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Abstract

Across phylogeny, glutamate (Glu) signaling plays a critical role in regulating neural excit-

ability, thus supporting many complex behaviors. Perturbed synaptic and extrasynaptic

Glu homeostasis in the human brain has been implicated in multiple neuropsychiatric and

neurodegenerative disorders including Parkinson’s disease, where theories suggest that

excitotoxic insults may accelerate a naturally occurring process of dopamine (DA) neuron

degeneration. In C. elegans, mutation of the glial expressed gene, swip-10, results in Glu-

dependent DA neuron hyperexcitation that leads to elevated DA release, triggering DA sig-

naling-dependent motor paralysis. Here, we demonstrate that swip-10 mutations induce

premature and progressive DA neuron degeneration, with light and electron microscopy

studies demonstrating the presence of dystrophic dendritic processes, as well as shrunken

and/or missing cell soma. As with paralysis, DA neuron degeneration in swip-10 mutants is

rescued by glial-specific, but not DA neuron-specific expression of wildtype swip-10, consis-

tent with a cell non-autonomous mechanism. Genetic studies implicate the vesicular Glu

transporter VGLU-3 and the cystine/Glu exchanger homolog AAT-1 as potential sources of

Glu signaling supporting DA neuron degeneration. Degeneration can be significantly sup-

pressed by mutations in the Ca2+ permeable Glu receptors, nmr-2 and glr-1, in genes that

support intracellular Ca2+ signaling and Ca2+-dependent proteolysis, as well as genes

involved in apoptotic cell death. Our studies suggest that Glu stimulation of nematode DA

neurons in early larval stages, without the protective actions of SWIP-10, contributes to

insults that ultimately drive DA neuron degeneration. The swip-10 model may provide an

efficient platform for the identification of molecular mechanisms that enhance risk for Parkin-

son’s disease and/or the identification of agents that can limit neurodegenerative disease

progression.
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Author summary

Glutamate (Glu) is an important signaling molecule used by nerve cells to communicate

information, although excessive Glu signaling can overexcite neurons to the point where

they degenerate, a phenomenon termed excitotoxicity. Glu induced excitotoxicity has

been linked to neurodegeneration arising in the context of stroke, amyotrophic lateral

sclerosis (ALS) and Parkinson’s disease (PD). Glial cells, that surround neurons, and their

processes have been shown to limit Glu-induced excitotoxicity in mammals. Here, we

demonstrate that C. elegans glia limit progressive degeneration of dopamine (DA) neu-

rons that arises in the context of mutation of the protein, SWIP-10, and that this degener-

ative process relies on Glu signaling, altered Ca2+ homeostasis and apoptotic pathway

genes. Our findings reveal a novel molecular contributor to glial maintenance of DA neu-

ron viability, provide a genetically-tractable example of Glu-dependent cell death, and

encourage further evaluation of SWIP-10 linked pathways for mechanistic insights into

neurodegenerative diseases and their treatment.

Introduction

Across phylogeny, the amino acid glutamate (Glu) plays multiple, important roles including

contributions to protein synthesis, intermediary metabolism, and chemical neurotransmission

[1–4]. At neuronal synapses, Glu signals through both metabotropic receptors that initiate G-

protein coupled signaling [5–7] as well as ionotropic receptors that flux ions such as Na+ and

Ca2+, altering membrane excitability [5, 8–10]. Excessive ionotropic Glu signaling in the mam-

malian brain has been implicated in a variety of brain disorders including addiction, schizo-

phrenia, amyotrophic lateral sclerosis (ALS), and Parkinson’s disease (PD) [11–14], as well as

the neuronal death that arises in the context of stroke and glioblastoma [15, 16]. Acute treat-

ment of neurons with high, non-physiological, levels of Glu can induce signs of cell death

within minutes, characterized by intense vacuolization and cell swelling characteristic of

necrosis [17–20]. Chronic hyper-activation of neurons by Glu, within physiological limits, can

drive apoptotic mediated neural degeneration, particularly if other genetic or environmental

risk pathways are engaged [21–23]. Glu activation of Glu receptors can lead to prolonged alter-

ations in intracellular Ca2+ homeostasis, driving Ca2+-dependent proteolysis and activation of

apoptotic programs [24].

Although cell autonomous mechanisms remain a focal point for many investigations seek-

ing insights into determinants of neurodegeneration, increasing attention has been given to

astrocytic mechanisms that can sustain neuronal viability, in the context of constant Glu stim-

ulation that could otherwise lead to cell death. These mechanisms include the shuttling of met-

abolic intermediates such as lactate to neurons that can help sustain ATP synthesis [25–27],

the buffering of extracellular ions such as K+, since excess extracellular K+ due to chronic ion

channel activation and Na+/K+ ATPase dysregulation can contribute to excess neuronal activa-

tion [26, 28, 29], and the efficient clearance of extracellular Glu that both limits the amplitude

of synaptic and extrasynaptic Glu signaling but also Glu-driven neuronal degeneration [26, 30,

31]. Astrocytic Glu clearance is mediated by multiple Na+-dependent Glu-transporters of the

SLC1 family (e.g. GLT1/rodents, EAAT2/humans) that terminate Glu signaling via binding

and uptake of Glu in proximity to synaptic release sites [13, 31, 32]. A second astrocytic Glu

transporter that participates in extracellular Glu homeostasis is xCT (SLC7A11), the trans-

porter subunit of a dimer that supports intracellular Glu exchange for extracellular cystine.

xCT is generally thought to act oppositely to SLC1 transporters, balancing control of
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extrasynaptic Glu levels with the provision of precursor (cysteine) for astrocytic glutathione

synthesis [33–36].

Due to their significant impact on synaptic and extrasynaptic Glu homeostasis, Glu trans-

porters and exchangers have been widely studied to determine their contribution to Glu-

induced neural degeneration as well as in efforts to manipulate their activity and expression for

therapeutic ends [36–38]. For example, Rothstein and coworkers identified β-lactam antibiotics,

typified by the cephalosporin-type agent ceftriaxone (Cef), as capable of elevating GLT1 expres-

sion in vitro and in vivo, protecting neurons from Glu toxicity, and enhancing longevity in an

ALS mouse model [13]. Subsequently, many investigators have demonstrated the neuroprotec-

tive activity of Cef administration in rodents [39–41], with evidence supporting antibiotic mod-

ulation of both GLT1 and xCT expression [13, 36, 42], although candidates targeted by the

antibiotic in glia to induce transporter expression have, until recently, been unidentified.

In a screen for novel genes that control DA signaling in the nematode, C. elegans [43], we

identified a glial-expressed gene, swip-10, whose mutation induces hyper-excitability of DA

neurons and elevates rates of vesicular DA release, culminating in the hyperdopaminergic phe-

notype, Swimming induced paralysis (Swip) [44]. These studies also demonstrated a critical

role for Glu signaling in establishing the paralytic phenotype of swip-10mutants [44]. Swip-10
is conserved across phylogeny, with the unstudied gene,Mblac1, as the putative mammalian

ortholog. Both SWIP-10 and MBLAC1 proteins are metallo β-lactamase domain (MBD)-con-

taining proteins [44], with residues key for metal binding and catalysis conserved across worm

and vertebrate proteins. Although the substrate hydrolyzed by SWIP-10/MBLAC1 enzymatic

activity is currently unknown, we recently established that MBLAC1 is a specific, high-affinity

target for Cef [45]. We presented evidence that Cef binding activity in brain lysates could be

totally eliminated by MBLAC1 immunodepletion therefore supporting the hypothesis that

MBLAC1 may be the exclusive, non-microbial target of Cef in vivo. These findings also suggest

that further study of SWIP-10/MBLAC1 may reveal mechanisms normally engaged to protect

neurons from chronically elevated extracellular Glu and a path to the identification of novel

neuroprotective agents. A key piece of data lacking in this hypothesis, however, is evidence

that loss of SWIP-10/MBLAC1 either induces Glu-dependent neural degeneration or elimi-

nates the neuroprotective actions of Cef.

