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Predictions of cervical cancer 
identification by photonic method 
combined with machine learning
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Monika Kosowska1* & Małgorzata Szczerska4*

Cervical cancer is one of the most commonly appearing cancers, which early diagnosis is of greatest 
importance. Unfortunately, many diagnoses are based on subjective opinions of doctors—to date, 
there is no general measurement method with a calibrated standard. The problem can be solved 
with the measurement system being a fusion of an optoelectronic sensor and machine learning 
algorithm to provide reliable assistance for doctors in the early diagnosis stage of cervical cancer. We 
demonstrate the preliminary research on cervical cancer assessment utilizing an optical sensor and a 
prediction algorithm. Since each matter is characterized by refractive index, measuring its value and 
detecting changes give information about the state of the tissue. The optical measurements provided 
datasets for training and validating the analyzing software. We present data preprocessing, machine 
learning results utilizing four algorithms (Random Forest, eXtreme Gradient Boosting, Naïve Bayes, 
Convolutional Neural Networks) and assessment of their performance for classification of tissue as 
healthy or sick. Our solution allows for rapid sample measurement and automatic classification of the 
results constituting a potential support tool for doctors.

Cervical cancer is one of the most common cancers  worldwide1,2. Every year around the world, cervical cancer is 
diagnosed in about half a million women, including about 2.5 thousand in  Poland3. The incidence and mortality 
of cervical cancer have been dramatically reduced by screening  programs4. However, in many cases diagnoses are 
still dependent on the doctor’s subjective interpretation, creating a strong need for solutions supporting  them5.

Particularly important in the diagnosis of cervical cancer is the precise determination of the depth of neoplas-
tic lesions, which is of clinical importance during cervical cancer management procedures) in order to correctly 
define the margin of pathological changes. Commonly used measurement methods such as colposcopy, visual 
inspection with acetic acid and Lugol’s iodine are limited by the subjective judgment of the examiner and the 
lack of reliable measurement calibration  standards6. The imprecise definition of the type of neoplastic lesion 
may lead to far-reaching consequences such as extended diagnosis time, high treatment costs, patient’s exposure 
to unnecessary procedures, and in extreme cases even the patient’s death. The main cause of the premalignant 
changes in the cervical epithelium is associated with the infection of HPV—Human Papilloma  Virus7,8. Although 
there are approximately 100 types of HPV virus, only several create a high risk.

Since cervical cancer proper diagnosis is of greatest importance, several approaches aiming at its improve-
ment were proposed and are still being developed. Most popular technique involves biopsy,  imaging9 and doctor’s 
evaluation. The imaging gives many opportunities for data processing and analysis which results can support 
doctors during the diagnosis stage. A deep learning-based system for detection and classification of cancerous 
cells based on convolutional neural networks (CNN) was  presented10. With the extreme learning machine-based 
classifier accuracy of 99.7% (detection) and 97.2% (classification) were achieved for input images. A dedicated 
pipeline was developed to automatically detect and classify cervical cancer from cervigram  images11. The solu-
tion involves two pre-trained deep learning models and CNNs, assuring fast and accurate results. Automatic 
segmentation and classification by fuzzy C-means (FCM) clustering technique showed accuracy of 93.78% and 
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99.27% for 7-class and 2-class  problems12. The deep learning method using stacked autoencoder—softmax model 
allows for dataset dimension reduction and reaching classification accuracy of 97.25%13.

An approach using Support Vector Machine (SVM) allows achieving an average accuracy of up to 90%, 
sensitivity of nearly 100% and specificity of 83%14. Moreover, the computation performance can be improved 
by reducing the number of factors to 8 variables in case of SVM-RFE (recursive feature elimination) and SVM-
PCA (principal component analysis). However, SVM does not perform well in case of large datasets and the 
training is relatively slow.

Most of the presented techniques show satisfying performance in accomplishing their tasks and the major-
ity of algorithms are providing great  accuracy15. However, commonly used CNNs require a big database for the 
training of the models which may be a challenge in case of medical data. It is also worse in terms of time perfor-
mance in comparison to the classical algorithms. Such algorithms assure high scores of classification accuracy, 
i.e. Random Tree, Random Forest, Instance-Based K-nearest neighbor giving over 98%16.

