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Abstract

Motivation: MinlON is a portable nanopore sequencing device that can be easily operated in the field with features
including monitoring of run progress and selective sequencing. To fully exploit these features, real-time base calling
is required. Up to date, this has only been achieved at the cost of high computing requirements that pose limitations
in terms of hardware availability in common laptops and energy consumption.

Results: We developed a new base caller DeepNano-coral for nanopore sequencing, which is optimized to run on
the Coral Edge Tensor Processing Unit, a small USB-attached hardware accelerator. To achieve this goal, we have
designed new versions of two key components used in convolutional neural networks for speech recognition and
base calling. In our components, we propose a new way of factorization of a full convolution into smaller operations,
which decreases memory access operations, memory access being a bottleneck on this device. DeepNano-coral
achieves real-time base calling during sequencing with the accuracy slightly better than the fast mode of the Guppy

base caller and is extremely energy efficient, using only 10 W of power.

Availability and implementation: https:/github.com/fmfi-compbio/coral-basecaller
Contact: peter.persini@fmph.uniba.sk or tomas.vinar@fmph.uniba.sk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

MinION by Oxford Nanopore Technologies (ONT) is a portable
DNA sequencer that measures electric current as DNA passes
through nanopores. Electrical signals produced by the device need to
be translated into sequences by a base caller software. In many appli-
cations of nanopore sequencing, fast and accurate base calling has
become a major bottleneck. In bioinformatics, it has been previously
demonstrated that such bottlenecks can be solved not only by algo-
rithmic changes but also by using more suitable hardware architec-
tures. These include both readily available consumer devices such as
GPUs, but also devices that are the result of hardware-software
codesign (Alser et al., 20215 Cali et al., 2020; Fujiki et al., 2018;
Kim et al., 2018; Turakhia et al., 2018). In fact, most of the existing
tools available for nanopore base calling require powerful GPUs
with high energy consumption to operate at reasonable speeds
(Oxford Nanopore Technologies, 2020; Teng ez al., 2018).

In this paper, we present a new base caller DeepNano-coral,
which runs on the Coral accelerator featuring the Edge tensor proc-
essing unit (TPU), a small, energy-efficient and cheap USB-
connected device. DeepNano-coral can process approximately 1.5
million signals per second, which is enough to provide real-time base
calling for a MinION device. The main motivation behind using this
particular device is a practical applicability of our solution: Coral is
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a readily available consumer device, which is easily connected to a
common laptop computers. This makes our base caller ideal for field
sequencing applications, where power efficiency and low hardware
requirements are highly desirable. Real-time base calling is also es-
sential in unlocking some of the most promising MinlON device
capabilities, such as its ability to adapt the run length to the sample
composition, or selective sequencing (Loose et al., 2016).

Current base callers are typically based on deep neural networks.
Guppy, a base caller provided by ONT, is based on recurrent neural
networks (RNN) and provides two different architectures: a fast
base caller, which can base call with 85-92% median read accuracy
in real time, using recent GPU cards and a high-accuracy base caller
(90-96% median read accuracy), which is too slow to be used in
real time without specialized setup. DeepNano-blitz trades off a bit
of accuracy in order to provide real-time base calling on a common
CPU using a specifically engineered RNN, thus obviating the need
for GPUs (Boza et al., 2020). Other RNN-based base callers, includ-
ing Chiron (Teng et al., 2018), are too slow for real-time base call-
ing. Another class of nanopore base callers is based on convolutional
neural networks (CNN). In particular, Bonito v.0.2 (Oxford
Nanopore Technologies, 2020) adapts Jasper/QuartzNet (Kriman
et al., 2020; Li et al., 2019) speech recognition architecture to base
calling tasks. At the time of writing, Bonito provided the most
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accurate base calling, however, the time requirements exceed even
the Guppy high-accuracy mode.

The Coral Edge TPU accelerator by Google is a limited device,
which was designed mostly for vision tasks, such as image classifica-
tion (Google Research, 2020). It contains only 8 MB of memory
(used for storing both model weights and intermediate tensors), it
only works with 8-bit integers (while GPUs typically work with 32-
bit floating point numbers) and the compiler and libraries provide
only a limited set of building blocks, optimized mostly for CNNs
with small receptive fields, which are typically used in image proc-
essing. Such a configuration mostly excludes possibility of adapta-
tion of RNN-based architectures and even adapting CNN-based
architectures, such as Bonito, is a challenge, due to the large size of
the network and the use of large receptive fields.

