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The precision of value-based choices depends
causally on fronto-parietal phase coupling
Rafael Polanı́a1,*, Marius Moisa1,2,*, Alexander Opitz3,4, Marcus Grueschow1 & Christian C. Ruff1

Which meal would you like today, chicken or pasta? For such value-based choices, organisms

must flexibly integrate various types of sensory information about internal states and the

environment to transform them into actions. Recent accounts suggest that these

choice-relevant processes are mediated by information transfer between functionally

specialized but spatially distributed brain regions in parietal and prefrontal cortex; however, it

remains unclear whether such fronto-parietal communication is causally involved in guiding

value-based choices. We find that transcranially inducing oscillatory desynchronization

between the frontopolar and -parietal cortex leads to more inaccurate choices between food

rewards while leaving closely matched perceptual decisions unaffected. Computational

modelling shows that this exogenous manipulation leads to imprecise value assignments to

the choice alternatives. Thus, our study demonstrates that accurate value-based decisions

critically involve coherent rhythmic information transfer between fronto-parietal brain areas

and establishes an experimental approach to non-invasively manipulate the precision of

value-based choices in humans.
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T
aking choices based on the value of different options
is fundamental for survival in most animal species,
including humans1. A large body of research suggests

that this cognitive function depends critically on integration
of neural activity in several widely distributed brain regions2,3.
For instance, to answer whether we want chicken or pasta, we
must process the incoming sensory signals (for example, in terms
of colour, shape, size, frequency and so on) to recognize the
choice alternatives3,4, compute and compare the values for the
different options based on sensory and mnemonic information3–5

and adequately map these value computations to the appropriate
actions6.

Candidate brain areas that assign and compare values include
the medial–prefrontal and parietal cortex, as demonstrated in
single-unit recording studies in non-human primates7–10.
However, it is largely unclear why value signals should be
present in parallel for both of these regions. Recent theoretical
models suggest that this may reflect an integrated circuit in
which medial–prefrontal areas compute value signals5 and
convey them to parietal areas, where these value signals are
mapped to locations in space and/or appropriate actions6. The
evidence for such accounts comes mainly from whole-brain
imaging studies in humans, which infer such communication
based on co-activation or functional connectivity between these
areas6,11–14. However, due to the purely correlative nature of
neuroimaging methods, it is so far unclear whether the statistical
dependencies in fronto-parietal activity during value-based
choices indeed reflect neural communication that is functionally
relevant for the ability to take precise value-based choices, or just
some functionally irrelevant by-products of the choice process.
Moreover, most methods for the analysis of co-activations or
connectivity do not allow inference on the directionality of this
communication, so it is largely unresolved to what degree
observed connectivity really reflects directed information transfer
from medial frontal to parietal regions (but see ref. 6 for evidence
based on fMRI consistent with that view).

One mechanism that may be specifically relevant for directed
large-scale interactions is coherent phase-coupling of neural
oscillations2,15, which is thought to lead to efficient impact of
spiking in one neuronal population on interconnected populations.
In line with that theory, a recent electroencephalography (EEG)
study showed that the strength of phase coupling in neural
oscillations of parietal and frontopolar regions predicted the
accuracy of value-based choices13. However, several fundamental
questions about the role of these large-scale interactions remain
unresolved. For instance, is oscillatory synchronization between
spatially distant brain regions—like the parietal and frontal
cortices—indeed causally relevant for value-based choices, or is it
just an epiphenomenon? Can this issue be investigated in healthy
humans? If this neurobiological mechanism mediates precise
value-based choices, then is it domain-specific or is it generally
required for all types of decisions (for example, does it similarly
influence value-based and perceptual choices)?

In the present work, we address these issues with the
combination of a recently developed choice paradigm measuring
perceptual- and value-based decisions with identical stimuli and
motor responses13 together with a novel non-invasive stimulation
technique that allows exogenous modulation of phase coupling
between segregated cortical regions in healthy humans16,17 and a
computational model of decision making that can disentangle
distinct latent variables that correspond to different aspects of the
decision process18. This allows us to test whether specific patterns
of oscillatory coherence between frontal and parietal cortex are
indeed functionally relevant for value-based choices.

Results
Our participants alternated between making perceptual or
value-based choices on selected pairs of food stimuli13

(Fig. 1a,b, Methods). Perceptual choices required participants to
choose the larger item, whereas value-based choices required
them to pick the item they preferred to eat. For both types of
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Figure 1 | Behavioural paradigm and transcranial stimulation protocol. (a) Example screen from the decision stage. Participants were cued in advance

about the type of decision that was required. For value-based decisions (VDM), subjects chose which item (the upper or the lower item) they preferred to

eat at the end of the experiment. For perceptual decisions (PDM), they chose which item covered more of the black background. (b) Subjects alternated

between blocks of PDM or VDM trials (6–10 trials per task-block). The order of the blocks was randomized across participants. Every 35 trials the

stimulation was switched on or off. (c) tACS electrode set-up. Following the results of a previous EEG study13, the active electrodes were located over the