As the major approach involves image processing, we propose a simpler solution in terms of data acquisi-
tion, processing and overall data size reduction. In this paper, we propose the fusion of the most dynamically 
developing technologies: optical sensing and machine learning  techniques17–19. With a fast, reliable and non-
destructive optical method, we can investigate the biological sample and then analyze the acquired data with 
dedicated  software20,21, allowing for auto-identification of neoplastic cervical lesions which will be invaluable 
support for doctors at the stage of initial  diagnosis22,23. The identification will be based on refractive index values 
of measured tissues.

The refractive index is one of the most important physical properties characterizing materials. In case of 
biological tissues, it is highly correlated with the morphological features including the cell density and the 
nuclear-cytoplasm ratio. Based on cervical cancer’s state of the  art24, refractive index of normal cells and cancer-
ous cells are different, hence refractive index changes constitute a basis for relatively easy differentiation between 
the normal and cancerous  cells25. Table 1 presents typical refractive index values obtained for both healthy and 
sick cervical cells.

In this study, we propose a method of preliminary cervical cancer identification based on a prediction algo-
rithm, taught on data obtained from low-coherence measurements of certified refractive index liquids. We have 
measured and analyzed samples within the range of actual refractive index values for healthy cervical tissues 
and neoplastic lesions. The acquisition and preparation of datasets, machine learning process and results of the 
investigation are described. To date, no research applying machine learning for peculiar analysis of low-coherence 
data obtained for various refractive indices was reported. Our approach allows for fast and reliable analysis of 
such data and their classification, which is the starting point for the development of a system able of the initial 
identification of neoplastic cervical lesions. This can be a helpful tool for doctors greatly impacting and improv-
ing the effectiveness of early cervical cancer diagnosis.

Methodology
The classification of cervical intraepithelial neoplasia (CIN) is based on a histological evaluation that differentiates 
three advancement stages: CIN1, CIN2,  CIN326. The grade of dysplasia is the proportion of cervical changes in 
the epithelium. CIN1 has a low potential for progression to malignancy. CIN1 is confined to the basal one-third 
of the epithelium. CIN2 has more marked nuclear abnormalities than CIN1. The dysplastic cellular is observed 
to the lower of two-thirds of the epithelium. The CIN3 occurs if the atypical cells are found in all layers of the 
epithelium. The characteristic features are a low potential for malignancy and a high potential for regression. The 
L-SIL (Low-grade Squamous Intraepithelial Lesion) corresponds histologically to CIN1. The H-SIL (High-Grade 
Squamous Intraepithelial Lesion, CIN2 and CIN3) has a higher potential for progression and lower potential 
for regression.

The main goal of the cervical cancer identification method is to detect neoplastic lesions according to the 
designed methodology as shown in Fig. 1.

The proposed methodology includes four relevant modules: low coherence interferometric measurements, 
data preprocessing (row mapping, filtering), training of supervised machine learning model and testing the 
built predictive model.

Based on a literature study, the assignment of individual samples with known refractive index values to two 
classes (healthy or cancer) was  defined27,28. The predictive capabilities of selected supervised machine learning 
algorithms were built and analyzed to select the optimal classification model. Moreover, the proposed method 
was tested on the basis of completely new test datasets that were not involved in the training process. It should 
be noted that the cancer is diagnosed when the basal membrane is invaded due to differences in treatment. 
However, the evaluation of the refractive index should be correlated with the identification of the basal layer. 
Therefore an essential element of the elaborated method is sensitivity to the Fabry–Perot interferometer length 
changes. This parameter corresponds to the depth of the cervical epithelium of the measurement sample that 
determines the grade of dysplasia.

Table 1.  Associated refractive index values of cervical cells at different neoplastic progression.

Cell type Basal Midzone Superficial

Normal 1.387 1.372 1.414

Cancer 1.426 1.404 1.431
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Dataset acquisition. The optical determination of refractive indices of the investigated liquids was per-
formed in a Fabry–Perot interferometer. The measurement setup was built in a reflective configuration using 
fiber-optic technology. The components of the system were a superluminescence diode (SLD-1550-13-, Fiber-
Labs Inc., Fujimino, Japan), an optical spectrum analyzer (Ando AQ6319, Yokohama, Japan), a 2 × 1 optical cou-
pler (Lightel, Renton, Washington, USA) and a micromechanical stand. The light source operated at the central 
wavelength of 1550 ± 20 nm with a spectral width of 35 nm. The Fabry–Perot resonance cavity was formed by the 
polished fiber end-face and a silver  mirror29,30.

