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Abstract

Background

The current acute kidney injury (AKI) risk prediction model for patients undergoing percuta-

neous coronary intervention (PCI) from the American College of Cardiology (ACC) National

Cardiovascular Data Registry (NCDR) employed regression techniques. This study aimed

to evaluate whether models using machine learning techniques could significantly improve

AKI risk prediction after PCI.

Methods and findings

We used the same cohort and candidate variables used to develop the current NCDR Cath-

PCI Registry AKI model, including 947,091 patients who underwent PCI procedures

between June 1, 2009, and June 30, 2011. The mean age of these patients was 64.8 years,

and 32.8% were women, with a total of 69,826 (7.4%) AKI events. We replicated the current

AKI model as the baseline model and compared it with a series of new models. Temporal

validation was performed using data from 970,869 patients undergoing PCIs between July

1, 2016, and March 31, 2017, with a mean age of 65.7 years; 31.9% were women, and
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72,954 (7.5%) had AKI events. Each model was derived by implementing one of two strate-

gies for preprocessing candidate variables (preselecting and transforming candidate vari-

ables or using all candidate variables in their original forms), one of three variable-selection

methods (stepwise backward selection, lasso regularization, or permutation-based selec-

tion), and one of two methods to model the relationship between variables and outcome

(logistic regression or gradient descent boosting). The cohort was divided into different train-

ing (70%) and test (30%) sets using 100 different random splits, and the performance of the

models was evaluated internally in the test sets. The best model, according to the internal

evaluation, was derived by using all available candidate variables in their original form, per-

mutation-based variable selection, and gradient descent boosting. Compared with the base-

line model that uses 11 variables, the best model used 13 variables and achieved a

significantly better area under the receiver operating characteristic curve (AUC) of 0.752

(95% confidence interval [CI] 0.749–0.754) versus 0.711 (95% CI 0.708–0.714), a signifi-

cantly better Brier score of 0.0617 (95% CI 0.0615–0.0618) versus 0.0636 (95% CI 0.0634–

0.0638), and a better calibration slope of observed versus predicted rate of 1.008 (95% CI

0.988–1.028) versus 1.036 (95% CI 1.015–1.056). The best model also had a significantly

wider predictive range (25.3% versus 21.6%, p < 0.001) and was more accurate in stratifying

AKI risk for patients. Evaluated on a more contemporary CathPCI cohort (July 1, 2015–

March 31, 2017), the best model consistently achieved significantly better performance than

the baseline model in AUC (0.785 versus 0.753), Brier score (0.0610 versus 0.0627), cali-

bration slope (1.003 versus 1.062), and predictive range (29.4% versus 26.2%). The current

study does not address implementation for risk calculation at the point of care, and potential

challenges include the availability and accessibility of the predictors.

Conclusions

Machine learning techniques and data-driven approaches resulted in improved prediction of

AKI risk after PCI. The results support the potential of these techniques for improving risk

prediction models and identification of patients who may benefit from risk-mitigation

strategies.

Author summary

Why was this study done?

• Accurately estimating the risk of developing acute kidney injury (AKI) is important to

determine revascularization strategies and inform peri- and postprocedural care.

• The current AKI risk prediction model was developed by employing prior clinical

knowledge to choose and transform candidate variables and applying regression

techniques.

• It is unknown whether and how machine learning techniques could improve predictive

performance from the current AKI risk model.

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques
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What did the researchers do and find?

• We used data from 947,091 percutaneous coronary intervention (PCI) procedures from

the National Cardiovascular Data Registry (NCDR) CathPCI registry to develop AKI

prediction models, the same data from which the current AKI risk model was derived.

Temporal validation was performed on a more contemporary cohort of 970,869 PCIs

from the NCDR CathPCI registry.

• We compared the performance of the current AKI risk model with a series of new AKI

risk models, which were derived using different regression and machine learning

techniques.

• An AKI risk model derived from machine learning techniques had significantly better

discrimination, calibration, and risk stratification than the current AKI risk model in

both the internal test set and temporal validation set.

What do these findings mean?

• The demonstrated improvement in predictive power supports the potential of machine

learning techniques for improving risk prediction modeling.

• The improved prediction for AKI suggests great potential of the model to improve tar-

geting of risk-mitigation treatment and quality assessment of cardiovascular care.

• Future studies need to assess the feasibility of integrating the machine learning model

into clinical care and evaluate the benefit of the model for patients at the point of care.

Introduction

Acute kidney Injury (AKI) is an important complication of percutaneous coronary interven-

tion (PCI) and is associated with increased in-hospital and long-term morbidity and mortality

[1,2]. Accurately estimating patients’ risk of developing AKI is important for physicians in

order to determine revascularization strategies, as well as to inform peri- and postprocedural

care [3–5]. Specifically, being able to identify patient risks can inform personalized strategies

to minimize contrast-induced nephropathy [6]. Moreover, identifying an individual patient’s

risk can support shared decision-making regarding clinical strategies that may involve PCI.

An AKI risk prediction model was recently developed for patients undergoing PCI, using

data from the American College of Cardiology (ACC) National Cardiovascular Data Registry

(NCDR) CathPCI registry [7]. This widely used model was developed following traditional

strategies for building prediction models in medicine, including preselecting and transforming

candidate variables based on prior knowledge, applying hierarchical logistic regression to

model the relationship between variables and outcome, and, finally, reducing the number of

variables via stepwise selection for a more parsimonious model to support prospective applica-

tion. Some potential nonlinearity and interactions were tested, but none were significant [7].