mFPC (Fpz 10–20 EEG coordinate) and over the parietal cortex (Pz 10–20 EEG coordinate). A common and much larger reference electrode was

mounted over the right shoulder. (d) Schematic of the oscillatory currents applied on each of the active electrodes. In experiment 1, subjects received either

anti-phase stimulation (signals shifted by 180�) or no stimulation. Experiment 2 was identical to experiment 1, with the difference that subjects received

in-phase stimulation (signals aligned at 0� difference) instead of anti-phase stimulation.
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decisions, stimulus pairs were identical but were preselected based
on the participants’ ratings to provide one of four different levels
of evidence informing the perceptual or value-based choice
(Methods). Perceptual evidence was defined as the absolute size
difference between the stimuli, whereas value evidence reflected
each pair’s absolute value difference (in both cases, larger
differences provide more evidence for the preferred choice
option). The only difference between the two types of decisions
was therefore which type of evidence needed to be accumulated
for the choice; we could similarly define choice accuracy for
both types of decisions as the consistency of decision outcomes
with the previously acquired ratings of both stimuli within the
choice pair13. During the decision period, the subjects alternated
between blocks of perceptual or value-based choices (6–10 trials
per task-block; see Methods for more details).

During the decision task, participants received transcranial
alternating current stimulation (tACS), a non-invasive
stimulation technique that entrains cortical rhythms in a
frequency-specific manner17,19–24. We applied tACS in
a multielectrode set-up shown to induce coupling or decoupling
of behaviourally relevant neural oscillations between distant
cortical areas16. We adapted this methodology to exogenously
modulate the fronto-parietal oscillatory circuit (in the gamma
band B55 Hz) that was previously shown to selectively correlate
with the accuracy of value-based choices, but not with perceptual
choice accuracy, general task performance or attention13. For this
purpose, we placed two active electrodes at the specific scalp
positions for which oscillatory coherence was observed in that
study, located over medial frontopolar cortex (mFPC) and
parietal cortex (Fig. 1c, Methods, and Supplementary Fig. 1).
To confirm the electrode placement, we also computed the
electric field distributions on the cortex resulting from our tACS
electrode montage using a realistic finite element head model25.
The maxima of the predicted electric field were relatively
focal and occurred precisely in our regions of interest: the
posterior parietal lobule and the medial frontopolar cortex
(Supplementary Fig. 1). These were the very regions we
intended to target with our manipulation, based on our scalp
EEG data and previous MEG studies using a similar modelling
approach during value-based choices26.

Experiment 1. Healthy volunteers (n¼ 27) received oscillatory
currents at 55 Hz that were modulated by a 6 Hz envelope, to
closely mimic the endogenous phase-amplitude modulation
occurring in the human cortex during cognitive tasks27,28.
Crucially, in this experiment the tACS oscillations were shifted
by 180� (anti-phase condition, Fig. 1d) between both active
electrodes. We hypothesized that this exogenous induction of
anti-phase coupling would decrease the probability that
presynaptic activity in one area would drive postsynaptic spikes
in the second area2,29, thereby reducing neural coherence and
the fronto-parietal information transfer thought to be relevant for
the precision of value-based (but not perceptual) choices13.

In line with our hypothesis, we found that value-based choice
accuracy was indeed decreased during trials of anti-phasic
stimulation (main-effect stimulation b¼ � 0.133±0.05,
P¼ 0.009) and that this effect scaled up with the degree of
evidence for one item over another (interaction stimulation�
evidence b¼ � 0.1±0.051, P¼ 0.03; the largest effect was
present for the highest evidence level (T(26)¼ 3.22, P¼ 0.003),
whereas the smallest effect was observed for the lowest
evidence level (T(26)¼ � 0.05, P¼ 0.95); see Fig. 2a,b). In
contrast, perceptual choices were not affected by the tACS
(main-effect stimulation b¼ � 0.05±0.07, P¼ 0.35; interaction
stimulation� evidence b¼ 0.07±0.069, P¼ 0.3; Fig. 2a,b).

A stimulation� evidence� task interaction confirmed the
specificity of the tACS effects for value-based (but not perceptual)
choices (b¼ 0.11±0.043, P¼ 0.02; Fig. 2a,b). None of these
effects were influenced by the hunger level of the participants or
by the other, choice-irrelevant type of evidence (Supplementary
Table 1). Moreover, inspection of the data at the subject-level and
non-parametric statistical analyses revealed that the effects of
tACS were present in the vast majority of the subjects and were
not due to the influence of outliers (Supplementary Fig. 2).
Interestingly, the reduction in the accuracy of value-based choices
was not accompanied by any significant increase in the reaction
times (P40.2 for all stimulation effects). Reaction times in the
perceptual choices were virtually identical for periods with or
without tACS (P40.7 for all stimulation effects, Fig. 2a).