We show that by introducing several novel features in the CNN-
based base calling architecture, one can overcome these limitations
of the Coral devices. Our new base caller DeepNano-coral provides
real-time base calling that is significantly more energy efficient than
existing approaches running on GPU (e.g. Guppy base caller) or
CPU (Boza et al., 2020). These advantages, coupled with easy avail-
ability and a low price of Coral devices, make this a practical solu-
tion for the problem of real-time base calling.

To achieve this goal, we introduce the following innovations:

* A novel component k-blueprint-separable-convolution, which
replaces separable convolutions as a building block for CNNs. A
separable convolution approximates a full convolution by using
a depthwise operation and a pointwise operation, which are less
computationally intensive. The k-blueprint-separable convolu-
tion factorizes the convolution into the two parts differently, in
effect reducing the depthwise operation at the cost of increasing
computation in the pointwise operation. Even though the new
convolution component has a higher number of parameters and
floating point operations (flops), it is more efficient on the Edge
TPU, since in this architecture, depthwise operations do not fully
utilize the hardware (Gupta and Akin, 2020; Xiong et al., 2021),
possibly due to being bound by the memory bandwidth.

* A new design of the residual block, which is a fundamental build-
ing block of the QuartzNet speech recognition architecture and
was also deployed for base calling in Bonito. To improve its per-
formance on the Edge TPU, we add a compression operation at
the start of the residual block, taking x consecutive data samples
of C channels each and converting them into a single compressed
sample of Cy channels. Using compression ratio x/y < 1, we save
memory and allow subsequent convolutions to effectively mix x
original samples and thus increase the receptive field of the block.

* A surprising observation that identity initialization of some parts
of the architecture helps the training and improves the prediction
accuracy in some circumstances, which contradicts usual recom-
mendations for initializing parameters of neural networks before
training.

Our experiments show that DeepNano-coral achieves the accur-
acy comparable to other real-time base callers, Guppy fast and
DeepNano-blitz. Such accuracy is sufficient for real-time monitoring
tasks, such as monitoring barcode composition in pooled libraries or
species composition in environmental or clinical samples (Boza
et al., 2020). DeepNano-coral achieves this goal much more energy
efficiently, using only 0.6-0.7 Wh of energy to base call a test sample
of 40.8 Mb of nanopore sequences at a speed of 1.54 million signal
samples per second (on the same setup, the closest competitor,
Guppy fast, uses 1.4 Wh of energy, processes 4.37 million signal
samples per second, with up to 2 percentage points lower accuracy
depending on the dataset).

Background. Nanopore base calling translates the electrical sig-
nals produced by the sequencer into a sequence of DNA bases. The
signal level depends on the context of about 5-12 DNA bases

passing through the nanopore. The signal is read about 4000 times
per second and DNA moves through the pore at the speed of ~450
bases per second, but the speed is rather uneven. This means that on
average each shift of the context by one base corresponds to roughly
9 measured values with a large variance. This makes the problem
somewhat similar to speech recognition. Note that different contexts
may produce very similar signal levels and that there is a significant
amount of noise present in the signal readouts, complicating the
base calling problem.

To address complex interactions of the context and noise in the
signal readouts, current state-of-the-art base callers use neural net-
works to predict DNA bases passing through the pore. While RNNs
propagate state information as they process sliding windows of the
input signal, CNNs process an entire fixed-sized window of the sig-
nal in parallel (see Goodfellow et al., (2016) for an overview of
CNNs and RNN). In this work, we use the CNN architecture.

A convolutional layer is the dominant basic building block of
many neural network architectures, mostly in the domain of image
recognition, but recently also for automated speech recognition
(Kriman et al., 2020; Li et al., 2019; van den Oord et al., 2016). In
this paper, we consider 1D convolutions, which take as an input a
tensor of dimensions (T, Ci,) representing a data stream of length T,
each data point containing C;, values called channels. They produce
an output tensor of dimensions (T, Coy) by applying a linear trans-
formation to sliding windows of size D (convolution depth) of the
input tensor (see details in Section 2).