The light from the light source was guided through the fiber to the cavity. Partial reflections occurred at the 
two boundaries: fiber end-face/medium and medium/silver mirror. The reflected light beams interfered giving 
a signal recorded by the optical spectrum analyzer. The phase shift between interfering beams is dependent on 
their optical path difference (which is influenced by the geometrical path length and refractive index of the 
medium) according to the following  formula31:

where ϕ—phase shift, n—refractive index, l—geometrical path length, λ—wavelength.
In our investigation, the geometrical path length difference (the width of the resonance cavity) was constant 

throughout the whole measurement process, hence the refractive index change was the only variable impacting 
the acquired  signal32.

For precise measurements of the refractive index of liquids, we used the Certified Refractive Index Liquids by 
 Cargille® (Cargille Labs, Cedar Grove, USA). The investigated liquids were characterized by refractive indices in 
the range of 1.3–1.5 with a step of 0.01. The choice of this measurement range was based on the values of refrac-
tive indices of healthy and diseased  tissues33–35. The range was extended to include inter-individual differences 
and assure a larger dataset for algorithm learning. This way, the results obtained by the proposed method can be 
directly translated into biological tissues. In this article, we refer to each oil using the label value (measured for 
589.3 nm in 25°C) for clarity. However, the data analysis takes into account the nominal values given in datasheets 
for the wavelength equal to 1550 nm, as the source used in  experiment36.

The highest signal contrast of V = 0.9956 was obtained for the cavity length equal to 280 µm. The reference 
signal was acquired to control the intact cavity setting. Next, 30 µL of the liquid sample with a known refractive 
index was introduced into the cavity. The optical spectra were recorded and the cavity was cleaned. The whole 
procedure was then repeated for all liquids (a total of 10 spectra for each sample).

Dataset preparation. Interferograms obtained in accordance with the adopted methodology were the 
basis for further analyzes. 210 interferograms were taken for analysis, each data consists of two columns rep-
resenting the wavelength and the optical power of the signal. The representative signal is shown in Fig. 2. Fur-
thermore, a theoretical interferogram for comparative analyzes was generated based on the following  formula37:

where: n—refractive index, l—cavity length, λ—wavelength.
The main step of the preprocessing was mapping the measurement data to the feature vector—this way we 

obtained a dataset adapted to the training supervised learning model. The mapping process was based on 18 
procedures in order to generate an 18-feature row dataset for each interferometric signal. In other words, the 
data enrichment techniques described in Table 2 were used. The interferogram was filtered with a threshold that 
represents a percentage of the global maximum. A part of signal rejected from the analyses—by multiplication 

(1)ϕ =
4πnl

�

(2)T = 1+ cos(
4πnl

�
)

Figure 1.  Methodology workflow.
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of global maximum and threshold noises were eliminated. A noisy part of the signal was eliminated by the mul-
tiplication of a global maximum and a threshold value.

Each row in the dataset represents one sample and consists of 18 columns. Each column is representative of 
one from selected features. The target variable was assigned based on refractive index value: refractive indices 
between 1.30 and 1.38 were assigned as ‘healthy’ tissue while refractive indices between 1.39 and 1.50 were labeled 
as ‘sick’ tissue. The dataset was balanced, consisting of 43% of healthy samples and 57% of sick representatives. 
The flowchart of data preprocessing is presented in Fig. 3. Prepared dataset allowed to build a machine learning 
model based on selected supervised learning algorithm.

The following formulas were introduced into preprocessing procedure in order to estimate the distortion of 
the measurement interferogram with relation to the theoretical interferogram. Factor f is responsible for the fit 
of the theoretical signal amplitude to the measured interferogram as shown in Eq. 3.

(3)f =
ssmax

global max

Figure 2.  Sample interferogram.

Table 2.  Selected features description.