The results so far show that exogenous induction of
desynchronization between mFPC and parietal regions
specifically decreases the accuracy of value-based choices;
however, these initial analyses do not provide insights into the
mechanisms underlying the observed modulation of value-based
choices. It is particularly unclear why stimulation had a
significant effect on accuracies, but not on reaction times. To
clarify these issues, we implemented the drift diffusion model18

(DDM), a well-established mathematical model of human choices
that allowed us to disentangle how the manipulation of coherence
affects several latent variables corresponding to distinct
components of the decision process30. The latent variables we
tested included the strength of evidence for the alternatives (mean
drift rate parameter), the trial-to-trial reliability of the evidence
(drift-rate variability), a decision caution parameter (threshold
parameter), the time taken to initiate the choice and the motor
responses (no-decision time), and its associated trial-to-trial
variability (see Methods for details of the parameters used in this
model; Supplementary Fig. 3). Fits of the model to empirical data
fully reproduced the influence of tACS on choice behaviour
(Supplementary Fig. 4). We found that during value-based
decisions, tACS significantly increased the variability in the
drift rate (see equation (5) in Methods; PMCMC¼ 0.012, rightmost
panel in Fig. 2c), while not affecting any other parameter of the
DDM, including the mean drift rate (PMCMC40.6, Fig. 2c) and
the starting point variability (Supplementary Fig. 5). We also
formally confirmed that the increase in drift-rate variability was
indeed specific and not just due to any overall change in both
drift rate and the associated noise, by analysing the coefficient of
variation (a normalized noise-to-signal measure, defined here as
the ratio of the drift-rate variability to the mean drift-rate). The
coefficient of variation was indeed significantly lower during
periods of anti-phasic tACS (PMCMC¼ 0.008). These results
strongly suggest that disruptions of fronto-parietal coherence by
anti-phasic tACS did not affect the average quality of the value
evidence per se (that is, the drift rate, (PMCMC¼ 0.45, drift-rate
panel in Fig. 2c) but rather reduced the precision with which the
value-based evidence was represented from trial to trial. In other
words, subjects became more variable (imprecise) from trial to
trial in assigning values to the available choice alternatives,
whereas the average value they assigned to the items across all
trials, or the way that they generally accumulated the evidence,
remained constant.

Importantly, our design ensured that the tACS effects
unambiguously reflected influences on the actual choice process
and not on the initial item rating period. This is because any
possible noise in the initial item ratings was perfectly matched
between the active and the sham stimulation, which were given in
a within-subject design. Valuation noise was therefore factored
out of the analysis of the effect of stimulation on choice.

The same stimulation protocol applied during perceptual trials
left all of the DDM parameters unaffected (PMCMC40.3 for all
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DDM parameters), thereby showing that the tACS selectively
affected the precision of value representations. This latter
conclusion was statistically confirmed by a significant
stimulation� task interaction for the coefficient of variation

(PMCMC¼ 0.018). The same interaction was also observed for
control analyses (PMCMC¼ 0.032) of trials with matched
behavioural performance, as implemented by comparing trials
with selected evidence levels from the sham stimulation condition
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Figure 2 | Anti-phasic tACS (experiment 1) decreases the accuracy of value-based choices and selectively increases value-based variability measured

by DDM fits. (a) Observed mean reaction times including both correct and incorrect trials (left) and accuracies (right) for different levels of evidence in value-

based (up) and perceptual choices (down) during off (light colours) and on (dark colours) stimulation periods. Error bars in this panel represent s.e.m. (b)

Parameters from a multiple logistic regression of choice accuracy (n¼ 27) on various regressors (see Methods). As expected, stronger evidence leads to more

accurate choices for both types of decisions. Importantly, anti-phasic tACS significantly decreases the accuracy of value-based choices (negative main effect of

tACS), and this effect scales up with the degree of evidence for one item over another (there is a significant interaction stimulation� evidence). Accuracies of

perceptual choices remain unaffected. (c) Anti-phasic tACS selectively increases the trial-to-trial drift-rate variability parameter in value-based choices only

(difference between the estimated posterior population distributions (Methods); see most right panel highlighted by the green dashed lines). All other

parameters of the DDM remain unaffected by the stimulation. The main effect observed in the actual drift-rate between perceptual and value-based trials is

caused by the fact that accuracies and RTs in perceptual trials were higher and faster, respectively. Error bars in b and c represent the 95% confidence interval

range of the estimated effect sizes (b) and posterior estimates of the DDM parameters (c). *Po0.05, **Po0.01, ***Po0.001.
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for perceptual (only evidence levels 1 and 2) and value-based
choices (only evidence levels 2 and 4; this was confirmed by
comparing the behavioural data between perceptual and value
trials at the above-mentioned evidence levels using paired t-tests:
T(26)¼ 0.25, P¼ 0.8 for reaction times (RTs) and T(26)¼ 0.92,
P¼ 0.36 for accuracies). This demonstrates that the
tACS-induced effects are indeed specifically related to the
precision of value-based choices and cannot be explained by
possible influences on attention or other task-general cognitive
functions.

