strains

was crossed with the JIM113 strain that ubiquitously expressed

mCherry in the nucleus for lineage tracing, which resulted in a

collection of 113 dual-fluorescent reporter strains (Dataset EV1).

The integration sites of Peef-1A.1::GFP in all transgenic strains

have been characterized previously. To further ensure the accuracy

of the integration sites and copy numbers, 18 strains were randomly

selected, and the integration sites were reexamined using inverse

PCR following a previously established protocol (Frokjaer-Jensen

et al, 2014). Genomic DNA was extracted and digested overnight

with the restriction enzyme DpnII that cut at a unique site located in

the MOS 1 vector and potential sites located near the integration site

in the C. elegans genome. Next, the digested DNA was circularized

by T4 ligase during a 2- to 4-h incubation. Two rounds of PCR were

performed with the circularized DNA containing the flanking

sequences as the template and with two pairs of nested primers

targeting the MOS 1 sequence. PCR products were gel-purified and

sequenced. The sequences were then aligned to the C. elegans

genome (WBcel235/ce11) to identify the sequence of the regions

flanking the integration site. For all 18 tested strains, integration

sites were identical or within 1 kb of the previous annotation; addi-

tionally, only one integration site was identified in all examined

strains (Fig EV1B).

Embryo mounting and 3D time-lapse imaging of embryogenesis

A previously established procedure was used to prepare and mount

early C. elegans embryos, with minor modifications (Bao & Murray,

2011). Briefly, six young adult worms with one row of eggs in the
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gonad were picked and transferred onto a Multitest slide (MP

Biomedicals) with a droplet of M9 buffer, and then, the worms were

cut open to release early embryos. Two- to four-cell stage embryos

were identified under a dissecting microscope (Nikon SMZ745) that

were then transferred into a droplet of egg buffer (~ 2 µl) containing
20-μm polystyrene microspheres (PolyScience) on a coverslip

(Fisherbrand) using an aspirator tube assembly (Sigma-Aldrich).

The various positions of embryos were adjusted to be arranged in a

few clusters, with each cluster containing two to three embryos (fit

with one imaging field). Finally, an 18 × 18 mm coverslip was

placed on top of the droplet and the slide was sealed with melted

Vaseline.

3D time-lapse imaging was performed using a spinning-disk

confocal microscope (Revolution XD) with an inverted microscope

body (Olympus IX73), a spinning-disk unit (Yokogawa CSU-X1,)

XYZ stage with Piezo-Z positioning (ASI PZ-2150-XYZ), an inte-

grated solid-state laser engine (Coherent; 50 mw at 488 nm and

50 mw at 561 nm), and an Electron Multiplying Charge-Coupled

Device (EMCCD; Andor iXon Ultra 897). Images were taken at 20°C
using the multidimensional acquisition module of MetaMorph soft-

ware (Molecular Devices) under a 60× objective (PLAPON 60XO,

N.A. = 1.42). Images were recorded for at least 240 time points at a

temporal resolution of 75 s, and at each time point, three slide posi-

tions with two to three embryos were scanned for 30 Z focal planes

with 1 µm spacing. Laser power and exposure time for mCherry

(561 nm) and GFP (488 nm) were optimized to minimize photo-

damage while maintaining a high signal-to-noise ratio. Laser power

for both mCherry and GFP was increased 3% for every Z plane

when the focal plane went deeper into the sample to partially

compensate for the decay of the fluorescence signal over Z focal

panes. The laser power and exposure time used for mCherry and

GFP for the first Z plane were 8% for 50 ms and 8% for 20 ms,

respectively. All wild-type embryos (n > 50) imaged with this

parameter hatched at a time that was comparable to embryos with-

out laser excitation without obvious phenotypic abnormalities. For

individual time points, the two-channel image series were organized

as 3D tiff stack images and were directly used for cell identification,

tracing, lineage construction, and quantification of single-cell

reporter expression.