These traditional approaches to risk stratification depend on subjective assumptions to choose

candidate variables and often transform them into categorical variables for convenience when

calculating risk scores, which may reduce the available information and miss unexpected rela-

tionships that could be leveraged to aid prediction. Further, there is potential for model

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques
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performance to benefit from other variable-selection methods than the most frequently imple-

mented stepwise selection. The stepwise selection is known to have the drawback of being

unstable, as different variables may be selected with small changes in the data [8–10]. Finally,

even though nonlinear relationships and interactions can be modeled to a degree through

logistic regression, they must be defined explicitly prior to building the model, and it may be

infeasible to exhaustively test all possible nonlinearity relationships and interactions when the

number of candidate variables is large. As a result, higher-order interactions are mostly

ignored, even though consideration of these interactions may improve model performance.

An alternative strategy for developing risk estimation models is to use machine learning–

based methods such as tree-based models, which do not require assumptions regarding the

variables and their relationships with the outcome. Therefore, these techniques can incorpo-

rate complex relationships in a completely data-driven manner, including nonlinearity or

interactions that may be hard to detect by regression-based models [11–15]. There is thus the

potential to improve AKI risk prediction by including machine learning methods as part of the

model development strategy.

To explore the machine learning techniques in risk prediction, we sought to determine

whether a model for predicting AKI risk derived from these techniques would yield higher

predictive accuracy than the current AKI model. Not only did we seek to build and compare

machine learning models with regression techniques, but we also sought to provide insight

into how the improvement was achieved. To do so, we used the same cohort and candidate

variables from the NCDR CathPCI registry for developing the current AKI model with the use

of 11 preprocedural variables, and, with this cohort, we developed and validated a series of

new models, derived using different methods. By comparing the performance of these new

models with the current AKI model, we attempted to answer 3 questions: First, using the same

candidate variables, can other variable-selection techniques, including machine learning–

based methods, produce better models than the stepwise selection? Second, using the same set

of variables, could machine learning models improve performance over logistic regression

through their capacity to capture complex relationships between these variables and outcome?

Finally, could model performance be improved by availing more candidate variables in their

original form to build the model, reducing the amount of subjective preselection or transfor-

mation of the variables? To gain further understanding of the benefits of the new best-per-

forming model over the current AKI model for individual patients, we examined the range of

predicted risks and the accuracy of stratifying risks of patients by the two models. We also vali-

dated our findings on the most contemporary data from the registry.

Methods

We used data from the NCDR CathPCI registry to determine if the current AKI prediction model,

which used 11 preprocedural variables for prospective risk estimation in routine clinical care, could

be improved by using different approaches for preprocessing, variable selection, and relationship

modeling, including the use of tree-based machine learning methods. The current AKI model was

the baseline model to which the newly developed prediction model was compared. For all models,

including the baseline model, we used the same dataset, candidate variables, and approach to han-

dling missing data. This study is reported as per the transparent reporting of a multivariable predic-

tion model for individual prognosis or diagnosis (TRIPOD) guidelines (S1 Checklist).

Data source and study population

The NCDR CathPCI registry has been previously described [16,17]. Briefly, this registry

includes data on patient characteristics, clinical presentation, treatments, and outcomes

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques
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associated with PCI at more than 1,500 participating sites across the United States. Data are

monitored through a comprehensive data quality program [18].

We applied the same inclusion and exclusion criteria to replicate the cohort used to develop

the baseline model. Specifically, we included all PCI procedures between June 1, 2009, and

June 30, 2011—the same period in which the baseline model was developed and tested

(n = 1,254,089, S1 Fig). We excluded PCIs that were not the first during a single hospitalization

(n = 32,999), procedures with same-day discharge (n = 41,570), missing serum creatinine

before or after the procedure (n = 208,158), and procedures on patients already on dialysis at

the time of their PCI (n = 24,271). The final analytic cohort included the remaining 947,091

PCI procedures. We restricted our analytic cohort to the same time period used for the base-

line model development to rule out the potential impact of newly acquired data on model per-

formance and changes in the importance of predictors when replicating the baseline model.

To ensure generalizability of our results to contemporary practice, we also used a contempo-

rary cohort that contained a total of 970,869 PCI procedures between July 1, 2015, and March

31, 2017, by implementing the same exclusion criteria as in the baseline model. The analysis

was approved by the Institutional Review Board at Yale University.

Study outcome

Following the same definition used in developing the baseline model, the outcome is post-PCI

AKI, defined by the Acute Kidney Injury Network as the change of peak serum creatinine

before and after the procedure [19]. A change in postprocedure creatinine larger than 0.3 mg/

dL or a 1.5-fold increase from before the procedure is defined as AKI.

