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Abstract

Aquatic hyphomycetes occur worldwide on a wide range of plant substrates decomposing in freshwaters, and are known to
play a key role in organic matter turnover. The presumed worldwide distribution of many aquatic hyphomycete species has
been based on morphology-based taxonomy and identification, which may overlook cryptic species, and mask global-scale
biogeographical patterns. This might be circumvented by using DNA sequence data. The internal transcribed spacer (ITS)
region from rDNA was recently designated as the most suitable barcode for fungal identification. In this study, we
generated ITS barcodes of 130 isolates belonging to 6 aquatic hyphomycete species (Anguillospora filiformis, Flagellospora
penicillioides, Geniculospora grandis, Lunulospora curvula, Tetrachaetum elegans and Tricladium chaetocladium), and collected
from streams of Southwest Europe (86 isolates) and East Australia (44 isolates). European and Australian populations of 4
species (A. filiformis, F. penicillioides, G. grandis and T. elegans) grouped into different clades, and molecular diversity indices
supported significant differentiation. Continents did not share haplotypes, except for T. chaetocladium. Overall results show
substantial population diversity for all tested species and suggests that the biogeography of aquatic hyphomycetes may be
species-specific.
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Introduction

Most large eukaryotic plants and animal species have relatively

narrow geographic distributions. By contrast, it has long been

assumed that prokaryotic microorganisms occur essentially every-

where and will grow and reproduce whenever conditions are

suitable: ‘‘everything is everywhere, but the environment selects’’

[1]. Fenchel and Finlay [2] and Finlay and Fenchel [3] extended

the assumption of global distribution to eukaryotic microorgan-

isms. They postulated a transition from ubiquity to biogeography

at a body size between 1 and 10 mm. Many morphospecies

(taxonomy based on morphological differences) of small aquatic

animals and protists are indeed very widely distributed. However,

molecular genetic evidence has shown that reliance on morpho-

logical data inflates the range of geographical distribution of many

microorganisms, including prokaryotes, diatoms and protists [4].

Taylor et al. [5] reached the same conclusion concerning fungi.

For instance, strains of Neurospora discreta were resolved into several

distinct phylogenetic species with different geographic distributions

[6,7]. The genus Lentinula was thought to have 4 morphologically

distinct species [8], but molecular analyses revealed that only 1 of

the 4 was a single phylogenetic species. Each of the other 3

contained 2 phylogenetic species, all with more restricted geo-

graphic distributions [9]. Among fungi, Aspergillus fumigatus seems

to be an exception. Even though the single morphospecies was

split into two phylospecies, both exhibited global distribution [10].

Aquatic hyphomycetes occur worldwide on a wide range of

plant substrates, such as leaves and wood, decomposing in

freshwaters, and are known to play a key role in organic matter

turnover [11,12]. Phylogenetically, most species are affiliated with

the Ascomycota [13]. Historically, their classification has been

based on the morphology and development of conidia (asexually

produced spores). Their predominantly tetraradiate or sigmoid

shapes suggest convergent evolution due to the common need for

attachment to a suitable substrate in flowing water [14]. Molecular

data [15] support and extend the phylogenetic heterogeneity

suggested by morphologies of the teleomorphs (the sexual

reproductive stages) [16].

Many species of aquatic hyphomycetes appear to be cosmopol-

itan; others are more common in certain climatic zones regardless

of longitude. Wood-Eggenschwiler and Bärlocher [17] concluded

that species occurrence is rarely restricted by geological barriers or

by distance. On a worldwide scale, temperature, together with its

influence on vegetation has been suggested as the main factor

determining their distribution. The observation of identical

morphospecies on geologically young islands far from mainlands,

such as the Hawaiian Islands [18], suggests efficient long-distance

transport of viable inocula. However, these conclusions are based

on morphospecies, which ignores cryptic species whose charac-

terization requires molecular data. In the few phylogenetic studies

on this group of fungi no conclusions concerning biogeography

were drawn due to the lack of isolates from diverse and distant
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geographic areas [15,19,20,21,22]. By chance, in a study con-

ducted by Seena et al. [23] the genotypes of Articulospora tetracladia

were found to be geographically widespread with the exception of

Malaysian isolates. In the largest study to date, Anderson and

Shearer [24] observed high genotypic diversity among 391 isolates

of Tetracladium marchalianum from rivers in Illinois and Wisconsin.

Stable genetic differentiation was only observed between the most

distant rivers (, 450 km). Analysis of partial b-tubulin sequence

data suggested that all isolates belonged to a single species, and did

not support the existence of cryptic species within T. marchalianum.