Cell identification, lineage tracing, and manual curation

Image series were processed with StarryNite software (Santella et al,

2010; Santella et al, 2014) to reconstruct de novo the embryonic cell

lineage by automated cell identification and tracking. Automated

cell identification was performed using a hybrid blob-detection algo-

rithm to segment individual nuclei in the 3D image stacks based on

the ubiquitously expressed mCherry fluorescence signal that local-

izes to the nucleus (Santella et al, 2010). Next, automated cell trac-

ing was performed using a semi-local neighborhood-based

framework to link all cells at a preceding time point to those at the

subsequent time point, and if cell division occurs, a mother cell is

linked to two daughter cells (Santella et al, 2014).

Raw cell identification and tracing results were systematically

inspected and curated manually to ensure high accuracy using the

AceTree software (Katzman et al, 2018). While the accuracy of auto-

mated cell detection and tracing by StarryNite software is high

(> 99%), the accumulative nature of the errors affects the accuracy

of cell lineage results (Santella et al, 2014). Hence, a systematic

correction of lineage errors, especially those that occur in the early

developmental stage, is indispensable. AceTree software provides

an interface for visualizing the traced cell lineage as a binary tree

structure and links all cells on the tree to the raw 3D images. With

this function, users can identify potential lineaging errors in the tree,

inspect the cell relationships on the raw images, and finally modify

the identification or tracing results when necessary. Because the C.

elegans cell lineage is invariant, the vast majority of errors can be

efficiently captured by visual or computational screening of unusual

lineage topologies. Detailed procedures for error detection and

correction were described previously (Du et al, 2015).

The lineage identities of all traced cells were determined and

assigned a unique name according to Sulston’s nomenclature (Sul-

ston et al, 1983). Cell identities were first determined for all cells

(ABa, ABp, EMS, and P2) in the 4-cell stage embryos based on the

stereotypical arrangement of cells in the embryo and the timing of

cell divisions. Specifically, ABa and P2 are located in the anterior

and posterior parts of the embryo, respectively, and ABa and ABp

divide earlier than EMS and P2 cells. Then, the names of their

descendants were determined according to the mother cell name

and cell division pattern. All cell divisions fall into three broad cate-

gories: anterior–posterior (a/p), left–right (l/r), and dorsal–ventral
(d/v), according to the orientation of cell division relative to the

body axis. In general, the full name of a mother cell is propagated to

the daughter cells with an additional letter specifying the cell posi-

tion of the daughter cell relative to the body axis following cell divi-

sion of the mother. For example, ABal specifies the daughter cell of

ABa that is located on the left side following the l/r division of the

ABa cell, and ABala specifies the daughter cell of ABal that is

located anteriorly following the a/p division of the ABal cell. Except

for the few early progenitor cells (MS, E, C, D, P3, P4, Z2, and Z3) to

which a particular name was assigned to highlight their develop-

mental properties, the name assignment of all cells followed this

general rule. Detailed nomenclature information is described else-

where (Sulston et al, 1983; Santella et al, 2010). Using the aforemen-

tioned image bioinformatics, the embryogenesis was digitized at

cellular resolution and the cell lineage identities of all traced cells

were determined.

Quantification of reporter expression in lineaged cells

Each strain that was used to quantify the positional effects of

reporter expression carried two nucleus-localized fluorescent

proteins. The ubiquitous mCherry was used for the aforementioned

cell lineage reconstruction, and the fluorescent intensity of GFP inte-

grated into a specific genomic position was used to measure the

reporter expression level in each traced nucleus simultaneously.

The segmentation of each nucleus at each time point and tracing of

nuclei across time during the lineage construction step facilitated a

direct quantification of GFP expression in each lineage-resolved cell.

Quantification of raw GFP expression
Raw GFP expression was calculated as the average intensity of all

pixels within each identified nucleus at each time point minus the

average intensity of the local background. The average pixel inten-

sity in the center Z plane of each nucleus was used to approximate

the expression level in the nucleus. The background signal for each
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nucleus was estimated using a previously described method in

which the average pixel intensity was calculated within an annular

area between 1.2- and 2-radius from the centroid of the nucleus.

Nearby nuclei that overlapped with the annular area were not

included in the background measurement (Murray et al, 2008). GFP

intensities of the same cell at multiple time points were averaged,

representing cellular average GFP expression abundance. Because

the nucleus morphology at the time points immediately before and

after cell division is not spherical (which would affect the accuracy

of intensity measurements), the values at these time points were

excluded when calculating the average GFP expression in a cell.