Candidate variables

Following the same approach as the baseline model development, we considered potential pre-

dictor variables to be those available prior to the initiation of PCI. Accordingly, from Version

4.4 of the NCDR CathPCI Registry data collection form [20,21], we extracted variables from

patient demographics, admission source, medical history and risk factors, clinical evaluation

leading to the procedure (not including results of stress or imaging studies), mechanical ven-

tricular support (including intra-aortic balloon pump) at the start of the procedure, PCI status

and pre-PCI left ventricular ejection fraction (LVEF), creatinine, and hemoglobin. We

extracted 50 variables that were strictly preprocedural and had a missing rate less than 3%,

except for pre-PCI LVEF, which had a 29.4% missing rate (S1 Table). These variables were

considered as the initial set of candidate variables for all models developed in this study,

including the baseline model from which the authors further reduced the number of candidate

variables, as described in the Model development techniques section. Following the same strat-

egy used in the baseline model development, missing variables were imputed by the most com-

mon value for categorical variables and median for continuous variables. The full list of

candidate variables with corresponding variable names and identifiers in the data collection

form can be found in S1 Table.

Model development techniques

The development of prediction models can be categorized into 3 major stages: preprocessing,

variable selection, and relationship modeling (Fig 1, dashed boxes). Decisions on methods

used in these stages can lead to prediction models with different performance. In the following,

we describe the different methods we implemented, including both regression and machine

learning techniques, in each of the 3 stages and the resulting prediction models we developed

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques
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for performance comparison. These models were developed to test each of our 3 study

objectives.

Preprocessing. The preprocessing stage includes the optional step of choosing candidate

variables and the step of feature engineering. Traditional strategies of building prediction

models often include a step to generate, from all candidate variables, a shorter list of variables

that are deemed potentially predictive for the outcome, informed through statistical analysis as

well as prior knowledge and clinical judgement. During the feature engineering step, the origi-

nal variables may be transformed, which may include, but is not restricted to, converting con-

tinuous variables to categorical variables, normalizing variables to proper scales, and

combining multiple variables into single variables for information integration.

We considered 2 strategies during preprocessing (Fig 1). Strategy A is the same as that

implemented in the baseline model. When developing the baseline model, the authors chose

20 variables from all candidate preprocedural variables during preprocessing, based on clinical

or statistical association with the outcome (Fig 1, Strategy A). Further feature engineering was

applied to some of these variables to form the resulting Set A variables that were used for sub-

sequent modeling (S2 Table). In contrast, Strategy B directly applied feature engineering to all

candidate variables without imposing the discretionary decisions made in constructing the

baseline model. Only information integration was performed in Strategy B. An example of

information integration is combining the diabetes variable that takes values of “yes” or “no”

and the diabetes therapy variable for those who responded “yes” to the diabetes variable. In

this case, the 2 variables were combined to a composite variable that takes the following values:

“Not diabetic,” “Diabetic and oral therapy,” “Diabetic and insulin therapy,” or “Diabetic and

other or no therapy.” After implementing information integration for all such variables in the

Fig 1. Analysis flow for developing and evaluating models.

https://doi.org/10.1371/journal.pmed.1002703.g001
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50 candidate variables, Strategy B resulted in 32 variables (referred to as Set B). Details of the

feature engineering performed in Strategy B and the corresponding Set B variables can be

found in S3 Table.

Variable selection. The variable-selection stage further reduces the number of variables

used in the prediction model by evaluating changes in performance from adding or removing

variables. Variable selection considers each variable with respect to the other variables and is

dependent on the method used to model the relationship between variables and outcome. We

considered 3 variable-selection methods, including stepwise backward selection with logistic

regression, lasso regularization with logistic regression, and permutation-based selection with

extreme gradient boost (XGBoost). Stepwise backward selection, used in developing the base-

line model, removes variables sequentially according to their strength of association with the

outcome until the adjusted R2 reached 95% of the full model. A total of 11 variables were

selected for the baseline model. To be consistent with the number of variables used in this

model, we implemented stepwise backward selection to choose 11 variables. Lasso regulariza-

tion, also known as the shrinkage method, selects variables by shrinking the coefficients of

less-important variables from logistic regression to zero [22,23]. Existence of multicollinearity

among variables was examined, and, if found, the group lasso was implemented instead [19].

The permutation-based selection is an adapted method from the Boruta algorithm [24]. First,

from each of the original variables, a “shadow” variable was created by randomly permuting all

the values of the original variable. Then, the prediction model (XGBoost) was run with both

the original variables and their shadow variables. The variables that had higher importance in

the prediction model than all the shadow variables were selected.

Relationship modeling. The relationship modeling stage learns the relationship between

the outcome and the selected variables. We considered 2 methods, including the logistic

regression method, which was implemented in the baseline model, and the machine learning

method XGBoost. XGBoost is a type of gradient descent boosting that makes predictions

based on a series of decision trees [25]. Tree-based modeling methods are able to naturally

learn higher-order interactions and account for nonlinear relationships without predefined

assumptions and thus may be more effective in capturing the potentially complex relationship

between the variables and outcome.

Models for comparison. To understand the contribution of different methods and strate-

gies used in developing the prediction model, we studied and compared the performance of 9

models, as illustrated in Fig 1 (Model 0 to Model 8), among which Model 1 was the replication

of the current AKI model using 11 variables for clinical implementation (baseline model).