To provide further insight into the biogeography of aquatic

hyphomycetes, we analyzed the internal transcribed spacer (ITS)

sequences of 6 species isolated from streams in Southwest Europe

and East Australia. We hypothesized that strains of these 6

morphospecies would exhibit very distinct biogeographic patterns

due to the distance between the two continents and the lack of any

landbridge. Although little is known about the evolutionary origins

of aquatic hyphomycetes, freshwater Ascomycota are believed to

have originated about 390 million years ago [25,26]. Continental

drift separated Australia from what was left of Pangea ca. 130

million years ago; in the absence of frequent exchange between the

two continents, this should provide ample time for genetic (and

morphological) differentiation. We selected the ITS region, which

shows considerable variation among and within aquatic hypho-

mycete species [21,22,23] and was recently declared the most

suitable barcode for fungal species (http://www.ecbol.org). The

selected taxa (Anguillospora filiformis, Flagellospora penicillioides, Genicu-

lospora grandis, Lunulospora curvula, Tetrachaetum elegans and Tricladium

chaetocladium) are commonly found on decomposing plant-litter in

freshwaters [27,28,29].

Materials and Methods

Dataset
The dataset consists of 130 ITS sequences belonging to 6

aquatic hyphomycete species, A. filiformis, F. penicillioides, G. grandis,

L. curvula, T. elegans and T. chaetocladium, sampled from streams of

Europe (86 isolates) and Australia (44 isolates) between 2009 and

2011 and separated by ca. 18000 km. The European isolates

originated in continental Portugal (58), the Azores archipelago (7),

Spain (19) and Italy (2). All isolates got in this study were deposited

in the culture collection of the Centre of Molecular and

Environmental Biology (CBMA), Department of Biology of the

University of Minho prior to sequencing. Eighteen ITS sequences

of the Portuguese isolates were obtained in a previous study [22]

and had already been deposited in the NCBI. Table S1 shows an

overview of all sequences used in our analyses.

Sampling, Isolation and Culture Conditions
Isolates are maintained in the culture collection of the Centre of

Molecular and Environmental Biology (CBMA), Department of

Biology of the University of Minho. The methodology of fungal

isolation is described in Pascoal et al. [29]. All cultures were grown

at room temperature on 1% malt agar extract during ca. 15 days

before DNA extraction.

DNA Analyses
DNA was extracted with the MoBio Ultraclean Soil DNA

Isolation kit according to the manufacturer’s instructions and

stored at 220uC. For PCR reactions, 14 mL of Accuzyme mix (2x)

(Bioline), ITS1 and ITS4 primers (1.6 mM) [30], MgCl2 (3 mM)

and 2 mL of DNA (1–10 ng mL21) were used in a final volume of

25 mL. PCR reactions were carried out in a Doppio thermocycler

(VWR) as follows: 1) initial denaturation for 2 minutes at 94uC; 2)

40 cycles of denaturation for 45 seconds at 94uC; annealing for 45
seconds at 55uC and extension for 1 minute and 30 seconds at

72uC and 3) final elongation for 10 minutes at 72uC. The PCR

products were run on a 2% agarose gel at 80V for 45 minutes to

check the presence of the desired band. The PCR products were

cleaned with a PureLinkTM PCR purification Kit according to the

manufacturer’s instructions (Invitrogen) and DNA concentration

was checked with a nanodrop instrument (Spectrophotometer

ND-1000, VWR). The amplicons were sequenced at StabVida

(Oeiras, Portugal) using ITS1 and ITS4 primers [30].

Data Analyses
Consensus sequences of ITS region were obtained with

CodonCode Aligner 2.0.6 (Codon Co., USA). Sequences were

aligned using ClustalW [31], divergence was analyzed using

Kimura 2-parameter (K2P) distance [32] and dendograms were

generated with Neighbour-joining (NJ) method [33], using

MEGA4 software [34]. Branch support was assessed with

bootstrap analysis (1000 replicates) [35]. The ITS sequence of

Articulospora tetracladia UMB-014.00 (GQ411288) from GenBank

was used to root the trees. Sequence data obtained during this

study were deposited in GenBank (Table S1).

Standard indices of molecular diversity, namely theta S (hS) and
theta pi (hp), and pairwise Fst values were obtained using Arlequin

3.5.1.2 [36]. Theta (h) represents the distribution of variation

within or among populations when samples are considered to

represent characteristics of the larger group from which they are

sampled. Theta S exhibits the infinite site equilibrium relationship

between polymorphic sites, sample size and h, for non-recombin-

ing DNA sample, while hp estimates the infinite site equilibrium

relationship between the mean number of pairwise differences and

h [37,38].

Results

The phylogeography of 130 isolates belonging to 6 aquatic

hyphomycete species was inferred from ITS sequences. Total

sequence length varied from 513 to 577 bp (A. filiformis, 513–

514 bp; T. elegans, 513–520 bp; T. chaetocladium, 577 bp; Table 1).

Isolates of T. elegans showed the highest variation in sequence

length, while those of G. grandis (519 bp) and T. chaetocladium did

not vary. Anguillospora filiformis showed the highest nucleotide

percentage of A+T, while L. curvula and T. chaetocladium showed the

highest percentage of G+C (Table 1).

Except for L. curvula and T. chaetocladium, NJ trees supported

considerable population diversity within fungal species (Fig. 1).