Symbol Feature Description

F1 Number of local maxima Extraction of a list of local maxima in considered interferogram

F2 Global maxima Maximum value from the local maxima list

F3 Threshold A variable used to filter amplitude to smooth the signal
(e.g. 5% of global maxima)

F4 Amplitude normalization factor Used to rescale experimental plot compared to the simulation one, due to different ranges of amplitude; factor was calculated as 
shown in Eq. 2

F5 Local maxima distance–average Average wavelength distance between the local maxima

F6 Local maxima distance–maximum Maximum wavelength distance between the local maxima

F7 Local maxima distance–minimum Minimum wavelength distance between the local maxima

F8 Local maxima distance–median Median wavelength distance between the local maxima

F9 Dissimilarity measure Dissimilarity between simulated and experimental interferogram (integral calculated with the use of Simpson rule as shown in 
Eq. 3)

F10 Chart axial shift Global maxima shift between simulated and experimental interferogram

F11 Roots mean squared error (RMSE) Difference between the simulation plot and the experimental data

F12 Cavity length Value read from the configuration of the measuring set (Fabry–Perot cavity)

F13 Minimum wavelength Minimum value for wavelength parameter

F14 Maximum wavelength Maximum value for wavelength parameter

F15 Amplitude Difference between maximum and minimum y value, where y is representative of amplitude column from input data

F16 λ0 Wavelength for maximum amplitude

F17 λ0 for theoretical signal Wavelength for maximum amplitude (for base signal)

F18 Target variable 1—cancer, 0—healthy
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where: global max—global maximum for measured signal, ssmax—maximum value for simulation signal. Finally, 
the distortion level D of the measurement interferogram is calculated numerically using the surface area below 
the interferometric signal as shown in Eq. 4.

where: area_sym—integral under the curve of the simulation plot, area_exp—integral under the curve of the 
plot of experimental data, f—factor.

Before the model training process began, the k stratified fold cross-validation method was used to divide the 
data into the validation and training dataset. We have selected k equals 3 in order to avoid the negative influence 
of overfitting phenomena with reference to the dataset size. Too large k-value means that only a low number of 
sample combinations is possible, thus limiting the number of iterations that are different. It should be noted that 
stratified sampling is a sampling technique where the samples are selected in the same proportion (by dividing 
the population into groups called ‘strata’ based on characteristics) as they appear in the population as shown in 
Fig. 4. The value of k was chosen experimentally from odd numbers set in the range from 3 to 9, due to the fact 
that each of the considered values of k, quite similar cross-validation results were obtained. On the other hand, 
the smaller the k value, the shorter time of obtaining cross-validation results.

Cross-validation is a resampling procedure, which is used to evaluate machine learning models on a limited 
data sample. Its main goal is to randomly divide data into a given number of sets on which the machine learning 
model is later tested. The obtained dataset statistics are presented in Table 3.

Machine learning. Referring to reported research where similar analytical problems were  solved38–43, four 
algorithms were selected for further analysis: Random Forest (RF), eXtreme Gradient Boosting (XGBoost), 
Naïve Bayes (NB) and Convolutional Neural Networks (CNN). It should be noted that the use of well-known 
algorithms in the combination with the novel methodology of data  preprocessing44 and enrichment is an 
unprecedented approach in the analysis and prediction of optical properties of measured substances. For each 
algorithm, optimal parameters were selected experimentally.

Random  Forest45,46 and eXtreme Gradient  Boosting47,48 classifiers utilize ensembles of classifications are 
receiving increased interest. Ensemble learning algorithms use the same base classifier to produce repeated 
multiple classifications of the same data or use a combination of different base classifiers to generate multiple clas-
sifications of the same data or to target different subsets of the  data49. The collection of multiple classifiers of the 
same data are combined using a rule-based approach (such as maximum voting, product, sum or Bayesian rule) 
or based on an iterative error minimization technique by reducing the weights for the correctly classified samples 

(4)D =

∣

∣

∣

∣

1− (area_exp× f )

area_sym
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Figure 3.  Flowchart of data preprocessing.