Here, we capitalize on the ease of monitoring the morphology and degeneration of C. ele-
gans DA neurons engineered to stably express green fluorescent protein (GFP) to examine a

requirement for swip-10 expression in limiting Glu-dependent DA neuron degeneration. We

find that swip-10mutants demonstrate a striking, progressive degeneration of DA neurons

that can be suppressed by glial expression of wild type swip-10 and by mutation of Ca2+ perme-

able Glu receptor mutants. Through our studies, we provide evidence that a cell non-autono-

mous action of SWIP-10 sustains DA neuron viability in the context of excess Glu signaling

and elevations of cytosolic Ca2+ that we hypothesize leads to increased cellular stress and, ulti-

mately, apoptotic cell death. Our findings support SWIP-10 (and by extension MBLAC1) as a

key protective agent whose further study may yield important insights into risk factors for pro-

gressive neurodegenerative disorders and their treatment.

Results

Dopamine neuron degeneration observed in loss of function swip-10 alleles

Given the Glu signaling-dependent, Swimming-induced paralysis (Swip) phenotype present in

swip-10mutants [44], and evidence from the latter study that swip-10DA neurons are hyper-

excitable, as assessed by a cytoplasmic Ca2+ reporter (GCamp), we sought to determine

whether these animals might display signs of excitotoxic neural degeneration. We examined
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the DA neurons of multiple mutant swip-10 alleles crossed to BY250, a strain that stably

expresses the integrated transcriptional fusion pdat-1::GFP (vtIs7) (Fig 1A) [46]. We focused our

evaluations on CEP DA neurons, and quantitatively evaluated degeneration by three distinct

morphological assessments: 1) neurite truncations and breaks in GFP-labeled dendrites (Fig

1B and 1C), 2) shrunken cell soma (Fig 1D) and 3) missing cell soma (Fig 1E), as previously

described [47, 48]. From these categories, we also calculated an overall degeneration score

where the appearance of any of the components qualifies an animal as displaying CEP degen-

eration [48]. We found that all three available swip-10 alleles (vt29 and vt33 from our forward

genetic screen, and the larger deletion allele, tm5915) exhibited elevations in the degeneration

index, relative to wildtype animals (Fig 1F–1I). To further support that mutation of swip-10
induces morphological changes in DA neurons, versus a sequestration or inactivation of cyto-

plasmic GFP, we corroborated our findings using a DA neuron-targeted, membrane-bound

reporter (pdat-1::myrRFP) which also yielded evidence of tm5915DA neurodegeneration (S1

Fig). Interestingly, evaluation of swip-10 impact on C. elegans glia broadly (marked by the ptr-
10 promoter driven myrRFP) or on CEPsh glia that ensheath CEP DA neurons specifically

Fig 1. DA neuron degeneration observed in loss of function swip-10 alleles. (A) N2 DA neurons labeled with GFP demonstrating evenly expressed fluorescence

throughout the neuronal processes. (B-E) Representative images of swip-10(tm5915)mutant degeneration depicting (B) truncated CEP DA neuron dendrites indicated

by a white circle, (C) breaks in GFP along CEP dendrites (white rectangle), (D) shrunken CEP cell soma (white arrowheads) and (E) missing CEP cell soma (white

asterisks), scale bar is 10μm. (F-I) Quantification of the components of CEP DA neuron degeneration for (F) truncations/breaks in GFP, (G) shrunken CEP soma, (H)

missing CEP soma, and (I) total degeneration phenotype, inclusive of all three degeneration measures. Data were analyzed by one-way ANOVA with Sidak’s post-test

to N2; ��� and ���� indicate P<0.001 and 0.0001 respectively. Error bars represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g001

SWIP-10 and dopamine neuron degeneration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007269 March 28, 2018 4 / 32

https://doi.org/10.1371/journal.pgen.1007269.g001
https://doi.org/10.1371/journal.pgen.1007269


(marked by phlh-17::GFP) failed to reveal evidence for gross morphological changes (S2 Fig).

These findings suggest that swip-10mutation induces a localized, cell non-autonomous effect

on the integrity of neighboring DA neurons.

Electron microscopy confirms DA neuron degeneration in swip-10 mutants

To be sure that our fluorescent reporters of DA neuron morphology were faithfully reporting

structural changes in DA neurons, we assessed CEP cilia of swip-10 via electron microscopy

(EM). Previously, we used this approach to document damage to CEP dendrites in the context

of 6-OHDA induced DA neuron degeneration [49]. The tm5915 deletion allele was selected

for EM studies of swip-10 induced neural degeneration, though as noted above, all mutants

demonstrated comparable degeneration. The morphology of CEP neuronal processes is well

characterized at the ultrastructural level [50], especially the specialized cilium at the tip of the

CEP dendrite, which can be visualized in transverse thin sections through the lips of adult C.

elegans (Fig 2A) [51, 52]. Using relative position and the defined morphological characteristics

of CEP DA neurons, such as the electron dense cuticular branch or nubbin associated with

their cilia to anchor the dendrite to the cuticle [52] and the presence of the electron dense

clumps of tubule-associated material (TAM) previously shown to be characteristic of CEP cil-

ium [51], we were able to identify multiple anomalies in tm5915CEP structure. These defects

include changes in the size and appearance of the nubbin (Fig 2B), loss or misplacement of

TAM and microtubules (Fig 2C and 2D), and the presence of large or small vacuoles in several

locations either below or above the axoneme (Fig 2E and 2F). A summary of the swip-10
mutant CEP cilium defects is depicted in Fig 2G. In addition to the defects described above,

half of the CEP dendrites of swip-10mutants were missing any cilium that extended beyond

the axoneme. These TEM studies confirm that swip-10mutation results in striking DA neuron

morphological changes.

Dopamine neuron degeneration increases with age

In order to determine whether the DA neuron degeneration observed in swip-10 animals rep-

resents a late onset phenomenon and/or might arise from a progressive perturbation across

development, we assayed DA neuron degeneration in swip-10mutants across various post-

embryonic ages. We observed that tm5915 animals display time-dependent indications of DA

neuron degeneration that are distinct from the changes seen with wildtype animals (Fig 3D).

In wildtype animals, signs of DA neuron degeneration are evident only in older, adult animals

whereas signs of degeneration are already evident in tm5915 animals by day 1 (L1 stage) of lar-

val development (Fig 3D). A breakdown of the components that comprise the overall degener-

ation score of tm5915mutants is revealing, where non-uniform patterns are evident across

measures. Although we were unable to follow individual DA neuron morphological changes

over time, our population findings are suggestive of a progressive form of degeneration at the

single neuron level, with dendritic breaks and truncations as earliest signs of degeneration (Fig

3A), followed by the appearance of shrunken soma (Fig 3B), and then by missing soma (Fig

3C). Overall similar patterns are evident with wildtype animals, just appearing much later in

life. Together our findings indicate that swip-10mutation begins to disrupt the health of DA

neurons early in development with the appearance of indices of morphological perturbations

arising in distal processes that progress to neuronal death.