From Strategy A and the resulting 20 Set A variables, Models 1, 3, and 5 implemented different

variable-selection methods (backward selection, lasso regularization, and permutation selec-

tion with XGBoost) to compare the effectiveness of these variable-selection methods. Models 1

and 2 used the same selected variables but implemented different relationship-modeling meth-

ods (logistic regression and XGBoost, respectively) to test whether XGBoost could capture

underlying relationships more effectively. Also, Model 1 was the reduced version of Model 0,

and Model 5 was the reduced version of Model 4. The full models served as references for the

corresponding reduced models, and the goal of the reduced model was to have a model using

fewer variables to support more-feasible implementation in clinical care while performing

almost as well as the full model. In particular, Model 0, as the full version of Model 1, was

designed for providing quality assessment. In addition, Model 0 and Model 4 used the same

set of variables (Set A variables) but implemented logistic regression or XGBoost as the rela-

tionship-modeling methods, respectively, and thus were also used for comparing the effective-

ness of these methods in capturing the relationship between the variables and outcome.

Models 6, 7, and 8 were developed using Strategy B and the resulting 32 Set B variables.

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques
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Strategy B differed from Strategy A in the preprocessing stage, as Strategy B did not implement

any subjective selection or transformation of variables. Models developed using Strategy B

were compared against models using Strategy A to test whether availing all candidate variables

to model building could produce a better model. Further, Model 6 and Model 7 differed in the

variable-selection method in which lasso regularization and permutation selection were imple-

mented, respectively. Finally, Model 7 was the full version of Model 8 as a reference for the

reduced model.

In summary, a total of 6 models were developed by using Strategy A and Set A variables,

and 3 models were developed by using Strategy B and Set B variables. Models 1, 2, 3, 5, 6, and

8 were reduced models in which variable selection was implemented; Models 0, 4, and 7 were

full models without reduction of variables and were used as references for the corresponding

reduced models.

Statistical analyses

Model development and evaluation. To develop and compare the models, we repeated

the following procedure 100 times (Fig 1): First, we randomly split the analytic cohort into a

training set (70% of the cohort) and a test set (30% of the cohort). Second, the 9 models for

predicting AKI risk were built using data from the training set only, and the corresponding

selected variables were recorded. Finally, the performance of the models was assessed on the

internal test set. The performance was reported by mean and 95% confidence interval (CI)

from the 100 experiments.

Performance metrics. We used the area under the receiver operating characteristic curve

(AUC, also known as the c-statistic) to measure model discrimination [26]. Calibration was

assessed using the calibration slope and the reliability measure [27]. The calibration slope was

estimated as the regression slope of the observed rates versus the deciles of predicted risks of

AKI. The reliability measure captures the average deviations of predicted risks from observed

rates for patients of varying risks, defined as the mean squared error (MSE) between the deciles

of predicted risks and the observed rates, illustrated in S2 Fig. Since the reliability measure cap-

tures more granular deviations of the predicted risks from the true rates than the calibration

slope and thus is a more sensitive measure of calibration, we used reliability as the primary

measure to compare calibration performance of the models. Models with lower values of reli-

ability indicate higher consistency between the predicted and observed risks and are models

with better performance. We assessed the accuracy of probabilistic predictions by the Brier

score, which is defined as the MSE between the observed outcome and predicted AKI risk

[28]. In addition, we calculated the resolution measure, which differs from the discrimination

and calibration measures; it measures how much the predicted risks of individual patients dif-

fer from the population average. The resolution measure, together with calibration measure,

thus provides valuable information on the ability of the model to separate patients according

to their risks for more-precise risk stratification. Resolution is calculated as the MSE between

the deciles of predicted risks and the event rate of the entire cohort. Models with higher values

of resolution indicate greater difference between the observed risks in predicted risk strata and

the overall event rate and are models with better performance.

Among all new models with variable reduction, the best-performing model was chosen as

the proposed new model to improve AKI risk prediction over the baseline model. For the base-

line model and the best-performing new model, we also compared their predictive range by

the difference of the observed rate between the first and 10th deciles of predicted risks through

a one-sided t test. To further investigate the difference in predictions for individual patients

made by the 2 models, using patients and their predictions in an internal test set from the
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experiments, we compared the mean risks predicted by the 2 models with the observed rates,

for patients in the lowest and highest deciles of predicted risks identified by the model with

wider predictive range. We also examined the individual patient changes in predicted risk

strata between the 2 models via a shift table and compared the accuracy of risk stratification

between the 2 models by calculating the observed rates for these patients.

Sensitivity analysis

To test the effect of imputation for the variable of LVEF that had a higher missing rate than

other variables, we repeated variable selection for models using LVEF, including an additional

dummy variable indicating whether the value of LVEF was imputed. To test the potential pre-

dictive power of race and ethnicity variables, we repeated the procedure in Fig 1 including 5

additional race variables and 1 Hispanic ethnicity variable (See S1 Table). Further, to examine

whether separate models were needed for patients with different clinical settings, using the

same cohort, we assessed and compared the model performance between elective and nonelec-

tive PCIs and between PCIs that were performed or not performed the same day of the admis-

sion. Finally, to examine the performance of the model on the identification of patients with

severe AKI requiring higher levels of support, we assessed the discrimination of the model for

identifying patients with AKI requiring new dialysis.

Validation on contemporary data. To test the generalizability of the new model to con-

temporary practice, we also evaluated the baseline model and the best-performing new model

on more contemporary data from the registry, which were not included in the main analysis.