Figure 4.  Graphical representation of Stratified 3-Fold Cross Validation on a prepared dataset.
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(e.g. boosting). Ensemble learning techniques have higher accuracy than other machine learning algorithms 
because the group of classifiers performs more accurately than any single classifier, and utilizes the strengths 
of the individual group of classifiers while the classifier weaknesses are circumvented. Whereas Naïve Bayes 
classifier is a simple probabilistic classifier based on applying Bayes’ theorem with strong (naïve) independence 
assumptions between the  features50. They are among the simplest Bayesian network models but coupled with 
kernel density estimation, they can achieve higher accuracy  levels51.

CNN is a biologically inspired deep learning algorithm, which consists of multiple layers including convolu-
tional layer, non-linearity layer, pooling layer and fully-connected  layer52. The processing units are arranged to 
model high level abstraction of  data53. CNNs use relatively little pre-processing in comparison to other image 
classification algorithms, however, their main drawback is tendency to data overfitting. Neural Networks are 
widely used in data analysis, including processing of medical  data54.

The first algorithm we tested was RF, where the following parameters were selected: n_estimators—100, cri-
terion—gini, min_samples_split—2, min_samples_leaf—1. To test the possibility of improving the RF results, an 
XGBoost algorithm was used and the following parameters were selected: booster—gbtree, learning_rate—0.3, 
min_split_loss—0, max_depth—6 and sampling_method—uniform. As a part of the application of a differ-
ent approach to classification, an NB algorithm was used. Following parameters were selected: priors—None, 
var_smoothing—1e−9. Finally, we used algorithm well-known in bioengineering—Convolutional Neural Net-
works (CNN). Following parameters were selected: 3 layers (32 units, 16 units and 1 unit), activation functions 
(rectified linear and sigmoid) and number of epochs—200.

Results
Since the presented problem can be treated as binary classification, confusion  matrices55,56 were used to evaluate 
and compare the ML-based methods. Four measures were defined as follows:

TP—true positives—cancer tissue classified as cancer;
FP—false positives—healthy tissue classified as cancer;
FN—false negatives—cancer tissue classified as healthy;
TN—true negatives—healthy tissue classified as healthy.
A graphical representation of these measures is presented in Fig. 5.
In order to reliably evaluate the predictive ability of the model, we introduce the following classifier evaluation 

metrics: Accuracy (Eq. 5), Precision (Eq. 6), Recall (Eq. 7) and F1-score (Eq. 8).

(5)Accuracy =
TP+ TN

TP+ FP+ TN+ FN

(6)Precision =
TP

TP+ FP

Table 3.  Dataset statistics (coef—the coefficient of the independent variables and the constant term in the 
equation).

Symbol coef std error test statistic t P >|t| [0.025 0.975]

F1 − 5.8e + 04 2.22e + 05 − 0.262 0.794 − 4.96e + 05 3.8e + 05

F2 − 0.0012 0.001 − 2.161 0.032 − 0.002 − 9.98e− 05

F3 − 0.0159 0.035 − 0.448 0.654 − 0.086 0.054

F4 − 0.0646 0.033 − 1.965 0.051 − 0.129 0.000

F5 6.203e + 04 2.33e + 05 0.266 0.791 − 3.99e + 05 5.23e + 05

F6 − 0.1583 0.654 − 0.242 0.809 − 1.450 1.133

F7 − 0.0221 0.064 − 0.345 0.731 − 0.148 0.104

F8 − 0.0091 0.035 − 0.264 0.792 − 0.077 0.059

F9 0.5103 1.621 0.315 0.753 − 2.689 3.710

F10 − 58.0557 362.914 − 0.160 0.873 − 774.423 658.312

F11 0.0962 0.051 1.872 0.063 − 0.005 0.198

F12 0.0167 0.093 0.180 0.858 − 0.167 0.200

F13 − 0.0057 0.022 − 0.264 0.792 − 0.049 0.037

F14 2.6056 0.805 3.238 0.001 1.017 4.194

F15 0.0323 0.094 0.346 0.730 − 0.152 0.217

F16 0.0004 0.000 0.775 0.439 − 0.001 0.001

F17 7.937e− 07 3.01e− 06 0.264 0.792 − 5.15e− 06 6.73e− 06

F18 − 5.8e + 04 2.22e + 05 − 0.262 0.794 − 4.96e + 05 3.8e + 05
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The use of these metrics provides us information not only about the accuracy of the classification but espe-
cially important properties like sensitivity and specificity and the model’s insensitivity to overfitting and under-
fitting. All measures used in those equations were mentioned above (TP, FP, FN and TN). The obtained results 
are presented in Table 4.