Mutation of glial-expressed swip-10 drives DA neuron degeneration

Although the Swip behavior of swip-10mutants at the L4 stage arises as a consequence of

excess DA signaling [43], this paralysis is a cell non-autonomous consequence of glial, and not

SWIP-10 and dopamine neuron degeneration
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DA neuron, expression of swip-10 [44]. To determine whether the degeneration of DA neu-

rons is similarly a consequence of mutation of glial swip-10, we expressed a full length wild

Fig 2. Electron microscopy confirms missing and deformed cilia of the CEP DA neuron dendrites in swip-10
mutants. (A) Thin section through the lips of a swip-10mutant adult all four CEP cilia are formed almost normally in

positions DL, DR, VL, VR, forming specialized endings embedded in the lip cuticle. (B) High power TEM image of

swip-10mutant CEPVR cilium, somewhat reduced in overall size, containing normal-looking microtubules and dark

staining tubule-associated material (TAM). The nubbin is abnormally enlarged and emerges out of the cuticle in an

enlarged tree-like structure, not seen in N2. (C) Midway and more (D) distal through another the defective CEPVR

cilium in a different animal, lacking normal TAM or distal microtubules. (E) and (F) show thin sections from a

CEPDR cilium where small bits of TAM have abnormally become stuck inside the well-formed axoneme, while

beyond the axoneme (F) the malformed cilium consists of large vacuole-filled swelling with no TAM or microtubules,

and only a minimal nubbin. Scale bar (0.5 micron) applies to panels B-F. (G) Summary illustration of the variety of

distal defects found in the CEP cilium, comparing a wildtype cilium to the left, and three progressively more defective

mutant cilia on the right.

https://doi.org/10.1371/journal.pgen.1007269.g002
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type swip-10 cDNA fused to GFP (swip-10::GFP) under control of glial and DA neuron promo-

tors. Fig 4A demonstrates that pan-glial swip-10 expression, as achieved through use of the ptr-
10 promoter [53], robustly rescues DA neuron degeneration of tm5915 animals, comparable to

that achieved with a genomic construct that encodes swip-10 and the upstream elements

needed to achieve full rescue of Swip [44]. Significant rescue of DA neural degeneration was

also achieved with the CEP sheath glia-specific promotor hlh-17 [53]. In contrast, DA neuron

specific expression of swip-10, driving expression with the dat-1 promoter, failed to restore

normal morphology. Together, these findings support the conclusion that glial expression of

swip-10 is required to maintain the normal viability of DA neurons.

swip-10 support for neuronal health may be related to glial ensheathment

Although not explored extensively, we sought to understand whether neural degeneration in

swip-10mutant animals is limited to the DA neurons. We chose to evaluate swip-10mutant

(tm5915) animals bearing reporters to demarcate OLL and BAG neurons. Glutamatergic OLL

neurons are similar in location and morphology to dopaminergic CEP neurons, are mechano-

sensitive like CEP neurons, and share an association with glia (OLLsh) that ensheath OLL pro-

cesses. Carbon-dioxide sensing, glutamatergic BAG neurons are similar in location and

morphology to the CEP neurons, although not associated with direct ensheathing or socket

glia. We observed degeneration of glutamatergic OLL neurons (Fig 4B) but not of BAG neu-

rons (Fig 4C). These findings, along with rescue of DA neurodegeneration through glial re-

expression of swip-10, reinforce a key role for glia in maintaining the viability of C. elegans DA

neurons.

Glu signaling contributes to DA neuron degeneration induced by swip-10
mutation

Mechanisms proposed to support DA neuron degeneration include mishandling of intracellu-

lar DA that can form cytotoxic quinones [54, 55]. Thus, elevations in cytosolic DA that arise

with pharmacological blockade of the vesicular monoamine transporter (VMAT, cat-1 in C.

elegans) by reserpine results in DA neuron degeneration [48], and a genetic reduction of

VMAT2 expression causes progressive DA neuron degeneration in mammals [56]. The degen-

eration of DA neurons in swip-10 animals does not appear to arise as a consequence of eleva-

tions of intracellular DA as disruption of DA synthesis capacity arising from a loss of function

mutation in cat-2, the C. elegans ortholog of tyrosine hydroxylase, the rate-limiting step in DA

synthesis, did not alter tm5915DA neuron degeneration (S3A Fig). Extracellular DA elevations

can lead to the formation of toxic adducts with vital cell proteins [57] and our prior studies

support excess DA secretion in swip-10 animals [44]. However, loss of extracellular DA clear-

ance capacity achieved via mutation of the presynaptic DA transporter, dat-1, which triggers

Swip, [58] did not induce DA neuron degeneration (S3B Fig).

Fig 3. DA neuron degeneration increases with age, and swip-10 mutant animals display earlier and more

progressive levels of DA neuron degeneration. (A) swip-10(tm5915)mutants display dendritic breaks/truncations

early in development, increasing in frequency with age. (B) swip-10(tm5915)mutants display shrunken soma earlier in

development, increasing in frequency with age compared to N2. (C) swip-10(tm5915)mutants are missing soma earlier

in development, increasing in frequency with age compared to N2. (D) As assessed by the combined degeneration

index, both N2 and swip-10DA neuron degeneration increases with age, though the swip-10mutant DA neurons

display degeneration at earlier ages than N2. Analyzed by two-way ANOVA with significant differences by age (����

P<0.0001) and by genotype (���� P<0.0001) and significantly different age by genotype interaction (���� P<0.0001).

Error bars represent ± SEM, with n = 105–150 animals per strain per stage.

https://doi.org/10.1371/journal.pgen.1007269.g003
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Neural degeneration, more generally, can be triggered by extrinsic or intrinsic activation of

cell death genetic programs, first elucidated at a molecular level in C. elegans [59–62]. Addi-

tionally, disruptions of vital cellular processes (e.g. ATP production, membrane permeability,

ion gradients or cytoskeletal organization) by genetically encoded neurotoxins or following

exposure to reactive chemical species [63–65] have been shown to lead to the death of neurons.

Lastly, excitotoxicity, a form of neurodegeneration with features of both apoptotic and necrotic

cell death, is well known in mammalian brain preparations and typically observed in the con-

text of over stimulation of Glu-responsive, ionotropic receptors [10, 65, 66]. Our prior findings

that DA neurons in swip-10 animals display elevated excitability that is dependent on Glu sig-

naling [44] encouraged our consideration of the latter mechanism of DA neuron degeneration.

We therefore quantified DA morphological changes in swip-10 animals bearing loss of func-

tion mutations in genes supporting synaptic Glu packaging and Glu signaling, as well as muta-

tions in genes encoding transporters thought to modulate extracellular Glu levels. First, we

examined contributions of vesicular Glu transporters (vGLUTs). These proteins are responsi-

ble for packaging Glu into synaptic vesicles prior to release [67, 68]. There are three genes that

encode proteins homologous to VGLUTs in C. elegans (eat-4, vglu-2 and vglu-3) [69–71] with

eat-4 being the only one functionally characterized to date [68, 72]. Loss of individual vGLUTs

(Fig 5A) had no effect on DA neuron morphology. Interestingly, whereas eat-4mutation sig-

nificantly reduced the Swip behavior of swip-10mutants [44], the same eat-4 allele failed to

blunt the degeneration of DA neurons in tm5915 animals. vglu-2mutation was also unable to

reduce DA neuron degeneration. In contrast, loss of vglu-3 significantly, suppressed DA neu-

ron degeneration (Fig 5A), suggesting a contribution of vesicular Glu signaling, directly or

indirectly, to swip-10DA neuron degeneration.

Mammalian glia express multiple Na+-dependent Glu transporters (GLTs) of the SLC1

family that support efficient clearance of Glu after release at synapses and their dysfunction fig-

ures prominently in investigations of Glu-dependent neuronal injury and death [31]. Addi-

tionally, our previous studies [44] demonstrated that mutation of several GLTs (glt1, glt3 and

glt4) conferred DA-dependent Swip. However, we found that mutation of individual glt genes

failed to induce DA neuron degeneration (Fig 5B).