Compensation for depth-dependent attenuation of
fluorescence intensity
GFP levels were adjusted by compensating for the depth-dependent

attenuation of fluorescence intensity. A fundamental problem asso-

ciated with 3D fluorescence confocal imaging is the attenuation of

light with depth, caused by the absorption and scattering of both the

excitation and fluorescence light (Kervrann et al, 2004). Conse-

quently, without adjustment, the measured fluorescence intensities

of cells reside deeper in the embryo (far from the microscope objec-

tive) and are significantly weaker than those located in shallower

slices. This effect could significantly obscure a reliable comparison

of GFP expression between single cells in an embryo, since the

equivalent cells are located at different depths (Z planes) relative to

the objective during imaging (Fig EV1C). Although the attenuation

effect was partially compensated for during imaging by increasing

the laser power of the excitation light with depth, this effect was still

present in the acquired images. This phenomenon is best illustrated

by comparing GFP expression in equivalent cells between embryos

of the same strain (experimental replicates) that are oriented dif-

ferently during imaging. There are two types of embryo orientation

at the 350-cell stage in which either the ventral or the dorsal side is

placed near the objective (termed VNO and DNO, respectively). As

shown in Fig EV1D, cellular GFP intensity was highly consistent

between embryos with identical orientation (average Pearson corre-

lation coefficient R = 0.85). However, the intensity differs consider-

ably between embryos with different orientations (average Pearson

correlation coefficient R = 0.22), especially for those cells located

far from the center Z plane of the embryo. This discrepancy allowed

us to model and correct the residual attenuation effect. Using the

information of each cell’s Z position and GFP intensity, we applied

various attenuation factors per Z plane (α) to adjust the GFP inten-

sity at any Z plane to the center plane (Z = 15) using the equa-

tion Ii = Ic�(1 + α)(i − c), where Ii and Ic specify the GFP intensity of

the cell at plane i and the center plane, respectively. The perfor-

mance of each α was evaluated by quantifying the correlation coeffi-

cient of cellular GFP expression between experiment replicates with

different embryonic orientations. We used 49 embryos of 13 trans-

genic strains to model the performance of adjustment and deter-

mined whether the attenuation effect depended on the magnitude of

fluorescent intensity. We found that the attenuation was significant

when the cellular GFP intensity was greater than seven and that

α = 0.054 yielded the best performance regarding adjustment of the

attenuation (Fig EV1E). These parameters were applied to all cells

in all embryos, which dramatically removed the residual attenuation

effects (see Fig EV1F for representative examples). This adjustment

of GFP intensity facilitates a reliable inter-cell comparison of GFP

expression in an embryo, especially when the cells are located in

significantly different Z planes.

Quantification of instantaneous GFP expression
Due to the high stability of GFP protein (with a half-life of over 20 h

in mammalian cells) and a fast cell cycle progression during

embryogenesis (median cell cycle length = 42 min until the 350-cell

stage), the measured GFP intensity in a cell consisted of both GFP

inherited from the previous cell cycle and GFP expressed in the

present cell. Since GFP expression was continuously imaged at a

high temporal resolution, the inherited and newly expressed GFP

was distinguished by subtracting the GFP intensity of mother cells

from the corresponding daughter cells. Specifically, GFP intensity

value at the time point before the cell division of the mother cells

was used to represent the GFP expressed in the mother cell and was

subtracted from the value of the daughter cells, which assumed that

the reporter is not expressed during cell division. We used strains

with the mCherry lineaging marker but not the GFP transgene as the

control and quantified cellular GFP intensity in 20 embryos to model

the distribution of GFP intensity in non-expression cells. A cut-off of

6.36 (Q < 0.01) at which the false discovery rate was 6.9e-5 for cells

in control embryos was used to refine GFP expression levels. For

cells with an intensity lower than the cut-off, the expression level

was set to zero; otherwise, the cut-off value was subtracted from the

cellular GFP intensity to represent instantaneous expression level in

a cell, which was then log2(X + 1) transformed. Instantaneous GFP

expression levels were used to represent chromatin activity.