It can be seen that Random Forest, XGBoost, Naïve Bayes classifiers give results with accuracy above 95%, 
precision above 95%, recall above 95% and F1-score above 95% for training datasets. On validation, the results 
were as follows: accuracy above 89%, precision above 90%, recall above 90% and F1-score above 89%. Thus, 
the most promising results on training were obtained with XGBoost (Accuracy equals 100%, Precision equals 
100%, Recall equals 100%, F1-score equals 100%). However, XGBoost did not accomplish the best results on 
the validation set, where the best results were obtained for Naïve Bayes (Accuracy equals 92%, Precision equals 
93%, Recall equals 93%, F1-score equals 92%). The worst results were obtained for frequently used in biomedi-
cal applications Convolutional Neural Networks (CNN). In fact, here we have noticed the greatest impact of the 
overfitting phenomenon. It may be due to the too intensive learning process for the issue under consideration. 
The obtained results are presented also as confusion matrices in Fig. 6.

Additionally, to extend the model evaluation, the learning time from the training data and making predictions 
was measured for each algorithm. The results are presented in Table 5.

It can be noted that the Naive Bayes method not only gives the best results for the validation test, but also is 
the fastest regarding the training and prediction phases.

Conclusions
In this study, we presented a novel approach to the analysis of data acquired by a low-coherence interferometer. 
The optical sensor is able to detect changes in the refractive index of samples, including the biological range of 
values. Hence, it can be used for measurements and initial assessment of the neoplastic cervical lesions stage. The 

(7)Recall =
TP

TP+ FN

(8)F1 =
2(Precision · Recall)

Precision+ Recall

Figure 5.  A graphical representation of evaluation measures: True Positives, False Positives, False Negatives, 
True Negatives.

Table 4.  Classification results.

Classifier Fold Accuracy Precision Recall F1-score

Random Forest

1 0.97 0.97 0.98 0.97

2 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00

Validation: 0.91 0.91 0.92 0.92

XGBoost

1 1.00 1.00 1.00 1.00

2 1.00 1.00 1.00 1.00

3 1.00 1.00 1.00 1.00

Validation: 0.89 0.90 0.90 0.89

Naïve Bayes

1 0.96 0.96 0.96 0.96

2 0.95 0.95 0.95 0.95

3 0.97 0.97 0.97 0.97

Validation: 0.92 0.93 0.93 0.92

CNN

1 0.78 1.00 0.61 0.75

2 0.83 1.00 0.69 0.82

3 0.81 1.00 0.67 0.80

Validation: 0.75 1.00 0.58 0.73
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Figure 6.  Confusion matrices for selected algorithms: A1: Random Forest test dataset fold 1, A2: Random 
Forest validation dataset, B1: XGBoost test dataset fold 1t, B2: XGBoost validation dataset, C1: Naive Bayes test 
dataset fold 1, C2: Naïve Bayes validation dataset, D1: CNN test dataset fold 1 D2: CNN validation dataset.
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data obtained for test liquids were acquired with a Fabry–Perot interferometer and then applied in the machine 
learning algorithm. Interferograms representing the optical properties of measured substances in conjunction 
with meta-data from the measurements are transformed into multidimensional datasets. A number of heuristics 
have been defined on the basis of which these datasets are constructed, taking into account their use in predictive 
modeling. A particularly important stage in the machine learning process was the development of an original 
approach to the initial processing and enrichment of data sets. Part of data was used to train the algorithm, and 
the other served for validation of its proper operation. The proposed solution allows for the identification and 
classification of healthy and sick tissues. The tested classical classifiers were characterized by high accuracy above 
95%, precision above 95%, recall above 95% and F1-score above 95% for training datasets, and for validation 
accuracy above 89%, precision above 90%, recall above 90% and F1-score above 89%. The method we reported 
can be of great assistance for doctors in early cervical cancer diagnosis.

Data availability
The measurement data can be accessed from Open Research Data Repository: Bridge of Data under 10.34808/
ax9m-cg47 and 10.34808/bt42-hj36.
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