A second, glial Glu transport system, xCT, regulates extra-synaptic Glu levels, acting as a

cystine/Glu exchanger [36]. xCT imports extracellular cystine in exchange for intracellular

Glu, and thus altering the expression or activity of this transporter can modulate extracellular

Glu levels. xCT is a member of the mammalian heteromeric amino acid transporter (HAT)

family, for which there are 9 C. elegans homologs, with the highest homology for xCT being to

AAT-1 and AAT-3 [73]. To determine whether xCT-like proteins could contribute to DA

Fig 4. Glial expressed swip-10 is required for normal DA neuron morphology, and glial ensheathment may be

important for swip-10 support of neuronal health. (A) Expression of swip-10 genomic fragment significantly restores

DA neuron morphology in swip-10mutants. Expression of swip-10 cDNA under the control of a pan glial promoter,

ptr-10, and not under a DA neuron specific promoter (dat-1), significantly reduces swip-10DA neurodegeneration, to

similar levels as swip-10 genomic rescue. Additionally, expression of swip-10 cDNA in the CEPsh glial cell significantly

reduces swip-10CEP DA neuron degeneration. Data were obtained comparing non-transgenic and transgenic

progeny, assayed in parallel. (B) The OLL neurons of swip-10mutants display morphological characteristics similar to

CEP neuron degeneration, including breaks in dendritic GFP, shrunken soma or missing soma (individual

components not shown), and quantification of the three components together or “total degeneration” phenotype

shows that OLL neurons in swip-10mutants are significantly different from N2. (C) The BAG neurons of swip-10
mutants display normal N2 morphology as determined by quantification of total degeneration in gravid adult animals.

The horizontal line beneath the genotypes on the x-axis refers to the background strain, (B) OH1422, with an

integrated OLL neuron transcriptional reporter (wgIs328[Pser2prom3::GFP]) and (C) MT17310, with an integrated BAG

neuron transcriptional reporter (nsIs242[Pgcy-33::GFP]). Data were analyzed using an unpaired Student’s t test (A-C),

with ��, ���, ���� indicating P<0.01,<0.001, and<0.0001, respectively, ns = non-significant (P>.05), error bars

represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g004
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neuron degeneration, we generated tm5915 double mutants with all available aatmutants. Of

the 7 xCT homologs tested, we found that loss of aat-1 uniquely attenuated the DA neuron

degeneration of tm5915 (Fig 5C). These findings implicate non-vesicular Glu release as a con-

tributor to swip-10DA neuron degeneration. To determine if both vesicular Glu release sup-

ported by VGLU-3 and transporter-mediated Glu release supported by AAT-1 act in parallel

or via a shared pathway to support DA neuron degeneration, we examined DA neuron mor-

phology in an aat-1;vglu-3 double mutant. We found no enhancement of the suppression of

the tm5915 degeneration beyond that of the individual mutants (S4 Fig). These findings are

consistent with common mechanisms, downstream of extracellular Glu availability through

either vesicular or non-vesicular Glu secretion mechanisms, as determinant of the quantitative

extent of swip-10DA neuron degeneration.

Post-synaptically in both vertebrates and nematodes, Glu binds and activates ionotropic

and metabotropic receptors (iGluRs and mGluRs, respectively) [74, 75]. To further pursue the

hypothesis that mutation of swip-10 triggers DA neuron degeneration via excess Glu signaling,

we examined DA neuron morphology in tm5915 lines bearing available mutant alleles for the

iGluRs and mGluRs. Among the twelve GluR mutants tested, we found that loss of either the

NMDA-type iGluR, nmr-2, or loss of the AMPA-type iGluR, glr-1 [76], significantly sup-

pressed swip-10DA neuron degeneration (Fig 6A). Interestingly, these GluRs are distinct from

the GluRs previously shown to suppress the paralysis phenotype of swip-10mutants (glr-4, glr-
6 andmgl-1) [44]. A double mutant of glr-1 and nmr-2 did not further suppress tm5915 degen-

eration beyond that seen with either mutant alone, suggesting that these receptors support

neurodegeneration through a common pathway (Fig 6B). To further substantiate that excess

GluR signaling via NMR-2 and GLR-1 could support our swip-10 observations, we selectively

overexpressed these receptors in DA neurons and examined CEP neuron morphology. As

hypothesized, we detected statistically significant DA neuron degeneration, as compared to

non-transgenic lines, similar to that observed in swip-10mutants (Fig 6C).

Contributions of changes in intracellular Ca2+ to swip-10 induced DA

neuron degeneration

The evidence presented above of a role of Ca2+-permeant iGluRs [77] in DA neuron degenera-

tion, as well as our prior findings that swip-10DA neurons demonstrate an exaggerated Ca2+

elevation in response to food contact [44], suggested to us that DA neuron degeneration in

these animals could reflect activation of Ca2+-dependent programs linked to apoptotic and/or

necrotic cell death [78–80]. Consistent with this idea, we found that loss of the primary endo-

plasmic reticulum (ER) Ca2+ storage/binding protein, calreticulin (crt-1) protected against swip-
10DA neuron degeneration (Fig 7A). Excessive activation of the Ca2+-activated protease cal-

pain-1, has been shown to lead to cellular damage, including neurodegeneration, in both mam-

mals and C. elegans [81–83]. In keeping with these findings, a loss of function mutation of clp-1,
the C. elegans calpain-1 ortholog, significantly attenuated the DA neuron degeneration of

tm5915 animals (Fig 7A). Together, these results support the hypothesis that inappropriate or

excessive elevations of intracellular Ca2+ support swip-10DA neurodegeneration. In mammals,

Fig 5. Disruption of Glu signaling attenuates the DA neuron degeneration of swip-10 mutants. (A) Loss of the

vesicular Glu transporter, vglu-3, suppresses swip-10DA neuron degeneration, whereas loss of eat-4 or vglu-2 does not

significantly alter the levels of swip-10 neurodegeneration. (B) Disrupting Glu clearance by loss of individual Glu

transporters is not sufficient to induced DA neurodegeneration. (C) Loss of the amino acid transporter, aat-1, but not

aat-2, aat-3, aat-5, aat-6, aat-7 or aat-9, significantly attenuates the DA neuron degeneration of swip-10mutants. Data

were analyzed by a one-way ANOVA with Sidak’s post-tests, with � and ��� indicating P<0.05 and<0.001 respectively,

error bars represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g005

SWIP-10 and dopamine neuron degeneration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007269 March 28, 2018 12 / 32

https://doi.org/10.1371/journal.pgen.1007269.g005
https://doi.org/10.1371/journal.pgen.1007269


SWIP-10 and dopamine neuron degeneration

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007269 March 28, 2018 13 / 32

https://doi.org/10.1371/journal.pgen.1007269


aberrant excitotoxic Ca2+ signaling can generate reactive oxygen species (ROS) leading to acti-

vation of cell stress pathways that drive neuronal cell death [84, 85]. To explore this idea, we

inspected swip-10 animals for signs of oxidative stress by monitoring reporter expression from

Pgst-4::GFP. The gst-4 gene encodes a glutathione-s-transferase, and is a target for the ROS

responsive transcriptional regulator SKN-1(C. elegans Nrf2 ortholog) [86, 87]. As shown in Fig

7B and 7C, tm5915 animals demonstrate a significant elevation in Pgst-4::GFP expression. As a

measure of ER stress, we monitored the transcriptional reporter, Phsp-4:GFP [88, 89]. Although

tm5915 animals did not show indications of basal ER stress with this marker (Fig 7D and 7E),

they were more sensitive to the pharmacological ER stressor, tunicamycin, compared to N2 ani-

mals (Fig 7D and 7E).