Construction of single-cell chromatin activity landscape

Chromatin activity landscape of individual cells was constructed by

integrating GFP expression levels across all genomic positions in

cells with the same lineage identity (equivalent cells). Because GFP

expression at each integration site was quantified for multiple

embryos (ranging from 2 to 8), expression levels were integrated

across experimental replicates. In this integration, only cases in

which GFP was expressed (with a value > 0) in more than 60% of

replicates were considered to be expressed, and the instantaneous

expression levels (untransformed) were averaged, and log2(X + 1)

transformed to represent consensus chromatin activity at a genomic

location in a cell. Otherwise, the chromatin activity was set to zero.

Comparison of position effects on GFP expression with
chromatin features

Definition of arm and center regions
Chromosome regions located within 20% of a chromosome at each

end were defined as arm regions; the rest of the regions were

defined as center regions.

Histone modification
We predicted GFP expression levels at each integration site using

the combination of 19 types of histone modifications (Ho et al,

2014). Histone modification datasets were downloaded from the

ModENCODE project Web site, and only histone modifications of

embryonic datasets (n = 56) were used to ensure a comparison of

histone modification and GFP expression at the comparable devel-

opmental stage. Each dataset was normalized by calculating the Z
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score Z = (x − µ)/α for each region across the genome, where µ
denotes the mean and α denotes the standard deviation of the modi-

fication levels. The level of each histone modification at the trans-

gene integration site was determined and was used to represent the

modification level of each Peef-1-A.1::GFP cassette by averaging the

modification level of all genomic regions that overlapped with a 1-

kb region centered on the integration site of the expression cassette.

GFP expression levels were predicted by a linear model that consid-

ers all types of modifications. If multiple datasets are available for

the same histone modification, the dataset that yielded the best

performance was used.

Chromatin accessibility
Accessibility chromatin regions were defined based on a previous

study in which ATAC-seq was applied to identify accessible chro-

matin at several developmental stages (Janes et al, 2018). An inte-

gration site was defined as a location in accessible chromatin if an

ATAC-seq peak overlapped with a 1-kb region centered on the inte-

gration site.

Chromatin state/domain
Ho et al (2014) classified the C. elegans chromatin into 16 states,

with states 1–3 corresponding to transcriptional activation and

states 10–13 corresponding to transcriptional silencing. In addition,

Evans et al (2016) segregated the chromatin into 20 states, in which

states 1–5 were defined as chromatin domains with high activity

and states 16–20 were defined as with low activity. A closer exami-

nation revealed that states 17, 18, and 20 were more robustly associ-

ated with gene silencing; we thus used these three states to

represent silent chromatin. For both datasets, we compared the

average expression levels of Peef-1A.1::GFP located in active states

to those located in silent states to determine whether reporter

expression is consistent with chromatin activity.

LAD
LAD information was obtained from a previous study that deter-

mined regions associated with LEM-2, an inner nuclear membrane

protein, in mixed-stage C. elegans embryos (Ikegami et al, 2010).

Comparison of position effects on GFP expression with genetic
features

Definition of intragenic and intergenic regions
An integration site was defined as being located in the intragenic

region if the annotated integration site is located within the gene

body of any protein-coding gene; otherwise, the reporter was classi-

fied as being located in the intergenic region.

Comparison of GFP expression with endogenous genes
A previously generated whole-embryo time-course transcriptome at

high temporal resolution was used to represent average expression

levels of endogenous genes (Hashimshony et al, 2015). Gene expres-

sion at stage 190 min past the first cell division that was comparable

to the 350-cell stage was used for comparison. For each transgene

integration site, the expression levels of all endogenous genes

whose transcription start site is located in an interval centered on

the transgene integration site were averaged to represent the expres-

sion potential of nearby genes. The transcript abundances were

log2(X + 1) transformed, and intervals of various sizes ranging from

5 kb to 2 Mb were analyzed.

Comparison of GFP expression with endogenous genes in
single cells
A previously generated single-cell transcriptome data of C. elegans

embryogenesis were used to determine the correlation between the

GFP expression and the expression of endogenous genes in equiva-

lent cells (Packer et al, 2019). The expression potential of endoge-

nous genes was quantified as the fraction of expressed genes

(transcripts per million, TPM > 0) in a 500-kb genomic interval

centered on the GFP integration sites. Because the lineage identity

was not fully resolved for all cellular transcriptomes, only cells that

had been assigned a unique identity (n = 38) or two possible identi-

ties (n = 267) were used for analysis.