Through the years, the deep learning community went from net-
works with simple convolutional layers to more complex layers
which use skip connections and specific special classes of linear
transformations. These changes led to improvements in training and
inference speed as well as in training convergence. The layers are
typically organized in a fractal design, where the architecture is com-
posed of several high-level layers, and these are in turn composed of
more basic computation units. We depict both simple and more
complex layers by rectangles and indicate the use of results from one
layer in another layer by arrows.

The work in this paper is based on the QuartzNet architecture
(Kriman et al., 2020) for speech recognition, which has also been
used in the Bonito base caller (Oxford Nanopore Technologies,
2020) developed by ONT. Briefly, a window of the raw signal of
length T is used as an input to a deep CNN which uses several types
of blocks to process the signal (Fig. 1). In the final decoder block,
the network produces a tensor with five output channels. For each
output position, the values of the five channels are converted by the
softmax function into a probability distribution over possible out-
puts A, C, G, T,-, with dash corresponding to an empty output.
Finally, the CTC layer (Graves et al., 2006) chooses a DNA sequence
with the highest posterior probability.
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Fig. 1. Bonito CNN-based architecture. The architecture is composed of high-level
blocks depicted as colored rectangles, where the output of the previous block serves
as an input of the following block. The neural network is composed of three blocks
of type C, five blocks of type B and a Decoder block. The construction of these block
types is depicted on the right; each block type is composed of standard building
blocks used in deep learning
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In the QuartzNet/Bonito architecture, convolutions are organized
into building blocks of two types B and C. The structure of a C-type
block is simply a sequence of three layers: a convolutional layer, a
batch normalization (Ioffe and Szegedy, 2015) (a layer that renormal-
izes channel values and stabilizes gradients for better training) and an
activation function [Bonito uses Swish (Ramachandran et al., 2018)].

The B-type blocks use residual skip connections. The input signal
is split into two branches. The main branch consists of R copies of a
C-type sub-block, with the last copy omitting the activation func-
tion. The second branch, called skip connection, consists of a point-
wise convolution and batch normalization. The two branches are
summed together and an activation is applied to the output.

The resulting network used in Bonito is large and computational-
ly intensive. Some intermediate results reach size of up to B x T/3 x
464, where B is the number of sequences combined to a batch and T
is the length of the sequence. The network has 36 convolutional
layers with 6.6 million parameters in total, requiring roughly 2.2
million multiplications per sample.

2 Materials and methods

In this section, we present the architecture of our new base caller
designed for the Edge TPU. Our architecture is inspired by the
Bonito CNN, which was drastically scaled down and key compo-
nents were replaced by the enhancements described here. Further
technical details regarding adapting Bonito-like architecture to the
Edge TPU are described in the Supplementary Material.

The k-blueprint-separable convolutions. The basic form of a con-
volutional layer is a full convolution, which takes as an input a tensor X
of dimensions (T, Ci,) and produces an output tensor Y with dimen-
sions (T, Coy). To apply a convolution with odd depth D, the
input tensor X is first padded with |2| zeros at the beginning and at
the end. The output is then computed as follows: Y;; =
Y 0<d<po<i<c, Xe+diWjdi+ Bj, where W and B are trained weights
representing convolution kernel weights and bias, respectively.

An obvious drawback of full convolutions is a large number of
parameters (Co, DCin) and required flops (TCou: DCyy). A standard so-
lution is to use a separable convolution (Mamalet and Garcia, 2012),
which is an approximation of the full convolution by a composition of
two operations: depthwise and pointwise. The depthwzse opemtzon
works on each channel separately: Z;; = 3" ;. p Xi1d; Wy 7) +BP
This is followed by the pointwise opemtzon%whlch mixes the channels
at each time point: Y;; =3 ;. ¢, Zt,W ) 4+ B ") This reduces the
flops from TCouDC;, to T(DCi, + Cnutcm) The ordering of point-
wise and depthwise operations was chosen somewhat arbitrarily, and
reversing it may improve the accuracy (Haase and Amthor, 2020). The
variant with the reversed order is called a blueprint-separable convolu-
tion. Figure 2 illustrates receptive fields of basic operations used in
convolutions.