Evidence of an apoptotic pathway in swip-10 DA neuron degeneration

Glu-induced excitotoxicity has been reported to arise from multiple mechanisms, including

necrosis, autophagy, and apoptosis [90], processes that also contribute to cell death in the nem-

atode [61]. Cells dying by necrosis exhibit cell swelling and vacuolization [61], which we do

not observe in swip-10 animals (S5 Fig). In contrast, as described in Fig 1, DA neurons in swip-
10mutants display blebbing or breaks in processes (Fig 1C and 1F) and shrunken soma (Fig

1D and 1G), features characteristic of apoptosis [91]. Consistent with this idea, we found that

gain of function ced-9mutant animals [92] and loss of function ced-4 and ced-3mutants, well-

known contributors to programmed cell death [59], significantly suppressed tm5915DA neu-

ron degeneration (Fig 8A). Apoptosis in the context of normal developmental programmed

cell death is tightly coupled to cell corpse engulfment [93], with two partially-redundant and

parallel pathways involving ced-1/ced-6 [94, 95] and ced-10 [96] responsible for recognition of

dying cells and initiation of cell corpse clearance. Little is known concerning the integration of

death and engulfment programs in relation to DA neuron cell death, though Offenburger

recently reported contributions from both ced-6 and ced-10 linked engulfment mechanisms in

6-OHDA induced DA neuron degeneration [97]. In contrast, we found that genetic disruption

of individual genes associated with ced-1/ced-6 and ced-10 had no effect on measures of swip-
10DA neuron degeneration (Fig 8B). These findings suggest that swip-10DA neuron degener-

ation arises from the activation of a cell-autonomous apoptotic pathway, one that draws little

observable support from known engulfment mechanisms.

Discussion

Overall, our findings reveal that loss of glial-expressed swip-10 results in DA neuron degenera-

tion through a process supported by excess Glu signaling through Ca2+-permeant ionotropic

Glu receptors and Ca2+-dependent cell death mechanisms that engage apoptotic cell death

pathways, as summarized in Fig 9. Although, we predominantly characterized swip-10DA

neuron viability in gravid (egg-laying) adults, time-dependence studies indicate that degenera-

tion is evident by day 2 post-hatching, and increases on all degeneration measures across the

lifespan. A predominant display of fragmented or truncated dendrites in young animals versus

Fig 6. Support of DA neuron degeneration of swip-10 mutants by ionotropic Glu receptor signaling and induction

of DA neuron degeneration by DA neuron-specific nmr-2 and glr-1 overexpression. (A) Loss of the Ca2+-permeable

ionotropic Glu receptors, nmr-2 and glr-1, suppress swip-10mutant DA neuron degeneration. (B) Combinatorial loss

of both nmr-2 and glr-1 does not suppress swip-10 neurodegeneration beyond the suppression achieved by individual

iGluR loss. (C) DA neuron-specific overexpression of either nmr-2 or glr-1 induces DA neuron degeneration in N2

animals. Analyzed by one-way ANOVA with Sidak’s post-tests (A, B) or unpaired Student’s t test comparing non-

transgenic and transgenic progeny, assayed in parallel (C). ���� indicates P<0.0001 and ns = non-significant (P>.05),

error bars represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g006
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Fig 7. Contributions of changes in intracellular Ca2+ to swip-10 induced DA neuron degeneration and activation of stress pathways. (A) Calreticulin (crt-1)
and calpain-1 (clp-1) mutations suppress swip-10(tm5915) induced DA neurodegeneration. (B) Representative images of basal whole body oxidative stress

reporter, dvIs19[pgst-4:GFP], fluorescence for N2 and swip-10 gravid adult animals. Scale bar is 100μm. (C) Normalized reporter fluorescent intensity

quantification reveals a significant increase in basal fluorescence in swip-10mutants. (D) Representative images of gravid adult, whole body ER stress reporter,

zcIs4[phsp-4:GFP]. Fluorescence for basal N2 and swip-10 animals and N2, and swip-10 animals grown on NGM/OP50 plates with 10mg/mL tunicamycin are

presented, scale bar is 100μm. (E) Normalized reporter fluorescent intensity quantification reveals no change in basal ER stress in swip-10mutants. Both N2 and
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shrunken or lost soma at later stages (Fig 3) suggests that degeneration in individual neurons

is progressive, first emerging as altered neurite structure, followed by engagement of all com-

partments and eventually resulting in disappearance of some DA neurons altogether. This pro-

gressive pattern of degeneration is commonly seen with neurons suffering from energy

depletion, that can be triggered by excessive stimulation or through metabolic poisoning [98,

99].

Most of our observations were obtained with a DA neuron-specific, cytosolic, fluorescent

reporter, findings corroborated using a membrane anchored reporter (Figs 1 and S1). Subse-

quent studies of swip-10mutants using electron microscopy to image DA dendrites and cilia

provided clear evidence of physical alterations (Fig 2) that we believe reflect the declining

health of the DA neurons, versus a direct action of swip-10 or its immediate effectors though

further studies are needed. Additional EM studies would also be valuable in investigating the

degeneration of swip-10mutants at the level of the DA neuron cell bodies, axons, and synapses.

There are significant technical challenges associated with identifying these cells and processes

in the densely populated nerve ring, though future studies that make use of correlated light

electron microscopy (CLEM) can be envisaged [100].

The discovery that DA neurons degenerate in swip-10 animals was initially surprising as

our identification of swip-10 derives from a hyperdopaminergic behavioral phenotype [44],

though we previously demonstrated reduced DA levels in these animals [43]. Since swip-10
DA neurons exhibit increased excitability and tonically-elevated DA secretion rates [44], we

hypothesize that the degenerative process we have characterized likely contributes to a pertur-

bation of mechanisms that insure a tight control over DA release (e.g. DA autoreceptors),

along with a diminished capacity for DA clearance, leading to Swip. Alternatively, a degenera-

tion-induced loss of DA signaling capacity could result in a hypersensitivity of postsynaptic

swip-10 animals significantly respond to the ER stressor, tunicamycin, with swip-10mutants significantly more sensitive to tunicamycin. Analyzed by one-way

ANOVA and Sidak’s post-tests (A and E), or analyzed by Student’s t test (C), ��, ���, and ���� indicates a P<0.01<0.001, and<0.0001 respectively, ns = non-

significant (P>.05), error bars represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g007

Fig 8. Genetic evidence for involvement of an apoptotic cell death program underlying DA neuron degeneration in swip-10 animals. (A)

Genetic disruption of the apoptotic cell death pathway, via loss of ced-3 or ced-4 or gain of function mutation to ced-9 significantly reduces

swip-10mutant CEP DA neuron degeneration. (B) Genetic disruption of genes involved in cell-corpse engulfment had no effect on the

observed DA neuron degeneration of swip-10mutants. Analyzed by one-way ANOVA with Sidak’s post-tests (A and B), ���� indicates

P<0.0001, and ns = non-significant (P>.05), error bars represent ± SEM, with n = 105–150 animals per strain.

https://doi.org/10.1371/journal.pgen.1007269.g008
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DOP-3 DA receptors, such that DA release arising from water immersion then triggers exces-

sive inhibition of motor neurons and Swip. In support of the latter possibility, movement of

swip-10 animals on plates reveals a heightened sensitivity to exogenous DA [43].

Having generated evidence for an age-dependent degenerative process impacting the mor-

phology of swip-10DA neurons, we pursued mechanistic studies through a combination of

genetic and imaging techniques. Such approaches have provided for a systematic elucidation

of mechanisms underlying both programmed and environmentally-triggered cell death [59,

101–104]. In addition to the apoptotic pathways that drive programmed cell death during

Fig 9. A suggested mechanism of swip-10 Glu-induced excitotoxic DA neuron degeneration. Our findings are

consistent with glial expressed swip-10 leading to an elevation of extracellular Glu arising from changes in aat-1
mediated Glu/Cys exchange or vglu-3mediated vesicular Glu release, resulting in the involvement of excess Glu

activation of the Ca2+-permeable iGluRs, nmr-2 and glr-1. Elevated tonic iGluR stimulation then drives pathological

elevations in intracellular Ca2+-levels, increases cellular stress and activates apoptotic cell death pathways.

https://doi.org/10.1371/journal.pgen.1007269.g009
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development, molecular determinants of later stage necrotic neuronal death, that arise as a

result of the constitutive activity of mutant ion channels [105, 106] and ligand-gated Glu re-

ceptors [107], have been investigated. A potential role for excess Glu signaling in swip-10DA

neuron degeneration seemed plausible given the contribution of Glu receptors and Glu trans-

porters to Swip reported in our prior study [44]. In this regard, the groups of Driscoll and

Mano have provided evidence that necrotic cell death arises with excess Glu signaling that

occurs from a combined loss of Glu clearance and a hyperactive, constitutively active form of

the alpha subunit of the G-protein, Gs [108–110]. Although swip-10DA neuron death shares

features associated with the degeneration described in Mano’s studies, specifically the contri-

butions from the iGluR, glr-1 (Fig 6A), and the intracellular Ca2+ sequestering protein, crt-1
(Fig 7A), our analysis also reveals a number of differences. Thus, besides a lack of morphologi-

cal evidence of swollen, vacuolated soma seen in prior studies (S5 Fig), we found no evidence

for a contribution to DA neuron degeneration of the adenyl cyclase ortholog, acy-1, nor could

we implicate the autophagy-associated, cell death protein kinase, dapk-1 (S6 Fig) [108, 109].