In addition to applying the models directly on the new cohort, we also considered 3 strategies

that update the previously developed models for use in the new cohort. To determine whether

the update is necessary and, if so, the optimal updating strategy, we split the new cohort ran-

domly into a 70% updating and 30% validation set; the updating set was used to update the

models, and the validation set was used to evaluate the performance (S3 Fig). Directly applying

the previously developed models without modification was considered the baseline strategy

(Strategy 1); Strategy 2 was a simple logistic recalibration method that updates the calibration

intercept and slope, as is done for the current AKI model; Strategy 3 rebuilt the models using

the updating set of the contemporary cohort; Strategy 4 rebuilt the models using combined

data from the updating set of the contemporary cohort and the development cohort; the rebuilt

model was also recalibrated via logistic calibration on the updating set. Strategies 3 and 4 were

applied to explore the potential improvements of rebuilding the model with new data. The ran-

dom splitting of the contemporary cohort was repeated 100 times, and the performance of the

updated models by the 4 different strategies was reported by mean and 95% CI from the 100

experiments.

All analyses were developed in R (version 3.4.0) [29]. Lasso regularization with logistic

regression was performed using the R package Glmnet (version 2.0–13) [30]. XGBoost was

performed using the xgboost (version 0.6–4) R package [31]. Brier score, reliability, and resolu-

tion were calculated with the SpecsVerification (version 0.5–2) R package [32].

Results

Among the 947,091 patients who underwent PCIs included in the analytic cohort, the mean

(standard deviation [SD]) of their age was 64.8 (12.2) years, and 636,078 (32.8%) were women

(S4 Table). A total of 69,826 (7.4%) patients developed AKI. Compared with patients without

AKI, patients with AKI were 4 years older, more often female (38.9% versus 32.4%), and more

often black (10.9% versus 7.7%). Patients with AKI also had worse glomerular filtration rate
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and were more likely to have diabetes, prior heart failure, cardiogenic shock, and cardiac arrest

within 24 hours before PCI.

Model performance comparison

For each of the 100 experiments, all models were developed using a different random 662,935

(70%) patients and evaluated in the remaining 284,126 (30%) patients.

Models with different variable-selection methods. Fig 2 summarizes the performance of

all models developed in this study. Among Models 1, 3, and 5, which used different variable-

selection methods, Model 1 had the lowest AUC (0.711; 95% CI 0.708–0.714), worst Brier

score (0.0636; 95% CI 0.0634–0.0638), and lowest resolution (0.0038; 95% CI 0.0037–0.0040)

and had a median level of reliability among the 3 models (0.0014 × 10−2; 95% CI 0.0007 ×
10−2–0.0022 × 10−2), consistent with the reported performance of the baseline model. The vari-

ables selected by the different methods from 100 repeated experiments are presented in S5

Table. All variables selected in the baseline model were selected at least once by backward

selection from the 100 experiments, but there were variations in selected variables among the

experiments. Lasso regularization selected the same 16 variables, and permutation with

XGBoost selected the same 13 variables for every iteration of the 100 experiments. Finally,

Model 5, the XGBoost model using permutation selection, had the highest AUC (0.725; 95%

CI 0.722–0.728), best Brier score (0.0630; 95% CI 0.0628–0.0632), highest resolution (0.0043;

95% CI, 0.0042–0.0044), and best reliability (0.0004 × 10−2; 95% CI 0.0000 × 10−2–0.0009 ×
10−2). Of note, Model 1 had no significant difference from Model 0 (the full version of Model

1) in any performance metric; Model 5 also had no significant difference from Model 4 (the

full version of Model 5) in any performance metric.

Models with different relationship-modeling methods. Model 0, using all Set A vari-

ables and logistic regression, had an AUC of 0.717 (95% CI 0.714–0.721), a Brier score of

0.0634 (95% CI 0.0632–0.0636), a resolution of 0.0040 (95% CI 0.0038–0.0042), and a reliabil-

ity of 0.0014 × 10−2 (95% CI 0.0007 × 10−2–0.0022 × 10−2). Using the same variables as Model

0, Model 4, using XGBoost as the relationship-modeling method, had a significantly higher

AUC (0.728; 95% CI 0.725–0.731), better Brier score (0.0629; 95% CI 0.0627–0.0631), higher

resolution (0.0044; 95% CI 0.0043–0.0045), and better reliability (0.0004; 95% CI 0.0000–

0.0007). Similarly, using the same variables as Model 1, Model 2, using XGBoost as the rela-

tionship-modeling method, had a slightly but not significantly higher AUC, better Brier score,

higher resolution, and significantly better reliability.

Models with Strategy A versus Strategy B during preprocessing. Three models were

developed using Strategy B and had higher AUCs than models using Strategy A. The XGBoost

models using Strategy B (Models 7 and 8) additionally had a significantly better Brier score

and higher resolutions than models using Strategy A. Further, from Set B variables, Model 8,

which used permutation selection, achieved a significantly higher AUC, better Brier score,

higher resolution, and better reliability than Model 6 did using lasso regularization, consistent

with the results of comparing variable-selection methods from Set A variables. Variables

selected from these 2 models can be found in S6 Table. Except for AUC, there was no signifi-

cant difference between Model 8 and Model 7 (the full version of Model 8) in all performance

metrics.