Even though we did not observe significant effects of the tACS
on reaction times, one may argue that the stimulation induced
a tendency for participants to speed up (Fig. 2a, top left).
In the context of the DDM, faster reaction times accom-
panied by lower accuracy levels are often thought to result
from changes in the decision boundary or the drift rate31,32,
two parameters that were not affected here. Importantly,
DDM simulations confirmed that the specific pattern we
observed (slightly faster RTs accompanied by lower accuracies)
can result from increased variability in the drift-rate without any
change in decision boundary or mean drift rate (Supplementary
Figs 7 and 8). The explanation for this is that higher variability
in the drift rate increases the likelihood of the decision variable
to reach a boundary (irrespective of whether this is correct or
incorrect), resulting in faster responses and poorer choice
accuracies.

The tACS mainly affected performance on trials with a high
value difference between both options (interaction stimulation�
evidence b¼ � 0.1±0.051, P¼ 0.03; Fig. 2a,b), which may
appear somewhat counterintuitive if one assumes that
disruptive stimulation should mainly affect trials with weak
evidence representation. However, this specific interaction
evident in our results is precisely predicted by the DDM
fitted to our empirical data. Panel a in Supplementary Fig. 6
displays the fitted-DDM prediction that the maximum difference
in accuracy between the two conditions caused by tACS
should occur at intermediate levels of evidence (close to Evidence
Level¼ 4, the maximum level of evidence in our study,
see Supplementary Fig. 6b). The DDM also reveals that this
specific interaction of evidence level and stimulation is mediated
by the change of drift-rate variability induced by the tACS
(Supplementary Fig. 6c). This is evident in DDM simulations
of systematic variations in drift-rate variability, which result in
a monotonic decrease of accuracies as a function of increased
drift-rate variability. The maxima of this decrease are again
located at intermediate evidence levels (approximately at
Evidence Level¼ 4, Supplementary Fig. 6c), fully consistent
with the effects we observe in our data. Therefore, the DDM
can provide a mechanistic explanation for the somewhat
counterintuitive results we observe, namely that the tACS-
induced reduction in choice accuracy for intermediate (B78%)
levels of accuracy is caused by increases of the trial-to-trial
variability in the readout of the value evidence.

Experiment 2. In order to confirm that the results obtained in
experiment 1 were specifically due to disruption of coherence
between the stimulated sites, rather than any influences on the
local activity in each of the areas, a new set of participants
(n¼ 27) took part in a second tACS protocol. The oscillations
induced through the mFPC and parietal electrodes were identical
with those used in the first experiment, but they were now
perfectly aligned (that is, phase difference¼ 0; Fig. 1d). Here we
expected either a performance enhancement for value-based
choices or no change in behaviour. We found that this
stimulation protocol did not significantly change accuracies or

reaction times for either tasks (P40.2, for all factors including
stimulation; Supplementary Table 3) and also had no influence on
any of the DDM parameters (Fig. 3). We speculate that the
absence of effects could reflect two possible explanations: first,
synchronization of presynaptic spikes from a sending population
must coincide with the presynaptic spikes in a receiving area in a
precisely timed manner2,29. In our experiment we used a time lag
of zero, but the optimal lag might be different from zero29

and somewhat variable across subjects33. Second, participants
taking part in our study were young healthy volunteers; it is
thus possible that mFPC–parietal phase coupling is so close to
optimal that improvements in value-based choice performance
are difficult to achieve with our zero-lag stimulation protocol.
In this latter case, however, a tACS-related enhancement of
performance may still be possible in individuals with
neuropathologies associated with abnormal large-scale
synchronization34. Irrespective of these considerations, our
results from experiment 2 clearly show that the influence of our
anti-phasic tACS protocol on the precision of value-based choices
(experiment 1) is not due to an entrainment of neural oscillations
or noise at either site alone, but specifically reflects the disruption
of temporally precise phase coherence of mFPC–parietal
oscillations.

Experiment 3. In the previous experiments, we administered
tACS to the two locations at either perfect counter-alignment
(180� phase shift, experiment 1) or in full alignment (0� phase
shift, experiment 2). However, as discussed above, it may be
argued that these phase shifts in the exogenously applied
protocols are not ideally suited to influence biological phase
coupling between the two stimulated regions, which may have to
account for the delay in neural transmission of signals between
both sites. We therefore conducted a new experiment that
allowed us to explicitly test for this delay, thereby confirming our
results and mechanistically specifying the fronto-parietal phase
coupling underlying value-based choices. To this end, a new set of
participants (n¼ 32) received tACS over the mFPC and parietal
cortex at six different phase lags between the oscillations over the
two sites (j 2 02p

6 ; 12p
6 ; 22p

6 ; 32p
6 ; 42p

6 ; 52p
6

� �
and sham stimulation

condition). Importantly, all conditions were given in a
within-subject design, within the same experimental session. In
that session, we focused on value-based choices only, at an
evidence level that closely matched the accuracy level observed for
the easiest perceptual choices in experiments 1 and 2 (accuracy
E87%). This allowed us to confirm that the tACS-induced effects
apply only to value-based choices and do not relate to demands
imposed by switching between the two tasks, or to focusing
attention on one stimulus dimension while avoiding distraction of
the non-relevant evidence (as it could have been the case in
experiments 1 and 2).