We also obtained evidence that the damaging effects of swip-10mutation are quite distinct

from those observed with 6-OHDA induced DA neuron cell death. For example, the degenera-

tion of DA neurons that arises within a day following 6-OHDA administration to wildtype

worms lacks contributions from genes that participate in programmed cell death mechanisms

[49], whereas, as we discuss below, contributions of these genes are evident in the swip-10
model. Moreover, recent studies indicate that ced-6 and ced-10 dependent engulfment path-

ways support 6-OHDA induced loss of DA neurons [97], whereas we found no contribution

of these engulfment genes to swip-10 effects (Fig 8B). Moreover, Offenburger and colleagues

have reported that 6-OHDA induced DA neuron death is exacerbated by mutation of the Ca2+

chaperone crt-1whereas we demonstrated crt-1mutation confers neuroprotection [111].

Together, these findings indicate that the DA neuron degeneration induced by swip-10muta-

tion is an altogether unique form of neural degeneration as compared to prior glutamatergic

and exogenous neurotoxin models.

A critical step in defining the mechanism associated with swip-10DA neuron degeneration

is to determine the site(s) where wildtype swip-10 expression is required to support normal

DA neuron morphology. As with the rescue of DA-dependent Swip behavior [44], we found

that glial swip-10 re-expression, both genomic and cDNA, rescued swip-10DA neuron degen-

eration, whereas DA neuron expression of swip-10was without effect. These findings attest to

a cell non-autonomous mode of action and raise the possibility that glial loss of swip-10may

damage the glial cells themselves, rendering them unable to engage in secretory or contact-

mediated support for DA neurons. Although non-quantitative, we detected no obvious mor-

phological differences between wildtype and swip-10 glia (S2 Fig), which may indicate that

swip-10 expressing glia are deficient in a capacity to provide specific trophic or metabolic sup-

port to DA neurons, versus participating in critical cell autonomous mechanisms. Future stud-

ies using higher resolution, EM-based methods should be pursued to refine this analysis.

Importantly, we obtained rescue of swip-10DA neuron degeneration with a promoter driving

wildtype swip-10 expression in CEP sheath glia. Moreover, degeneration was apparent in OLL

neurons that like CEPs are ensheathed by glia but not in BAG neurons, which lack these con-

tacts. These studies reinforce a contribution of glia to the cell non-autonomous actions of

swip-10 to sustain neuronal viability and suggest that neurons in close apposition to ensheath-

ing glia may preferentially depend on the activity of swip-10.
Our prior studies [44] assessing Swip behavior in swip-10mutants provided evidence of

perturbed glial control of extracellular Glu that we hypothesized was responsible for the

iGluR and mGluR dependence of Swip in these animals. We therefore considered the possibil-

ity that perturbed buffering of extracellular Glu by swip-10 glia also underlies DA neuron
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degeneration. Mammalian literature emphasizes the critical role of glial Glu buffering mecha-

nisms as protective against Glu excitotoxicity. As first described by Olney and colleagues, Glu

excitotoxicity derives from excessive synaptic Glu acting on post-synaptic iGluRs [112–114], a

process recapitulated by the actions of iGluR agonists such as kainic acid and ibotenate [115–

117]. Moreover, inhibition of Glu transporters and increased extracellular Glu recapitulates

the pathological hallmarks of PD in animal models, including DA neuron degeneration [118].

Our findings that mutations in the Ca2+ permeant iGluRs, glr-1 and nmr-2, protect against

swip-10DA neuron degeneration and that overexpression of these receptors leads to DA neu-

ron degeneration in wildtype animals (Fig 6C) provide strong supportive evidence that glial

mechanisms dictating the availability of extracellular Glu are likely disrupted in swip-10
animals.

Mammalian glia have been reported to modulate extracellular Glu by vesicular release

[119], Glu-permeable channels [120], synaptic clearance of Glu by Na+-coupled Glu transport-

ers (GLTs) [31], and extrasynaptic Glu buffering by the cystine/Glu exchanger (xCT) [34, 35].

We found that a mutation in the vesicular Glu transporter vglu-3 attenuates swip-10DA neu-

ron degeneration (Fig 5A). We were surprised that an eat-4mutation did not contribute to

swip-10 induced degeneration, as such a mutation reduced Swip behavior [44]. Although the

expression pattern and role for vglu-3 is undetermined, these findings raise the possibility that

EAT-4 supports Glu signaling in the neural circuitry that drives DA neuron excitation in

response to water, whereas VGLU-3 contributes to Glu release directly onto DA neurons,

including SWIP-10 expressing glia, and drives tonic activation of Glu receptors on DA neu-

rons and over time, excitotoxicity. Consistent with this model, distinct Glu receptors support

Swip (GLR-4, GLR-6 and MGL-1) versus DA neurodegeneration (GLR-1 and NMR-2).

Although we did not observe DA neurodegeneration with genetic loss of single GLT orthologs

in the nematode (Fig 5B), unlike Swip [44], this may be due to genetic redundancy among the

six GLTs. Indeed, studies by the Driscoll lab demonstrated that loss of one or two GLTs is

insufficient to drive Glu-dependent neurodegeneration [121]. In contrast to our inability to

implicate specific GLTs, we found that genetic disruption of the xCT related gene, aat-1, signif-

icantly reduced swip-10DA neuron degeneration (Fig 5C). As with vglu-3, the expression pat-

tern for aat-1 in the worm is undefined, and thus additional studies are needed to determine

site(s) of expression that contribute to our results. The effects of aat-1mutation were not addi-

tive with those of vglu-3, suggesting that both genes act to support DA neurodegeneration

through a common mechanism, which we propose is through the control of tonic, extracellular

Glu providing tonic excitation of DA neuron expressed Glu receptors. Finally, it is important

to note that mammalian xCT is upregulated by the β-lactam antibiotic ceftriaxone [36, 42,

122], which we have shown binds directly to the putative swip-10 ortholog MBLAC1 [45].

Moreover, research, initiated by findings of Rothstein and colleagues [13], has demonstrated

that ceftriaxone is neuroprotective, including in models of DA neuron degeneration [41].

Although not exclusive, Glu-induced neural degeneration often involves activation of Ca2+-

permeable NMDA type iGluRs [19, 123, 124] and, as noted, our studies demonstrate an impor-

tant contribution of Ca2+-permeable C. elegans iGluRs, the NMDA-type iGluR, nmr-2, as well

as the AMPA-type iGluR, glr-1 in swip-10 neural degeneration[77] (Fig 6A). Expression profil-

ing data provides evidence that nmr-2 and glr-1 are expressed in DA neurons [125]. Since

swip-10mutant animals with loss of both nmr-2 and glr-1 do not demonstrate enhanced sup-

pression of DA neural degeneration as compared to single receptor mutations (Fig 6B), we

suggest that the flux of Ca2+ through one of these receptors is sufficient to increase intracellular

Ca2+ sufficiently to initiate downstream signaling pathways that lead, over time, to neurode-

generation. Aberrant intracellular Ca2+ regulation and signaling has been implicated in excito-

toxic cell death [126], with evidence supporting a role for Na+/Ca2+-permeable degenerin/
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epithelial sodium channels (DEG/ENaCs) [127–129], Ca2+-dependent proteases such as calpain

[130, 131], and deficiencies in ER Ca2+ buffering [80, 106] in cell death mechanisms. We found

that disrupting ER Ca2+ storage, by mutation of crt-1, or mutation of the C. elegans calpain

ortholog, clp-1, significantly rescued swip-10DA neural degeneration (Fig 7A). Ca2+ dysregula-

tion following excessive Glu stimulation has also been shown to engender multiple indications

of cell stress including oxidative stress and ER stress [132, 133], which swip-10mutants display.