Recent works (Gupta and Akin, 2020; Liu, 2020; Xiong et al.,
2021) indicate that separable convolutions do not always improve
the speed on non-CPU architectures, because the depthwise oper-
ation requires a smaller ratio of flops to memory operations, which
are generally slow. A full convolution with depth D =3 can be faster
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Fig. 2. Receptive fields for basic types of convolutions. For each convolution type,
the two rows represent input and output data of the convolution. Multiple channels
are stacked. The colored value in the output tensor is computed from the values of
the same color in the input tensor
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than a separable convolution with the same depth (Xiong et al.,
2021). Full convolutions with small depths are thus feasible in image
recognition, while in base calling, the kernels need to be much larger.

Our design of k-separable convolutions is heavily influenced by
this observation. Our goal is to reduce the time-consuming depth-
wise operations using dilation with step size k, and compensate by
replacing the pointwise operation by a convolution operating on a
window of small size k instead of a single point, as illustrated in
Figure 3.

Namely, we start with what we call a fat-pointwise operation,
which is a standard convolution of depth k:

P P
Zyj= Xt+d.i‘Wl-(yd?,~ + B,( )
0<d<k0<i<Cy

The second step uses a dilated depthwise operation with depth D/k,
Wthh skij s points by using dilation k: Yy =30, p Zeide;
w /) + B, ). This reduces the depthwise kernel (and thus memory I/O)
by a factor of k, while retaining the receptive field D of the whole layer.

Note that the special case of k=1 leads to a standard blueprint
convolution, while we typically use k=3, which on the Edge TPU
roughly maintains the same computation time as separable convolu-
tions, while increasing the accuracy.

Figure 4 demonstrates the performance of k-separable convolu-
tions on two configurations used in our experiments in the next sec-
tion. Our k-separable convolutions offer running times comparable
to separable convolutions, while providing roughly k& times more
parameters, which increases their expressive power.

Residual block with depth-to-space compression. Our second
change also targets reduction of the depthwise convolution. As
shown in Figure 4, when we apply convolutions on a shorter input,
we can use more channels in a comparable time. Our idea is to re-
design the residual block of the CNN (B-type block in Fig. 1) so that
we compress its depth and increase the number of channels. In par-
ticular, compression with depth-to-space ratio x : y means convert-
ing input tensor (T, C) to tensor (T/x,Cy) using a strided
convolution with both depth and stride set to x (Fig. 2). This convo-
lution takes x consecutive data samples of C channels and converts
them into a single compressed sample of Cy channels. At the end of
the residual block, we restore the original dimensions with a strided
transposed convolution. This makes the new block a drop-in re-
placement for the original B-type block design (Fig. ).

Compression ratio x/y < 1 saves memory, which is essential
due to limited Coral resources. While compression may sometimes
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Fig. 4. Inference time of different convolutions on the Coral device. Note that point-
wise corresponds to a full convolution with depth =1

decrease accuracy, the network may learn to de-duplicate informa-
tion from consecutive data samples, and thus prevent data loss. In
fact, any subsequent pointwise operations effectively operate on x

(a) |
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y
SeparableConv(depth, chan)
BatchNorm

Bonito “B”-block with given depth, channels,
repeat and activation function.

original samples, yielding increased receptive fields. Thus, we can
further lower the depth of the depthwise operation in the block, off-
setting larger computation of pointwise operations, which were
increased by a factor of y?/x. In our experiments, compression ratio
3:2 works well on Coral.

To complete the residual block, we add the depthwise operation
before the decompression. While the original B-type block repeats
separable convolutions R times, we repeat them R—2 times, since
we consider the compression and decompression blocks as replace-
ments for two separable convolutions.

Identity initialization. A proper neural network initialization can
affect both trainability and final accuracy of models (Glorot and
Bengio, 20105 Le et al., 2015; Mishkin and Matas, 2016; Sutskever
et al., 2013; Zhang et al., 2019). A standard way of initializing
CNN architectures is to draw the entries of weight matrices from the
uniform distribution U(—k, k), where k = 6/1/Ciy + Cour, and to set
the bias terms to zero (Glorot and Bengio, 2010). The weighting fac-
tor k is used to keep the gradients from vanishing or exploding as
the number of layers increases. Recent introduction of BatchNorm
however obviates such problems, as the results are renormalized
(Toffe and Szegedy, 2015).