We reasoned that if choice behaviour is directly modulated by
the phase of synchronized activity between the tACS protocols
over both sites, then we should observe that choice accuracy should
be better explained by a sinusoidal parametric model (as a function
of the phase difference between the fronto-parietal tACS
oscillations) than by a model with a single intercept. The sinusoidal
model used here can be conveniently written as a linear function of
sines and cosines, that is, accuracy¼ b0þb1 sin(j)þb2 cos(j)
(see Methods for details). In line with our hypotheses, we found
that the sinusoidal model explained the data better than the
constant model or even a simple linear model (DICcircular¼ � 668,
DICconstant¼ � 661, DIClinear¼ � 660; note that the smaller the
DIC the better the fit; Fig. 4a, see also Supplementary Table 3). Full
anti-phase stimulation significantly reduced performance relative
to both sham (planned post hoc comparisons; T(31)¼ 2.5,
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P¼ 0.008) and full in-phase stimulation (T(31)¼ 1.9, P¼ 0.03).
The maximum accuracy occurred at j ¼ 12p

6 , with a highly
significant difference to full anti-phase stimulation (T(31)¼ 3.74,
Po0.001). In line with experiment 2, we did not find a significant
difference between sham and full in-phase tACS (T(31)¼ 0.43,
P¼ 0.67). Moreover, we reproduced the finding from experiments
1 and 2 that reaction times were not affected by tACS (Fig. 4c and
Supplementary Table 3). Thus, experiment 3 fully replicated the
patterns of results obtained in experiments 1 and 2, but also
demonstrated that the effects of tACS on performance are indeed
specifically tied to the phase of the ongoing oscillations. Moreover,
since accuracy levels in experiment 3 were similar to the accuracies

for the easiest evidence levels in perceptual choices (experiments 1
and 2), we conducted a cross-over comparison between these
experimental conditions. This analysis revealed a significant
interaction (AntiPhase/sham)� (value-based/perceptual choices)
(PMCMCo0.008). Thus, we could again confirm that the oscillatory
coherence disrupted by tACS selectively relates to value-based
choices and not to general cognitive functions such as attention or
task switching.

The precise pattern of value-based choice accuracy across the
different phase angles could also provide us with information on
the directionality of the prefrontal–parietal interactions. Using
trigonometric operations, we estimated the most likely oscillatory
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difference between the frontopolar and parietal cortex from the
fitted circular model coefficients, by applying the following
formula:

ĵ ¼ b1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2

1þb2
2

q

This revealed that the frontopolar phase most likely leads with
respect to the parietal phase by 24�±15� (± represents s.d. of
the population estimate; see Fig. 4b). Interestingly, this empirical
result is in line with suggestions from recent fMRI effective
connectivity studies6 that frontal regions may influence the
activity of parietal regions during value-based choice evidence
accumulation. Thus, by specifying the most plausible phase lag
between the frontal oscillatory phase with respect to the parietal
phase, our data provide empirical evidence for suggestions that
computations of value signals taking place in medial–prefrontal
and frontopolar regions6–8,13,35,36 may serve as inputs to the
accumulation of perceptual and/or action-related evidence in
parietal regions6,11,37,38.

Discussion
Our study shows that value-based choices not only involve
specialized local computations in frontal and/or parietal areas
(as has been shown in recent fMRI39, EEG13, MEG26 and
single-unit recording8,9 studies) but are causally influenced by
the degree of rhythmic synchronization between mFPC and
parietal cortex. This synchronization specifically affects the
precision of value-based but not perceptual choices, and this
effect does not relate to differences in attentional function,
task-switching requirements or general performance between
both types of decisions. However, even though perceptual choices
were not affected by the present manipulation, our results do not
rule out that they may require other types of communication
between parietal and frontal regions. In fact, there is compelling
evidence that other regions of the prefrontal cortex—such
as the inferior frontal junction and frontal eye fields—play a
crucial role in top–down influences on sensory areas and
parietal brain regions during perceptual choices33,40–43. Our
study now demonstrates that oscillatory coherence between

the mFPC and parietal sites is crucial for value-based choices,
but not for matched perceptual decisions. This dissociation
highlights fronto-parietal coherence as a general mechanism
underlying different types of decision making, which may
be expressed in different task-specific networks depending
on the type of information needed for the choice. This
hypothesis could easily be tested in future studies of other types
of decisions using the non-invasive brain stimulation approach
established here.

Our modelling results show that disruption of fronto-parietal
coherence resulted in lowered precision of value-based food
choices. In other words, on any given trial, participants’ choices
became more inconsistent with their preferences as stated before
the experiment, but the average preference across trials remained
stable. This specific change in the trial-by-trial variability of
value-based choices appears fully consistent with recent
proposals about the role of fronto-parietal information
transfer in value-based choices. These accounts assume that
medial–prefrontal and orbitofrontal regions locally integrate
sensory and mnemonic information (from sensory cortices, the
striatum and the hippocampus) to compute values for
the different choice alternatives4,5,7,8. These value signals are
then conveyed to parietal regions, where they can be mapped to
specific locations in space and/or the appropriate motor actions.
This process most likely occurs through functional interactions
between medial–prefrontal and parietal regions6,11,13,14, possibly
by means of direct anatomical connections between the
orbitofrontal cortex and the intraparietal sulcus via the third
branch of the superior longitudinal fasciculus (SLF-III)44.
The tACS-induced variability in the choice process observed
here appears consistent with the notion that the stimulation may
have specifically disrupted the value-to-action transformations6

mediated by the fronto-parietal information transfer, while not
differentially affecting the localized prefrontally mediated
memory-based value computations per se.