Finally, although acute Glu excitotoxicity has been more typically associated with necrosis

[17, 19], evidence suggests that chronic dysregulation of Glu signaling and altered intercellular

Ca2+ homeostasis can lead to activation of apoptotic pathways [134, 135], and a recent study

by Anilkumar and colleagues has demonstrated that external factors, such as nutrient availabil-

ity, determine whether or not excess Glu signaling triggers apoptotic or necrotic cell death

(Anilkumar 2017). Consistent with this idea, genetic disruption of apoptosis in C. elegans [59]

significantly reduced the DA neurodegeneration of swip-10mutants (Fig 8A). The progressive

DA neuron degeneration we detect in swip-10 animals supports the occurrence of a chronic

insult and thus is in line with our genetic findings of apoptotic program engagement. How-

ever, our data suggests that swip-10 involvement of apoptotic cell death associated genes differs

from the involvement of these genes in developmental programmed cell death, as loss of genes

critical for cell-corpse engulfment during programmed cell death did not alter the levels of

swip-10DA neuron degeneration (Fig 8B). Although lack of a reliance on engulfment genes

could be a reflection of the partial redundancy of the two major engulfment pathways, we sus-

pect that these findings are indicative of a slower engagement of apoptotic genes in the swip-10
model. Additionally, the majority of our assays are conducted at a mid-point, with degenera-

tion in progress, to capture various degrees of degeneration in swip-10 animals, it is possible

that we have simply not assessed the correct temporal window for engulfment.

Although we present clear evidence for a significant role of excess Glu signaling in the

degeneration of swip-10DA neurons, other mechanisms besides changes in extracellular Glu

homeostasis are likely to contribute to our observations since Glu homeostasis and signaling

mutants afford incomplete suppression of swip-10DA neurodegeneration. The elucidation of

the normal role and genetic pathway for wildtype swip-10 in C. elegans glial cells will likely clar-

ify other contributors to swip-10 induced neural degeneration. For example, mammalian glia

have been shown to support neurons by buffering ions such as potassium (K+) and hydrogen

(H+) [136], and by providing metabolic support via lactate, glutathione, and ATP shuttling

[26]. Although only limited data speaks to glial-neuronal crosstalk in worms, we suspect that

one or more of these mechanisms contribute to the diminished viability of DA neurons in

swip-10 animals. As our transcriptional stress reporter data indicate a systemic increase in cel-

lular stress mechanisms (Fig 7B–7E), it seems entirely likely that the perturbations induced by

swip-10mutation extend beyond the deficits observed in CEP (and OLL) neuron viability.

Since wholesale degeneration is not evident, we suspect that the premature degeneration of

DA neurons reflects a more dependent relationship of these cells on glia. The selective loss of

nigrostriatal DA neurons in idiopathic PD has been suggested to derive from an intrinsic vul-

nerability to stress, possibly arising from the reactivity of DA itself, as well as inefficient anti-

oxidant protection, ultimately rendering these cells more vulnerable than others to Glu-

induced cell death [137]. Since genetic elimination of the capacity to synthesize DA did not

reduce swip-10 DA neuron degeneration, we feel it more likely that excess Glu signaling drives

degeneration in combination with a parallel loss of glial metabolic or trophic support required

by DA neurons.

In summary, our findings reveal a previously unreported dependence of DA neurons on C.

elegans glia, one that when disrupted leads to neuronal degeneration. DA degeneration trig-

gered by glial loss of swip-10 appears to be progressive and dependent on excess Glu signaling
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through Ca2+ permeant iGluRs. We propose that these effects lead to perturbed intracellular

Ca2+ homeostasis and, progressively, the engagement of apoptotic cell death pathways. Our

work adds support to studies in mammals that indicate a critical role of proper glial function

in DA neuron viability [138–141] and reveals a new worm model of Glu excitotoxicity, one

likely amenable to pharmacological manipulation that could provide insights to novel thera-

peutics to treat human neurodegenerative disorders.

Materials and methods

C. elegans strains

Strains were maintained as described previously [142]. We thank J. Rand (Oklahoma Medical

Research Foundation); the Caenhorhabditis Genetics Center; Shohei Mitani of the National

Bioresource Project at Tokyo Women’s Medical University; and Shai Shaham, Niels Ringstad,

and Oliver Hobert for providing the strains used in this work. N2 (Bristol) served as our wild-

type strain, and unless specified otherwise, we utilized the proposed null allele, TM5915, of

swip-10 [44]. Strains used in this study are enumerated per figure appearance in S1 Table.

Plasmid construction and transgenic manipulations

In all cases, insertion of the DNA fragment of interest and the fidelity of the vector was con-

firmed by sequencing and all PCRs were performed using KAPA HiFi HotStart ReadyMix

(Kapa Biosystems). All constructs resulted in C-terminal cDNA fusion to an unc-54 3’UTR.

For the membrane bound transcriptional reporter, we used overlap PCR [143] and Gibson

Assembly (NewEngland Biolabs) to subclone the 700bp dat-1 promotor into the myrRFP con-

taining backbone from pptr-10:myrRFP (gift from Shai Shaham) to create pRB1349 (pdat-1:

myrRFP). For transgenic swip-10cDNA::GFP rescue experiments, DA neuron, pan-glial, and

CEPsh glial expression was achieved using the previously described plasmids, pRB1157,

pRB1158, and pRB1159, respectively [44]. Genomic full-length swip-10 rescue experiments

were conducted as previously described [44]. For the DA neuron-specific Glu receptor experi-

ments, a PCR product (20ng/μL) was amplified by overlap PCR [143] to include the 700bp

dat-1 promoter and genomic glr-1 from the ATG start to 2890 of genomic nmr-2 from the

ATG start to 2974 fused to unc-54 3’ UTR for injection, along with punc-122:RFP (35ng/μL) and

pdat-1:myrRFP (35ng/μL).

Genetic crosses

Crosses were performed using publicly available, integrated fluorescent reporter strains to

mark chromosomes in trans. Single worm PCR was performed to confirm the presence of the

indicated mutation. For all deletions, we used a three primer multiplex strategy that produces

PCR amplicons with a 100–200 bp difference between N2 and mutant. This method was highly

effective in eliminating preferential amplification of a lower-molecular-weight species. In all

cases, a synthetic heterozygous control was used to ensure that heterozygous clones could be

identified. We identified recombinant lines by PCR genotyping of single worm genomic DNA

lysates. All genotyping PCRs were performed with the KAPA Genotyping Kit (KAPA Biosys-

tems). In some cases, alleles were sequenced with sequence-specific primers to verify mutation

homozygosity (GeneHunter and EtonBioscience).

Confocal imaging

Confocal microscopy of mutants on the BY250 strain background was performed using a

Nikon A1R confocal microscope in the FAU Brain Institute Cell Imaging Core using a 20x or
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60x oil-immersion objective and Nikon Elements capture software. Worms were immobilized

using 30mM levamisole in M9 on a fresh 2% agarose pad and cover-slipped with a 1mm cover

glass before sealing with paraffin wax [144].