Perturbation of writers of histone modifications

The effects of H3K9me3 on chromatin activity were assessed using

set-25(n5021), a mutant of set-25 (G9a/EHMT2 homolog) that

encodes the histone methyltransferase responsible for H3K9me3

methylation. A previous study has shown that H3K9 tri-methylation

is abolished in set-25(n5021) (Towbin et al, 2012). The effects of

H4K16ac on chromatin activity were assayed by performing RNAi

against mys-1 (KAT5 homolog), a member of the MYST family

histone acetyltransferase complex that adds acetylation to H4K16

(Lau et al, 2016). For each experiment, representative integration

strains showing an enrichment of the corresponding histone modifi-

cation in the 1-kb region centered on the integration sites were used

to compare GFP expression levels before and after perturbation.

Analysis of the dynamics and implications of the chromatin
activity landscape during cell lineage differentiation

Calculation of cell lineage distance
A previously described strategy was used to calculate the lineage

distance between two cells as the number of cell divisions that sepa-

rate these two cells from their lowest common ancestor (Du et al,

2015) (Fig EV3A).

Definition and quantitative comparison of developmental fates
between progenitor cells
The fate of a progenitor cell was defined retrospectively as the

combinatorial pattern of tissue types it produced following develop-

ment (Fig EV3B). The 671 embryonic terminal cells were first classi-

fied into seven tissue/organ categories: neuronal system (Neu;

including neurons and glial cells), pharynx (Pha), skin (Ski), body

wall muscle (Mus), intestine (Int), and germ cell (Ger). Cells that

did not fall into any of these categories and that undergo

programmed cell death were not considered in the analysis. The

developmental fate of each progenitor cell was expressed as a

pattern describing the tissue type of each terminal cell in the lineal

order. The similarity was quantified by aligning the two patterns

and comparing tissue fates between each lineal equivalent terminal

cell (e.g., comparing Xapap to Yapap cells between progenitor cells

X and Y). A score of 1 was assigned if two lineal equivalent cells

belonged to the same tissue type; otherwise, 0 was assigned. The

similarity scores were averaged across all terminal cells and were
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used to represent overall fate similarity. In cases where two progeni-

tor cells generated different numbers of terminal cells due to dif-

ferent rounds of cell divisions in intermediate cells, the number of

cells and tissue fates in the smaller lineage was expanded accord-

ingly in the corresponding branches to match the larger one. This

strategy is illustrated in Fig EV3B.

Quantification of chromatin landscape divergence
Chromatin activity divergences between cells were quantified as the

Euclidean distance between chromatin activity (GFP expression

levels) across all integration sites using the equation,

d x,yð Þ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i¼1ðxi�yiÞ2
q

where x and y denote the vector of chro-

matin activity across 113 positions in the corresponding cells. For

all chromatin activity divergence measurements, we used single

cells as the basic unit to calculate the divergence, and the diver-

gence values were averaged accordingly based on what cell groups

were being compared.

Identification of transition points of chromatin activity landscape
A retrospective approach was used to compare chromatin activity

divergences between cells from two daughter cell lineages to deter-

mine whether the division of the mother cell leads to significant

changes in chromatin activity landscape between two daughter

cells. This assumption is based on the parsimony principle, which

has been widely used in biology in which a minimal set of regula-

tory events are used to explain the observed outcomes. For each

pair of daughter cell lineages generated by a progenitor cell, chro-

matin activity divergences were calculated between cells from each

daughter cell lineage (intra-daughter–lineage chromatin activity

divergence) and were compared with chromatin activity divergences

between cells from different daughter cell lineages (inter-daughter–-
lineage chromatin activity divergence; Fig EV3D). A progenitor cell

division was defined as a transition point of chromatin activity land-

scape if the inter-daughter–lineage divergences were significantly

larger (Mann–Whitney U-test, Benjamini–Hochberg-adjusted
P < 0.05) than any of the intra-daughter–lineage divergences. The

chromatin activity transition score of a cell division was measured

as the average value of the inter-divergence divided by each intra-

divergence.