Although the effects of tACS were statistically significant and
reproduced by two independent experiments, they were rather
slight in absolute terms. Does this indicate that fronto-parietal
communication only has limited functional importance for
value-based choices? We do not believe this is the case, for
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three reasons. First, non-invasive brain stimulation methods
differ substantially from brain lesions in that they do not fully
obliterate neural activity and the ability to implement the
related behaviour—they usually only reduce and/or slow
performance16,17, as also observed here. Second, our results are
fully consistent with the strength of behavioural changes as
predicted by model simulations (see Supplementary Fig. 6).
In other words, if stimulation does not affect the overall strength
of the evidence for one item over another, but only the reliability
with which this is mapped to the alternatives, then the model
predicts only slight absolute effects on performance, as indeed
observed in our data. Third, even though our tACS protocol
was fully motivated by the previous EEG results13, it is
theoretically impossible to know whether the resulting
parameter combination (for example, stimulation intensity,
frequency, electrode positioning and so on) is indeed optimal
for affecting value-based choices. The impact of tACS could
therefore be optimized in future research by systematic changes
to the protocol, for instance, by selecting tACS frequencies in a
personalized manner or by investigating what electrode montages
allow more focalized modulations in the cortical areas of interest.

Taken together, our findings demonstrate the functional
relevance of oscillatory large-scale brain synchronization for
value-based choices and they show a direct link between observed
choice precision and communication through coherent oscilla-
tions. More generally, our study establishes an experimental
approach to non-invasively manipulate the precision of
value-based decisions in the human brain. This could be
important for clinical and developmental neuroscience, as
pathological variability of value-based decisions is a key symptom
of various disorders (for example, addiction, obesity and other
impulse control disorders1,34,45) associated with disrupted
functional large-scale connectivity.

Methods
Participants and behavioural paradigm. Healthy right-handed volunteers
(n¼ 86, age 20–30 years, 30 females; n¼ 27 in experiment 1, plus n¼ 27 new
participants in experiment 2, plus n¼ 32 new participants in experiment 3) were
included in the study. Subjects were informed about all aspects of the experiment
and gave written informed consent. None of the participants suffered from any
neurological or psychological disorder or took medication that interfered with
participation in the transcranial stimulation study. Subjects received monetary
compensation for their participation in the experiment, in addition to receiving one
food item (see below). The experiments conformed to the Declaration of Helsinki
and the experimental protocol was approved by the Ethics Committee of the
Canton of Zurich.

For all experiments, subjects were asked not to eat or drink anything for 3 h
before the start of the experiment. After the experiment, subjects were required to
stay in the room with the experimenter while eating the food item that they chose
in a randomly selected trial of the value-based decision making task (see below). All
experiments took place between 0800 and 1700 hours. The experiment consisted of
two main steps: (1) the rating phase, and (2) the decision-making task. In the rating
phase, we asked the participants to provide subjective perceptual- and value-based
ratings about the same set of 65 food images using an on-screen slider scale. All of
the food items were in stock in our lab and subjects were notified about this. For
value-based ratings, participants indicated ‘how much they wanted to eat the
presented food snack at the end of the experiment’ (scale from � 10 to 10). For
perceptual ratings, we asked the participants to provide an estimate of ‘how much
(in per cent) they thought the food item was covering the black background within
the white square’ on a scale from 5 to 100% in steps of 5% (ref. 13). Before
providing the ratings, subjects briefly saw all of the items for an effective use of the
value-based rating scale. Similar to our previous study13, the ratings were well
distributed across the rating scale.

Immediately after the ratings, an algorithm selected a balanced set of perceptual
and value-based trials divided into four different evidence levels based on the
individual subjective ratings provided by each participant. Evidence levels for the
value-based task were:

Evidencevalue ¼ rbest � rworst 2 1; 2; 3; 4½ �; ð1Þ
and for perceptual trials:

Evidenceperceptual ¼ rbiggest � rsmallest 2 5%; 10%; 15%; 20%½ � ð2Þ
Where r represents the initial rating, and rbest� rworst and rbiggest� rsmallest

represent the difference of the ratings (that is, the evidence) for a given trial in
value-based and perceptual choices, respectively.