In some cases, task-specific initialization may bring an improve-
ment over the generic initialization strategies (Le et al., 2015), and
this proved to be the case for our base calling application as well.
We initialize all k-separable blocks within the compressed main
branch to near-identity, that is, depthwise kernels are initialized as
W;?) =0|ip/k)j2)d and fat pointwise kernels to W/.I;i ~
O\k/2).d(0ij + U(—¢,¢€)), where oy, =1 if and only if x=y. We
experimented with several other initializations and observed that set-
ting the depthwise operations to identity helps the most, while set-
ting pointwise operations to identity brings only a small additional
improvement. On the other hand, initialization of the skip connec-
tion as well as of the compression/decompression block does not
seem to affect the results significantly.

In our experiments, the identity initialization described above
speeds up the process of training and decreases overfitting (Section
3). We believe that this surprising effect is explained by the proper-
ties of the base calling task.

Due to the nature of nanopore raw sequencing data, base calling
is composed of two tasks. First, the input signal needs to be seg-
mented into events, each event corresponding to the shift of the
DNA currently read by the nanopore head by one base. The length
distribution of these events is highly variable. The second task is to
recognize the base under the nanopore head given the context of
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Fig. 5. Residual block with depth-to-space compression (right) is a drop-in replacement for a regular Bonito B-type block (left). The first separable convolution is replaced by a
compression block, which compresses the input tensor dimensions from (T, C) to (T/x, Cy). Subsequent separable convolutions use depth reduced by a factor of x and channels
increased by a factor of y. The final separable convolution is replaced by a decompression block
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several events. Although initially base callers have performed these
tasks separately, modern neural network approaches combine them
into a single optimization problem.

One would assume that the second task of correctly identifying
bases is the core of the problem. A quick experiment in which
Bonito is provided with an additional binary input indicating event
boundaries (as determined from a ground-truth alignment to a refer-
ence) shows otherwise. In particular, the additional input dramatic-
ally speeds up the training so that the network can in minutes
outperform days-long Bonito training. While the modified network
cannot be used for practical base calling (because the base caller ob-
viously cannot receive ground-truth event boundaries as an input), it
suggests that identification of events is in fact the harder part of the
base calling task. This is further corroborated by the fact that even a
simple logistic regression can distinguish purines A, G from pyrimi-
dines C, T in a correctly segmented signal.

Our depthwise identity initialization indeed makes sense assum-
ing that the network spends much more time learning how to split
the raw signal into events rather than recognizing individual bases.
Identity initialization may allow the network to learn the easy task
of distinguishing bases first and then spend the rest of its capacity on
learning intricate time-dependencies without the need for unlearning
spurious long-range correlations that may have been introduced by
random initial weights.

3 Results

In this section, we compare the speed, energy consumption and ac-
curacy of DeepNano-coral with other tools on a dataset of R9.4.1
reads from Klebsiella pneuwmoniae (Wick et al., 2019) and human
(Jain et al., 2018) (Supplementary Material). The base calls were
mapped to the reference using minimap2 (Li, 2016).

Table 1. Comparison of base calling accuracy

DeepNano-coral slightly outperforms Guppy fast in most accur-
acy measures (Table 1). Guppy fast would currently be a method of
choice for live base calling on a computer with a recent GPU card
(compute capability 6.2, 4 GB of memory). As demonstrated earlier
(Boza et al., 2020), even slightly lower accuracy of DeepNano-blitz
is sufficient for run monitoring, such as barcode composition or
metagenomic analysis. Note that DeepNano-blitz provides real-time
base calling on a CPU without the use of any accelerator. Guppy in
the high accuracy (hac) mode illustrates accuracy gains possible with
more extensive computational resources typically beyond the possi-
bilities of real-time base calling.

We have measured the speed and energy consumption on two
computers with different setups (Table 2), a desktop (i7-7700k 4
core CPU; NVIDIA GTX 1650 GPU) and a laptop (i7-7700HQ 4
core CPU) incapable of running the GPU version of Guppy. To run
DeepNano-coral, we have attached the Coral Edge TPU device
through USB 3.0 interface.

On both computers, DeepNano-coral achieved the speed neces-
sary for live base calling (1.5 M signals per second) and used less
than 11'W (computed as a difference between the idle energy con-
sumption and the consumption during base calling). On our testing
set, the total energy spent on base calling was 0.58-0.68 Wh, rough-
ly half of the energy used by Guppy fast on the desktop. Although
Guppy fast consumed less energy when baseline is included due to
its shorter running time, in a practical setting, this would not trans-
late to energy savings as the computer needs to run throughout the
sequencing.