Clustering of cells based on chromatin activity landscape
Pair-wise chromatin activity divergences were first calculated

between 364 traced terminal cells, and the divergence between each

cell pair of cells was then normalized to the average divergence of

all cell pairs at the same lineage distance, which controlled for the

influence of lineage distance between cells on chromatin activity

divergence. Groups of cells with similar chromatin activity land-

scapes were identified by hierarchical clustering using the normal-

ized cell–cell divergence matrix with the following parameters:

Euclidean distance as the distance metric, average linkage clustering

as the linkage selection method, and distance threshold = 4.5.

Analysis of single-cell gene expression data
For single-cell transcriptome data (Packer et al, 2019), the Jenssen–-
Shannon distance was measured to quantify divergence, as was

done in the original study. Unless otherwise noted, only cells

assigned a unique or two possible lineage identities were used for

analysis. Differentially expressed genes between two cells/

annotations were identified using the VisCello tool provided by the

original study (github.com/qinzhu/VisCello.celegans) (Packer et al,

2019), and genes with a log2 fold change > 2 and a Q-value < 0.05

were defined as differential expression. If lineage identity is indistin-

guishable between two cells, the number of differentially expressed

genes was defined as 0. For the identity-resolved single-cell gene

expression dataset at the L1 stage (Liu et al, 2009), divergence was

quantified by measuring the Euclidean distance using the binary

expression matrix.

L–R symmetric cells
The list of L–R symmetric cells and progenitor cells was defined by

Sulston et al (1983).

Lineage fate transformation and tissue fate
perturbation experiments

Two pairs of cell lineages were selected, ABalp-ABarp and MS-E,

and multiple reporter integration strains exhibiting differential GFP

expression in descendant cells from corresponding lineages were

used to examine the relationship between chromatin activity land-

scapes and lineage fates. Transformations of the ABalp lineage fate

to that of normal ABarp and the MS lineage fate to that of normal E

were induced by performing RNAi-mediated knockdown of lag-1/

CLS and pop-1/TCF genes, respectively (Lin et al, 1995; Moskowitz

& Rothman, 1996). RNAi treatments were performed on seven (lag-

1 knockdown) and five (pop-1 knockdown) strains in which GFP

was integrated into distinct genomic positions. Only embryos

showing evidence of lineage fate transformation were used for

comparing GFP expression between cells from corresponding

lineages.

Perturbation of skin fate was performed by using a loss-of-func-

tion mutant of elt-1/GATA1, a skin fate specifier. As shown previ-

ously, Loss of elt-1 leads to extra neuronal (from the ABarp lineage),

muscle (from Caa and Cpa lineages), and other cell types (from the

ABpla lineage) at the expense of skin cells (Page et al, 1997).

Furthermore, forced ectopic expression of elt-1 is sufficient to trans-

form most embryonic cells into skin cells (Gilleard & McGhee,

2001). We used the elt-1(zu180) allele, which contains a stop codon

within the first zinc finger domain, to induce fate changes in skin

cells. To examine the influence of tissue fate perturbation on chro-

matin activity landscape, we compared changes in GFP expression

in cells from three major skin lineages (ABarp, ABpla, and ABpra)

using three integration strains in which GFP is expressed in cells

from the aforementioned lineages.

RNAi

RNAi experiments were performed using a standard feeding proto-

col (Kamath et al, 2001). All RNAi clones were from the C. elegans

RNAi feeding library constructed by Julie Ahringer’s group (Source

BioScience). The insert of individual clones used in this study was

verified by end sequencing. For RNAi treatment, 10 worms synchro-

nized at the L1 stage (P0) were transferred to RNAi plates contain-

ing 3 mM IPTG and that had been seeded with the corresponding

bacteria expressing the double-stranded RNA against the target

gene. After several days of RNAi exposure, embryos of P0 or P1

animals were subjected to imaging and analysis.
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Analysis of the genomic organization of chromatin activity

Identification of chromatin activity co-dynamic regions
Pair-wise divergences (Euclidean distance) of chromatin activity

among cells were calculated between all reporter integration sites.

The matrix was used to identify clusters of genomic positions by

hierarchical clustering using the following parameters: Euclidean

distance as the distance metric, average linkage clustering as the

linkage selection method, and distance threshold = 65.