Decision-making trials started with the central presentation (for 3 s) of a word
(length B0.8�, height B0.3�) indicating whether subjects were in a perceptual trial
(word ‘LIKE’) or in a value-based trial (word ‘AREA’). On the subsequent screen,
this task cue word was replaced by the letter ‘L’ or ‘A’ (B0.2�) to remind subjects
that they were in a value-based or perceptual block, respectively. Two food items
were simultaneously displayed, one above and one below (y eccentricity 3.6�; a white
square of 6� width surrounded each food item, see Fig. 1a). In the value-based trials,
subjects indicated which item (upper or lower) they would prefer to consume at the
end of the experiment, while in the perceptual trials, subjects indicated which item
(upper or lower) covered more area within the white square. To make these choices,
subjects pressed one of two buttons on a keypad with their right-index finger
(upper item) or their right thumb (lower item). Subjects had 4 s to make a decision;
otherwise the trial was marked as a ‘miss trial’. We defined a correct choice as a trial
in which the subject chose the item with a higher rating from the separate rating
tasks. Each experimental session consisted of 560 trials divided into 8 runs of 70
trials each. The maximum number of consecutive perceptual or value-based trials in
a single block was pseudorandomized to be between 6 and 10 trials. The 560 trials
were fully balanced across all factors (Trial type: perceptual or value-based; Evidence
Level: 1, 2, 3 or 4; Correct response: Up or Down).

Transcranial alternating current stimulation (tACS). tACS was delivered
through two current stimulators (NeuroConn) connected to a common reference.
Following our previous EEG study13 (see also Supplementary Fig. 1), we placed two
active electrodes (5� 7 cm, transversally mounted) over the scalp locations where
we had observed fronto-parietal coherence during value-based choices, one over
the mFPC (Fpz 10–20 EEG coordinate) and the second over the parietal cortex
(Fig. 1c, Pz 10–20 EEG coordinate). Electrodes were attached to the scalp with the
Ten20 conductive paste (Weaver and company, Aurora, Colorado). Each of these
electrodes was fed by a different stimulator. A common, much larger (10� 10 cm)
reference electrode was mounted over the right shoulder. We induced oscillatory
currents at 55 Hz that were modulated by a 6 Hz envelope, to closely mimic the
endogenous phase-amplitude modulation phenomenon occurring in the human
cortex during cognitive tasks27. The maximum peak-to-peak current delivery by
the stimulators was 2 mA (occurring at the points of maximum amplitude
modulation). In the present study, no EEG measures during tACS were carried out
because of technical difficulties in separating brain activity from the continuous
alternating electric field induced by tACS (it may generally be possible to
distinguish tACS artefacts from EEG data if the tACS electrodes are physically
separated from the EEG electrodes17,19, but such a separation is not possible for
our study where the tACS electrodes are necessarily mounted over the regions of
interest for EEG recordings). In any case, recent studies in humans suggest that
tACS is capable of entraining brain oscillations and modulating brain activity in a
frequency- and topographic-specific manner20,23. Moreover, Ozen et al.22 showed
with neural recordings acquired during tACS in rats that neocortical neurons
oscillate in phase with the oscillatory electric field applied over the scalp, thus
providing direct physiological evidence that tACS is capable of exogenously
entraining cortical activity at the externally applied frequency. These empirical
results have been more recently confirmed by computational modelling21 and
empirical work16,24,46.

During pilot experiments we observed that when the subjects were engaged in
the decision task, they could not discriminate in a given stimulation block (real or
sham) what type of stimulation they were actually receiving. Moreover, subjects
were unaware of the hypothesized effects of the stimulation on the behavioural
task. Therefore, every 35 trials during the interleaved perceptual and value-based
choices, the stimulation was switched on or off (Fig. 1b). Subjects were randomly
assigned to participate either in experiment 1 or experiment 2 and were not aware
(blinded) of the behavioural consequences of applying tACS.

In experiment 3, a new set of participants received tACS over the mFPC and
parietal cortex at 6 different phases (or lags between the oscillations in the two
regions) within the same experimental session: j 2 02p

6 ; 1
2p
6 ; 2

2p
6 ; 32p

6 ; 42p
6 ; 52p

6

� �
and

sham. Every 25 trials the stimulation was randomly switched to one of these seven
stimulation conditions. Behaviour from this experiment was modelled using a
sinusoidal model written as a linear function of sines and cosines, that is,
accuracy¼ b0þb1 sin(j)þb2 cos(j). The model was fitted using a Bayesian
hierarchical framework based on a mixed-effects regression where all coefficient
estimates were treated as random effects across the population.

Behavioural analysis. To investigate the influence of tACS on the accuracy of
responses for each experiment, we performed a hierarchical logistic mixed-effects
regression of choices (correct¼ 1, incorrect¼ 0) on various regressors of interest,
namely: task-relevant evidence level (1 to 4), stimulation (on¼ 1, off¼ � 1), task-
irrelevant evidence level (that is, value-based for perceptual choices and perceptual
for value-based choices, 1 to 4), hunger level (based on subject’s hunger ratings
collected before the beginning of the decision-making task, ranging from 1 to 5)
and the interaction of task-relevant evidence level and stimulation. The
mixed-effects regression had random effects for subject-specific constants and
slopes. The results of these regressions are summarized in Supplementary Table 1.
To investigate the influence of tACS on RTs, we performed a similar linear
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mixed-effects regression. We carried out the regressions with raw RTs and also
log-transformed RTs (to improve normalization). None of these analyses revealed a
significant influence of stimulation on RTs. No statistical methods were used to
predetermine the sample size. Our choice of sample size was based on previous
work using similar behavioural and transcranial stimulation protocols13,16.