Baseline model versus best-performing new model. Among all models using variable

selection (Models 2, 3, 5, 6, and 8), Model 8, the XGBoost model using 13 variables selected

by permutation selection from Set B variables, had the best performance in AUC, Brier score,

and resolution and was among the top in reliability. Further, compared with both the baseline

model using 11 variables (Model 1) and the full version of the baseline model using 20

Enhancing prediction of acute kidney injury risk after PCI using machine learning techniques

PLOS Medicine | https://doi.org/10.1371/journal.pmed.1002703 November 27, 2018 10 / 20

https://doi.org/10.1371/journal.pmed.1002703


variables (Model 0), Model 8 had significantly better discrimination (AUC), Brier score, reso-

lution, and reliability. The variables selected in Model 8 compared with variables used in the

baseline model are presented in Table 1. The 2 models shared 9 common variables, out of

which 5 had different feature engineering applied. In addition, the baseline model selected 2

other variables, whereas Model 8 selected another 4 variables.

The observed AKI rate in deciles of risk predicted by Model 1 (the baseline model) and

Model 8 are plotted in Fig 3A. Model 8 showed better calibration than Model 1 in the calibra-

tion slope (1.008 versus 1.036, p< 0.001) and in the calibration intercept (−0.001 versus −-

0.003, p< 0.001). Further, shown in Fig 3B, Model 8 had a wider predictive range than Model

1 had (25.3% versus 21.6%, p< 0.001) and more accurate risk prediction for lowest and high-

est deciles of patients than Model 1 (S7 Table). Table 2 shows that patients stratified by both

the baseline Model 1 and the newly developed Model 8 had consistent observed rates with

Fig 2. Comparison of model performance with 95% CIs for (A) the AUC, (B) Brier score, (C) resolution, and (D) reliability. AUC, area under the receiver operating

characteristics curve; CI, confidence interval; XGBoost, extreme gradient boost.

https://doi.org/10.1371/journal.pmed.1002703.g002
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their risk strata. However, for the 103,556 (36.4%) patients (in off-diagonal entries of Table 2)

that had different risk strata predicted by Model 1 and Model 8, Model 8 was more accurate in

estimating their risks compared with their actual observed rate. More specifically, Model 8

accurately reclassified a total of 42,167 (14.8%) patients whose risks were underestimated by

Model 1 and a total of 61,388 (21.6%) patients whose risks were overestimated by Model 1.

The between-model difference in risk stratification was most prominent in small subgroups of

124 (0.04%) patients and 103 (0.04%) patients with predicted risks of 25%–50% and higher

than 50% by Model 8, respectively. They were estimated by Model 1 to have a risk less than

5%, whereas their observed rates were in fact 39.5% and 71.8%.

Sensitivity analyses

The dummy variable indicating imputation for LVEF was not selected by permutation selec-

tion in Model 8. Adding race and ethnicity variables to models did not significantly improve

the model performance, and these variables were also not selected in Model 8. There was no

significant difference in the performance of Model 8 when performed independently for elec-

tive versus nonelective PCI patients. No difference in performance was found for patients with

same-day versus not-same-day PCI from their admission. Finally, Model 8 performed better

for identifying AKI requiring new dialysis than identifying AKI, with an AUC of 0.911 (95%

CI 0.903–0.918).

Temporal validation. Baseline characteristics and outcome for patients included in the

development cohort for building the models and in the more contemporary cohort for tempo-

ral validation were summarized in S8 Table. Compared with the development cohort, patients

Table 1. Comparison of variables used in the baseline model (Model 1) and the XGBoost model (Model 8).

Baseline model (N = 11) XGBoost model (Model 8) (N = 13)

Same variables Age Age

Prior heart failure Prior heart failure

Cardiogenic shock within 24 hours (no versus yes) Cardiogenic shock within 24 hours (no versus yes)

Cardiac arrest within 24 hours (no versus yes) Cardiac arrest within 24 hours (no versus yes)

Same variables with different feature

engineering

Diabetes mellitus (no versus yes) Diabetes mellitus composite (no versus yes, insulin versus yes,

others)

CAD presentation (stable CAD versus non-STEMI or unstable

angina versus STEMI)

CAD presentation composite (non-STEMI versus others)

Heart failure within 2 weeks (no versus yes) Heart failure within 2 weeks composite (no versus yes, NYHA

class IV versus yes, others)

Preprocedure GFR (normal versus mild versus moderate

versus severe)

Preprocedure GFR

Anemia (preprocedure hemoglobin < 10) (no versus yes) Preprocedure hemoglobin

Different variables Cerebrovascular disease (no versus yes)

IABP at the start of procedure (no versus yes)

Admission source (emergency department versus others)

Body mass index

PCI status (elective versus emergency versus others)

Pre-PCI left ventricular ejection fraction

Details of feature engineering performed in Models 1 and 8 can be found in S2 Table and S3 Table, respectively.