Enrichment of functionally related genes
(i) Co-expressed genes were identified using a comprehensive

dataset of global gene expression changes across diverse genetic and

environmental conditions (15,204 genes across 979 conditions) (Stu-

art et al, 2003). Pair-wise Spearman rank correlation of gene expres-

sion across all conditions was calculated between all genes, and a

pair of genes was defined as being co-expressed if the correlation

coefficient ranked among the top one-third of all values (only gene

pairs with a positive correlation coefficient were considered). (ii)

Two sources of gene interaction data were used to identify inter-

acted genes. First, a curated list of gene interactions (including

genetic, physical, and regulatory interactions) was downloaded from

WormBase (c_elegans.PRJNA13758.WS270.interactions.txt.gz). Second,

a dataset of 612 putative C. elegans protein complexes generated by

analyzing large-scale chromatographic fractionation-mass spectrom-

etry (CF-MS) data was used to analyze the physical interactions

between genes (Hu et al, 2019). (iii) Genes with similar functions

were identified using the WormCat database, in which all C. elegans

genes are classified into hundreds of non-redundant functional cate-

gories based on physiological functions, molecular function, pheno-

type, subcellular location, and other information (Holdorf et al,

2020). We used the Category 3 annotation (455 specific categories)

and excluded four categories annotated as unknown for the

analysis. Genes located within a 100-kb region centered on GFP

integration sites were used to analyze the relative enrichment of

functionally related genes.

Identification of clonal tissue lineages
All embryonic terminal cells (n = 671) were classified into five

major tissue types: the neuronal system, pharynx, skin, body wall

muscle, and intestine. Then, the clonal analysis was performed to

identify progenitor cell lineages that differentiate mostly into a given

tissue type. To do so, we performed a bottom-up analysis to quan-

tify the probability of each progenitor cell differentiating into a

specific tissue type. For each progenitor cell, this probability was

quantified recursively by averaging the score of its two daughter

cells. Finally, the highest scoring clone with a probability > 0.85

that produces ≥ 3 terminal cells belonging to the same tissue type

was defined as a clonal tissue lineage.

Tissue-specific genes
Lists of embryonic tissue-specific genes were obtained from a recent

study that sequenced the transcriptome of major C. elegans tissues

and organs based on fluorescence-activated cell sorting of specific

cell types followed by RNA-seq (Warner et al, 2019). In addition,

chromatin immunoprecipitation sequencing (ChIP-seq) targets of

pan tissue-specific transcription factors, pha-4 for the pharynx

(Mango et al, 1994; Gaudet & Mango, 2002), elt-1 for the skin (Page

et al, 1997; Gilleard & McGhee, 2001), hlh-1, unc-120, and hnd-1 for

the body wall muscle (Fukushige et al, 2006), elt-2 for the intestine

(Fukushige et al, 1998) were added to the tissue-specific gene lists.

ChIP-seq targets of the above TFs (only embryo samples were

considered) were obtained from the model organism Encyclopedia

of Regulatory Networks (ModERN) database (Kudron et al, 2018).

Enrichment of chromatin activity co-dynamic regions
For each cell from a clonal tissue lineage, all genomic positions

exhibiting activated or silenced chromatin in that cell were identi-

fied and tested for whether these regions were enriched in specific

clusters of chromatin activity co-dynamic regions. Enrichment anal-

ysis was performed by quantifying the ratio of observed-to-expected

(O/E) overlap of genomic positions with the positions in each chro-

matin activity co-dynamic cluster, and the clusters with O/E score >
1.5 and a Q-value < 0.05 (Hypergeometric test) were considered to

be enriched in a cell. If cellular enrichment of a chromatin activity

co-dynamic cluster is observed in ≥ 50% of the traced terminal cells

of a clonal tissue lineage, the cluster was considered to be enriched

in that lineage.

Data availability

The datasets produced in this study are available in the following

databases:

Image datasets: Biostudies, https://www.ebi.ac.uk/biostudies/stud

ies/S-BIAD50

Analysis scripts: GitHub, https://github.com/IGDB-DuLab/Zhao-

chromatin

Data visualization: http://dulab.genetics.ac.cn/chromatin-landscape

Expanded View for this article is available online.
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