Computational model. We analysed the influence of tACS on value-based and
perceptual choices with a prominent mathematical model of two-alternative
decisions (the DDM)18 which incorporates both observed choices and reaction
times to decompose the decision process into distinct latent variables
corresponding to distinct aspects of the choice process47: (1) the efficiency of
sensory evidence accumulation, known as the drift rate (d); (2) any bias in the
choice process (b); (3) the amount of evidence required to take a decision, known
as the decision threshold (a); and (4) the delay in the onset of evidence
accumulation, the non-decision time (t). In addition, we included in this model
two terms capturing the trial-to-trial variability of the drift rate (Z) and the
non-decision time (w). This model therefore enabled us to directly study whether
tACS had a specific influence on any of these parameters that influence the
accuracy and speediness of the decisions.

The decision-making model implemented here is based on a simple one-
dimensional Wiener process48: a dynamical system where the state of evidence X(t)
at time t evolves via the stochastic equation dX tð Þ

dt � Normal d; s2ð Þ, where d
represents the quality of information processing defined as d¼ kE, where E
represents the evidence level (see equations (1) and (2) above) and k a variable that
linearly scales the evidence (drift-rate). For initial conditions, where b represents an
initial bias in the process, it is assumed that the system makes a decision z at time td

whenever X(t)4¼ a (that is, a correct choice) or X(t)r0 (that is, an incorrect
choice). In addition, we accounted for visual processing and corticomuscular
responses delays via the non-decision time parameter t (the RT in each trial is
defined as RT¼ tdþ t). The goal is to find the Wiener distribution Wiener(d, a, t,
b) that best explains the distribution of empirical choices y(z, RT). To this end, we
implement a hierarchical-Bayesian model where each individual data point
y(c,s,i)(z, RT) follows a Wiener distribution48,49

yðc;s;iÞ � Wiener d; a; t; bð Þ ð3Þ

with indices c for conditions (c¼ v for value based, c¼ p for perceptual), s for
subjects (s¼ 1,...,Nsubjects) and i for trials (i¼ 1,...Ntrials).

The hierarchical structure contains three levels of random variation: The trial,
participant and condition. At the trial level, the non-decision time t and the drift
rate d are assumed to vary trial-by-trial:

tðc;s;iÞ � Normal yðc;sÞ; wðc;sÞ
� �

ð4Þ

dðc;s;iÞ � Normal Eðc;s;iÞ�kðc;sÞ; Zðs;cÞ
� �

ð5Þ

where Normal(x,y) represents a normal distribution with mean¼ x and s.d.¼ y, E
represents the trial-by-trial evidence (see equations (1) and (2) above) and k is the
drift-rate scale. Thus, w and Z represent the trial-to-trial variability associated with
the non-decision times and the drift-rate.

Considering the biological plausibility of the model, decision thresholds should
not include a variability term, as it is assumed that decisions are made once a
predetermined threshold is crossed50. We therefore treated the boundary
separation a(c,s,i) as constant across trials (for a given participant) but treated all
interindividual differences per stimulation condition level as random effects:

aðc;s;iÞ � Normal maðsÞ; saðsÞ
� �

ð6Þ

Given that we were working with absolute value differences, we assumed an
unbiased diffusion process, that is, b(c,s,i)¼ 0.5. Condition-specific population
distributions (normal distributions) were also assumed for the trial-to-trial
variability parameters of the drift rate (Z) and of the non-decision time (w), as this
simplifies the comparison of these terms across experimental conditions. For latent
variables at the highest level of the hierarchy (also known as hypergroup
parameters), we assumed flat uninformed priors (that is, uniform distributions).
The resulting hierarchical-Bayesian DDM is shown in Supplementary Fig. 3.

Posterior inference of the parameters in the hierarchical-Bayesian models was
performed via the Gibbs sampler using the Markov Chain Montecarlo (MCMC)
technique implemented in JAGS51. A total of 1,000,000 samples were drawn from
an initial burn-in step and subsequently a total of new 1,000,000 samples were
drawn with three chains (each chain was derived based on a different random
number generator engine, and each with a different seed). We applied a thinning of
1,000 to this final sample, thus resulting in a final set of 1,000 samples for each
parameter. This thinning assured that the final samples were autodecorrelated for
all of the latent variables of interest investigated in this study. We conducted
Gelman–Rubin tests52 for each parameter to confirm convergence of the chains. All
latent variables in our Bayesian models had R̂o1:05, which suggests that all three
chains converged to a target posterior distribution. Posterior population
distributions estimated for each parameter were compared (subtracted) between
tACS conditions (on/off), and we tested whether the resulting distribution (effect)
significantly differed from zero (that is, the null hypothesis) by means of the

cumulative function up to/from 0 depending on the direction of the effect. We refer
to this probability in the main text as PMCMC.
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