Neurodegeneration assay

The neurodegeneration assay was adapted from a previously described method [145]. In our

case, we transferred 20 worms to normal NGM/OP50 plates as L4s and incubated these plates

for 48hrs at 19˚C until animals reached the gravid adult stage, unless otherwise noted. We

then picked 15 worms into 20μL of 30mM levamisole in M9 on slides prepared with a 2% aga-

rose pad. For imaging, we utilized a Zeiss Discovery V12 inverted fluorescent microscope out-

fitted with a Xenon UV light source and GFP/YFP/RFP filter sets. We used a Zeiss mono

FWD 16mm objective lens to visualize Green Fluorescent Protein (GFP) containing integrated

transgenes, vtIs7[Pdat-1::GFP], nsIs242[Pgcy-33::GFP], wgIs328[Pser2prom3::GFP] selectively

expressed in DA, BAG, and OLL neurons respectively, allowing us to examine neurodegenera-

tion in a cell-specific manner. For the DA neurons, analysis was limited to CEP neurons,

because out of the 8 DA neurons in C. elegans, the 4 CEP neurons display the clearest and

most distinct dendritic projections and can be readily identified via both light and electron

microscopy (see below). Neurons were examined for the presence of 1) breaks in the CEP den-

drites 2) shrunken or 3) missing somas. Worms were counted as displaying degeneration if

one or more of these features were present. Normal N2 CEP, BAG, and OLL neurons lacked

any of these abnormalities at the gravid adult stage. Total animals with degeneration, shrunken

and missing somas, or neurite breaks were calculated for each trial. The percentage of animals

exhibiting each morphological trait was determined for graphical analysis. Animals were tested

15 animals/day on 7–9 separate days (n = 90–135 animals assayed per genotype) blinded to

genotype.

Electron microscopy

N2 and swip-10mutant animals were raised and maintained at 20˚C on E. coli OP50/NGM

plates and 2-day adult animals (fixed 2 days after the L4 stage) were fixed and embedded for

transmission electron microscopy (TEM) following a chemical immersion protocol [146, 147].

Briefly, animals were first cut open in a cacodylate-buffered osmium tetroxide fixative, then en
bloc stained in uranyl acetate, and dehydrated and embedded in Spurr resin. Thin sections

were collected onto Formvar-coated slot grids and examined on a Philips CM10 electron

microscope. Digital images were collected with an Olympus Morada camera on the TEM, and

figures were created using Photoshop.

Fluorescence microscopy with GFP stress reporters

All fluorescent stress reporter stains were a generous gift from Dr. Matt Gill (Scripps Research

Institute, Jupiter, FL). All stress reporter strains were imaged as gravid adult animals grown at

19˚C for 48hrs after transfer to a fresh OP50/NGM plate at the L4 stage. To determine levels of

stress we used the transcriptional reporter strains, dvIs19 [pgst-4:GFP] and zcIs4 [phsp-4:GFP] to

measure oxidative stress and ER stress respectively. We adapted previously described methods

[87, 88]. Briefly, the overall pgst-4:GFP fluorescence intensity/μm per 15–20 3 day adult swip-10
animals and 15–20 3 day adult N2 animals (with subtracted background fluorescence per ani-

mal) was determined, and the fold change GFP intensity compared to N2 signal was calculated

for all animals assayed from one population and subsequently averaged over 4 independent

days (n = 60–75 animals assayed). As a positive control for oxidative stress, we picked 15–30 L4

N2 animals to OP50 plates 2mM paraquat (Sigma) mixed with the NGM agar [148]. phsp-4:GFP
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fluorescence intensity/μm was assayed as described above. To determine susceptibility of

swip-10mutants to ER stress, we transferred 15–30 L4 N2 and swip-10 animals to NGM plates

containing 10μg/mL tunicamycin (Sigma) [89]. For each of the stress reporters, images were

acquired using identical imaging settings across blinded genotypes and drug treatments, via a

Nikon A1R confocal microscope in the FAU Brain Institute Cell Imaging Core using a 4x objec-

tive and Nikon Elements capture and analysis software.

Statistical analyses

All statistical tests were performed and graphs generated using Prism version 7.0. Data were

analyzed by Student’s t-tests, one-way ANOVAs followed by Sudak or Dunnet’s post-hoc tests

and two-way ANOVAs, where appropriate. A P< .05 was taken as evidence of statistical sig-

nificance in all cases.

Supporting information

S1 Table. C. elegans strains used in the generation of data that appear in the figures.

(XLSX)

S1 Fig. Membrane-bound fluorescent reporter corroborates swip-10 mutant DA neuron

degeneration. Integrated vtIs7 [pdat-1:GFP] reporter in green and extrachromosomal pdat-1:

myrRFP reporter in red show equal levels of degeneration in swip-10mutants. Representative

images show normal (A) N2 DA neuron morphology, merged, and a representative image of a

swip-10mutant animal (B) integrated marker, (C) extrachromosomal array marker and (D)

merged, scale bar is 20μm. (E) DA neuron degeneration was quantified in animals expressing

both DA neuron fluorescent reporters, and both demonstrate swip-10mutant animals have

significantly increased DA neuron degeneration. Analyzed by Student’s t test, ���� indicates a

P<0.0001, error bars represent ± SEM, with n = 105–150 animals per strain.

(TIF)

S2 Fig. swip-10 mutants display normal glial morphology. Representative images of the

CEPsh glia of N2 and swip-10mutant animals, crossed onto a strain bearing an integrated phlh-

17:GFP transgene (DCR1337, nsIs105). Scale bar is 10μm. Representative images of the glia of

N2 and swip-10mutant animals, crossed onto a strain bearing an integrated pptr-10::myrRFP

transgene (nsIs108). Scale bar is 10μm.

(TIF)

S3 Fig. The DA neuron degeneration of swip-10 mutants is not a result of aberrant intra-

cellular DA signaling or hyperdopaminergia. (A) Disruption of DA synthesis, by loss of the

nematode tyrosine hydroxylase ortholog, cat-2, does not prevent the DA neuron degeneration

of swip-10mutant animals. (B) Hyperdopaminergia, induced by disrupted DA clearance by

loss of the DA transporter, dat-1, is not sufficient to induce DA neuron degeneration. Ana-

lyzed by Student’s t test, ns = non-significant (P>.05), error bars represent ± SEM, with

n = 105–150 animals per strain.

(TIF)

S4 Fig. Combinatorial loss of both aat-1 and vglu-3 suppresses swip-10 neurodegeneration

similarly to levels of suppression by individual aat-1 loss. Data were analyzed by a one-way

ANOVA with Sidak’s post-tests, ns = non-significant (P>.05), error bars represent ± SEM,

with n = 105–150 animals per strain.

(TIF)
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S5 Fig. swip-10 mutants do not display gross morphological characteristics of necrotic cell

death. Single-plane phase contrast images merged with maximum intensity projection confo-

cal image show the relative positions of the CEP dopamine neurons to the terminal bulb of the

pharynx in (A) N2 and (E) swip-10(tm5915) animals. (B) and (F) show the maximum fluores-

cence intensity projection confocal image of N2 and swip-10(tm5915) animals respectively. (C)

and (G) show the merged single plane phase contrast image and corresponding single plane

GFP confocal image at a plane where 1 or more CEP cell soma are in focus for N2 and swip-10
(tm5915) animals respectively. (D) and (H) show the single plane phase contrast images for N2

and swip-10(tm5915) animals respectively, demonstrating no visible vacuolated or altered cel-

lular structures. Scale bar of 10 microns for A-H.

(TIF)

S6 Fig. Mutation of genes previously implicated in Glu-dependent necrotic cell death do

not alter swip-10 induced DA neuron degeneration. Data were analyzed by one-way

ANOVA with Sidak’s post-tests, ns = non-significant (P>.05), error bars represent ± SEM,

with n = 105–150 animals per strain.

(TIF)
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