DeepNano-coral runs on a GPU at lower speed and with higher
energy consumption than GPU- and CPU-optimized software. This
underlines the importance of optimization of the network architec-
ture for a particular platform.

To further illustrate the impact of our new network designs on
the base calling accuracy, we started with the small Bonito

K.pneumoniae Human
Base caller Mapped (%) Median accuracy (%) Mapped (%) Median accuracy (%)
Guppy 4.0.11 hac 100 94.7 93.4 89.8
Guppy 4.0.11 fast 100 91.2 92.1 84.7
DeepNano-coral 100 92.4 88.5 87.2
DeepNano-blitz 80 100 90.4 86.1 84.3

Note: Read accuracy is computed as one minus the ratio of the alignment edit distance and the base call length. We report the median read accuracy.

Table 2. Energy consumption and speed of different base callers (DN, DeepNano)

Base caller Power (W) Speed (signals/s) Time (s) Energy for base calling Total energy (Wh)
(Wh)

Desktop
Idle baseline 62 — — — —
DN-coral 72-73 1.52M 234 0.68 4.71
DN-blitz 80 (4 168-170 2.12M 168 4.94 7.84
threads)
DN-blitz 80 (2 120-122 1.13M 316 5.09 10.53
threads)
Guppy fast 110 3.32M 107 1.42 3.27
Guppy hac 135 79 k 4495 91.14 168.56
DN-coral on GPU 154 1.34M 265 6.8 11.3

Laptop
Idle baseline 18 — — — —
DN-coral 27 1.51M 235 0.58 1.76
DN-blitz 80 (4 73 1.53M 232 3.54 4.70
threads)
DN-blitz 80 (2 56 907 k 392 4.13 6.09

threads)
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architecture (Supplementary Material), in which we replaced various
components by our new designs presented in the Section 2. In these
experiments, we modify only B-type (residual) blocks, keeping the
standalone C-type blocks the same. We however verified that alter-
ing configuration of these C-type blocks does not affect the accuracy
significantly.

Figure 6 shows the accuracy and speed starting with the small
Bonito and adding the following features: 3-blueprint-separable con-
volutions, compression with ratio 3:2, combination of the two and
finally the identity initialization. For each variant, we test several
kernel depths. Note that 3-separable convolutions have a symmetric-
al receptive field only for depth of size k =3(2n+1). In most
experiments, we stop at kernel size 21, because larger kernels lead to
base calling speed below the speed of sequencing. In general, adding
our modifications increases the accuracy at comparable speed, and
the most accurate version is the one with all our improvements
combined.

4 Discussion

In our work, we combine novel improvements to the existing base
calling architecture with an emerging off-the-shelf acceleration de-
vice in order to solve an important problem of real-time base calling
of nanopore sequencing data. In particular, we have designed new
types of blocks which can be used as drop-in replacements for separ-
able convolutions and QuartzNet-style residual blocks, potentially
improving their speed/accuracy tradeoff in other applications as
well.

From a practical standpoint, our work enables real-time base
calling with low energy consumption on modest hardware with add-
ition of a $70 USB device. DeepNano-Coral provides a better accur-
acy than Guppy-fast, which is currently a standard tool for real-time
base calling when using GPUs. This contribution will help research-
ers attempting nanopore sequencing in field conditions with limited
energy resources. Using Edge TPU as an alternative to GPU chips
may also help to design new devices specifically targeted at nanopore
sequencing, analogous to the MK1C device manufactured by ONT.

Further research into decreasing the size of the base calling neur-
al networks may yield even better results on small accelerators. One
option is to use knowledge distillation (Hinton et al., 2015), where a
smaller network is trained on outputs from a larger network.
Another avenue is to consider a richer set of outputs from the net-
work. In our case, the softmax layer output probabilities over the
{A,C,G,T,—} alphabet, which is followed by CTC decoding.
Guppy and Bonito v0.3 use a more complicated scheme, which
could be adapted. The risk here is that we would need to do more in-
tensive decoding on the CPU, which may become a bottleneck.
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