Abbreviations: CAD, coronary artery disease; GFR, glomerular filtration rate; IABP, intra-aortic balloon pump; NYHA, New York Heart Association; PCI, percutaneous

coronary intervention; STEMI, ST elevation myocardial infarction; XGBoost, extreme gradient boost.

https://doi.org/10.1371/journal.pmed.1002703.t001
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in the contemporary cohort had a higher AKI rate and were 1 year older, more often African

Americans, and more likely to have prior heart failure, diabetes, cardiogenic shock, and car-

diac arrest within 24 hours of PCI. When directly applied on the contemporary cohort without

updating (Strategy 1), the best-performing new model (Model 8) outperformed the baseline

model (Model 1) in AUC (0.785 versus 0.753), Brier score (0.0610 versus 0.0627), calibration

slope (1.003 versus 1.062), and resolution (0.0073 versus 0.0057) (S4 Fig, S9 Table). Model 8

also had a wider predictive range than Model 1 had (29.4% versus 26.2%) on the contemporary

cohort. Minimal improvement was seen by implementing updating strategies (Strategy 2–4),

except for significant improvement in reliability in both Model 1 and Model 8 via recalibration

(Strategy 2).

Fig 3. Comparison of the baseline model (Model 1) and the XGBoost model (Model 8) in (A) calibration and (B)

predictive range. AKI, acute kidney injury; SD, standard deviation; XGBoost, extreme gradient boost.

https://doi.org/10.1371/journal.pmed.1002703.g003
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Discussion

We found that a model for predicting AKI risk after PCI, derived from data-driven approaches

of building prediction models and with the use of machine learning methods, had small but

statistically significant improvement in performance over the current ACC NCDR CathPCI

Registry AKI model, which was built using hierarchical logistic regression [7]. The machine

learning model, compared with the current AKI model, had a wider predictive range, was

more accurate in stratifying risk of AKI for patients, and, for a small subset, resulted in marked

changes in their estimates, which has important clinical implications. The improvement in

performance of the proposed machine learning model over the current AKI model was a result

of employing all available variables to modeling, using permutation test for variable selection

and implementing XGBoost to model the relationship between variables and outcome. Fur-

ther, the best machine learning model only entailed the use of 2 more variables than the cur-

rent AKI model, posing minimal additional burden on data extraction and processing.

Traditional strategies of developing prediction models in medicine have contributed much

to current quality improvement and decision support. However, they have some limitations

that could lead to missing important predictors and relationships [1,2,7,33]. The proposed

XGBoost model was developed as an effort to overcome the limitations presented by tradi-

tional strategies of building prediction models. Through developing and comparing a total of 9

models, we derived a prediction model for AKI risk after PCI by optimizing strategies or meth-

ods in various stages of model development, and we were able to understand how the improve-

ment in the new model was achieved. First, we found that models implementing permutation

selection with XGBoost performed better than those using stepwise selection and lasso regular-

ization with logistic regression. This demonstrates the improvement due to the machine learn-

ing–based variable-selection method. Second, using the same variables, using XGBoost to

model the relationship performed better than the baseline model using logistic regression,

showing the superior modeling capacity of machine learning methods to learn complex rela-

tionships between the variables and outcome. Finally, models having access to all available can-

didate variables in their original forms performed better than those constrained to a reduced

set of variables that had been selected in the development of the baseline model. This is evi-

dence that there was loss in model performance due to investigator-driven preprocessing of

variables. Moreover, the significant improvement by XGBoost models using Strategy B over

Table 2. Shift table of predicted risks from the baseline model (Model 1) and the XGBoost model (Model 8).

Model 1 predicted risk

<5% 5%–10% 10%–25% 25%–50% >50% All

Model 8 predicted

risk

observed rate (No.

patients)

observed rate (No.

patients)

observed rate (No.

patients)

observed rate (No.

patients)

observed rate (No.

patients)

observed rate (No.

patients)

<5% 2.8% (108,015) 3.5% (46,808) 4.2% (1,537) 0% (12) NA (0) 3.0% (156,372)

5%–10% 6.2% (18,551) 7.1% (45,115) 8.9% (10,448) 6.1% (82) NA (1) 7.1% (74,197)

10%–25% 13.2% (2,241) 13.0% (15,185) 16.5% (22,291) 24.2% (1,925) 21.7% (23) 15.4% (41,665)

25%–50% 39.5% (124) 31.1% (412) 31.1% (4,466) 36.7% (4,427) 43.4% (553) 34.3% (9,982)

>50% 71.8% (103) 76.3% (93) 53.8% (171) 51.8% (821) 58.6% (722) 56.8% (1,910)

All 3.6% (129,034) 6.5% (107,613) 15.8% (38,913) 34.6% (7,267) 51.4% (1,299) 7.4% (284,126)

The cells show the observed AKI rate for patients with different predicted risk strata between Model 1 and Model 8. The numbers in parentheses are the total number of

patients in the cell from which the observed rate was evaluated. The observed AKI rate was not calculated and was denoted as NA if the number of patients was fewer

than 10. Shaded entries are subgroups of patients who had same predicted risk strata by Model 1 and Model 8.

Abbreviations: AKI, acute kidney injury; XGBoost, extreme gradient boost.

https://doi.org/10.1371/journal.pmed.1002703.t002
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those using Strategy A further showed that presenting all available information is important

for machine learning models to reach their maximum performance potential. Finally, the full

models performed better than their reduced versions. Thus, while using models with fewer

variables may be worthwhile for more feasible prospective implementation, the more complete

models may be better for retrospectively generating quality assessment reports.

Although statistically significant, the absolute improvement in population-based perfor-

mance measures may not seem large. However, our results on more accurate risk stratification

of individual patients further showed that a small minority of patients had marked changes in

their risk estimates. Improvement in overall performance measures, which are the key stan-

dard metrics in comparing models, do not present the entire picture of the potential benefits

of a machine learning–based model and may be insensitive to reflect improvement for small

subgroups of patients. The machine learning model also had a significantly wider predictive

range, which extends the limit of the current AKI model in identifying patients with the lowest

and highest risks. In addition, the machine learning model was shown to provide a more accu-

rate estimation of risks for patients with extremely low and high risks, whereas the current

AKI model over- or underestimated their risks. Thus, the machine learning model may be par-

ticularly useful for patients at the extreme ends of the risk spectrum. In fact, for all 103,555

(36.4%) patients who had risk strata predicted differently by the 2 models, the machine learn-

ing model demonstrated higher consistency between predicted risk strata and true event rates.

The improved accuracy of risk stratification by the machine learning model may have

important implications for the management of patients undergoing PCI, especially for identi-

fying patients at risk for AKI who may benefit from more intensive risk-mitigation strategies.

For example, the 2,468 (0.9%) patients estimated by the current AKI model to have a risk of

AKI less than 5% in fact could more accurately be classified as having at least a 10% risk of

developing AKI from the machine learning model. Marked underestimation by the current

AKI model was also seen in a very small subgroup of 227 (0.1%) patients predicted to be under

5% risk but who could more accurately be classified as having at least a 25% observed risk. On

the other hand, the low-risk subgroup of 1,537 (0.5%) patients classified by the current AKI

model to have an elevated risk of 10%–25% were more accurately estimated by the machine

learning model to have a risk less than 5%. Correctly identifying the risk of patients for AKI

can be an important guide in risk-mitigation interventions, and given the small number of

patients with marked change in risk estimates, the improved abilities of machine-learning

models should be explored to see if they could better improve safety over the current risk

models.

The evolution of greater computational capacities of electronic health records (EHRs) offers

the potential for calculating risk estimates at the point of care using machine learning–based

models. For example, the eHospital launched by Cleveland Clinic trained tree-based machine

learning models on clinical data from EHR and deployed the trained model as a web service

that can take real-time data from a patient in the intensive care unit to provide timely predic-

tion of the probability of this patient needing vasopressor therapy [34]. Similarly, the machine

learning model we developed may provide better risk adjustment in AKI quality assessment

and comparative benchmarking to support quality improvement, as is done in clinical registry

programs such as the NCDR.

Despite the statistical advantages and potential clinical implications of machine learning

demonstrated in these analyses, there are certain barriers to its larger adoption in medicine.

First, logistic regression models are more familiar to clinicians than machine learning tech-

niques, and the linear modeling permits the generation of coefficients, which help clinicians

understand the strength of the relationship between patient characteristics and outcome. In

spite of demonstrated improvement in performance, the interpretation of the proposed
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machine learning model and the association between predictors and outcome is difficult, since

the model makes predictions based on multiple decision trees. There are measures for quanti-

fying the strength of relationships in machine learning models, but they are more complicated.

Whether clinicians will accept the results of a machine learning model—and whether the more

challenging interpretability is an impediment to adoption—will need to be studied. Second,

there is experience with the operationalization of regression-based models in routine clinical

care, and they have been shown to influence outcomes [35–37]. Whether machine learning

techniques could be similarly used to improve care is an important area for future research.

Finally, in low-resource environments, logistic regression–based models can still be imple-

mented using simple integer scores.

Our study has several limitations. First, relationships in data may change over time because

of changing coding patterns and changing populations, and the new model may not perform

as well when applied to newer data [38]. Although we have tested our developed model on

more contemporary NCDR CathPCI data, we anticipate that the model will need to be contin-

ually updated, as is done with the current AKI model. Second, the new model, although with

improved performance over the current AKI model, remains a static model. With the avail-

ability of time series data of changing patient parameters with integrated EHRs, real-time

dynamic prediction at different time points to facilitate decision-making throughout the

patient’s entire hospitalization is possible and is an avenue for future work [39]. Third, the

potential of these models ultimately resides in point-of-care application using readily available

data. For this study, we used registry data and not EHR data. We did so because we were com-

paring against the NCDR model, which is the current gold standard for AKI risk estimation.

Future studies may take the next step to leverage data available in the EHRs. Challenges of inte-

grating the prediction model to EHRs include the availability and accessibility of the predictors

from EHRs at the point of decision. Finally, this study does not address implementation. Medi-

cine has yet to fully integrate risk calculations into clinical care, and even more-complete adop-

tion of existing models could improve care, particularly if they are accompanied by

management recommendations. This paper was restricted to addressing the question of

whether the current AKI risk model could be improved based on the same data with which it

was derived. Although we have focused on predicting AKI risks, which has important clinical

significance, the study serves as a case study to understand the mechanisms and conditions

under which machine learning techniques improve prediction over traditional statistical

techniques.

In conclusion, this study developed a machine learning–based model to predict AKI risk

after PCI through a data-driven approach. Using machine learning techniques that could use

all available information for variable selection and relationship modeling, we demonstrated an

improved prediction for AKI risk after PCI compared with the current model based on regres-

sion techniques. With the prevalence of advanced computing and integrated EHRs at the bed-

side, predictive models developed with these techniques have the potential to be incorporated

into routine patient care as well as to support quality improvement.
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