Isolates of A. filiformis, G. grandis and T. elegans from Portugal and

Australia clustered into distinct clades (Fig. 1A, 1B and 1D), while

isolates of L. curvula and T. chaetocladium did not exhibit geographic

cohesiveness (Fig. 1C and 1F). Flagellospora penicillioides yielded 4

geographic clades (Fig. 1E): clade I consisted of isolates from

Australia, clade II and III included isolates from Spain, Italy and

the Azores archipelago (Portuguese Islands) and clade IV isolates

from continental Portugal.

The average evolutionary divergence was lowest for T.

chaetocladium (0.160.1%) and greatest for T. elegans (2.060.4%).

Geniculospora grandis and T. elegans did not exhibit any sequence

divergence within countries, while maximum divergence was

found among Australian L. curvula isolates (0.560.2%) (Table 1).

Divergence between countries was lowest for European (Portugal

and Spain) isolates of G. grandis (0%) and highest for isolates of T.

elegans from Portugal and Australia (4.260.9%) (Table 1).

Molecular diversity indices hs and hP were higher for isolates

from European than from Australian streams, except for L. curvula

Phylogeography of Aquatic Fungi
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(Fig. 2). Australian isolates of L. curvula showed the highest

molecular diversity indices within all species. On the other hand,

G. grandis isolates did not exhibit any genetic variability within

isolates of Portugal or any other country (Fig. 2). The number of

haplotypes varied between 2 (G. grandis) and 8 (L. curvula) (Fig. 3).

Australia did not share haplotypes with European countries except

for T. chaetocladium (Fig. 3). On the other hand, European countries

shared haplotypes of F. penicilloides, G. grandis and L. curvula (Fig. 3).

Discussion

In the present study, we assessed the intraspecific diversity of 6

aquatic hyphomycete species by comparing strains from Southwest

Europe and East Australia. Internal transcribed spacer regions had

been used successfully to identify Portuguese isolates of A. filiformis,

F. penicillioides, G. grandis, L. curvula and T. chaetocladium [22].

However, since the previous study was limited to fungal strains

from a geographically restricted area (Northwest and Central

Portugal), it did not allow any conclusions concerning cohesiveness

between isolates from widely dispersed regions. Aquatic hypho-

mycete species might form genetic continua between a sequence of

geographically distant connected locations. However, in sparsely

populated or geographically isolated areas, genetically discrete

taxa may be formed and assessed through the analysis of gene

regions with high mutation rates (e.g. ITS). In the current study,

we compared the ITS region in aquatic fungal isolates from

Table 1. Sequence length, nucleotide composition, number of isolates per country, and % divergence between and within
countries of ITS sequences for each of the 6 aquatic hyphomycete species.

AF FP GG LC TE TC

Sequence length (bp)

513–514 517–519 519 520–524 513–520 577

Nucleotide composition

A (%) 23.9–24.2 22.8–23.1 22.2–22.7 22.3–22.5 23.1–23.6 19.8–19.9

T (%) 26.9–27.1 24.1–24.6 24.3–25.2 21.9–22.6 25.9–26.7 25.1–25.5

G (%) 24.3–24.4 24.3–24.8 26.4–27.0 26.2–26.7 24.2–25.1 26.5

C (%) 24.4–24.7 27.8–28.3 25.6–26.6 28.6–29.0 23.1–23.6 28.2–28.6

Country (nu of isolates)

Pt (12) Pt (13) Pt (2) Pt (10) Pt (10) Pt (13)

Aus (5) Az (7) Aus (5) Aus (5) Aus (5) Aus (11)

Aus (13) Sp (3) Sp (3) Sp (2)

Sp (11)

It (2)

Average divergence (%)

0.260.1 0.860.2 0.960.3 0.260.1 2.060.4 0.160.1

Divergence within
countries (%)

Pt:0.260.1 Pt:0 Pt:0 Pt:0 Pt:0 Pt:0.160.1

Aus:0 Sp:0.360.1 Sp:0 Aus:0.560.2 Aus:0 Aus:0

Aus:0 Aus:0 Sp:0.160.1 Sp:0

Az:0.360.2

It:0

Divergence between
countries (%)

Distance Between
Countries (Km)

Aus vs Az 18899 2 0.360.2 2 2 2 2

Aus vs It 16311 2 0.460.3 2 2 2 2

Aus vs Pt 18054 0.260.1 1.860.6 1.660.5 0.360.1 4.260.9 0.160.0

Aus vs Sp 17671 2 0.360.2 1.660.5 0.360.1 2 0.260.2

Az vs It 2774 2 0.360.2 2 2 2 2

Az vs Pt 1185 2 1.860.6 2 2 2 2

Az vs Sp 1452 2 0.360.2 2 2 2 2

It vs Pt 1752 2 1.660.6 2 2 2 2

It vs Sp 1360 2 0.260.1 2 2 2 2

Pt vs Sp 423 2 1.760.6 0 0.160.1 2 0.260.1

Results are based on pairwise comparisons. Standard error estimate(s) were obtained by bootstrap (1000 replicates). Analyses were conducted using the Kimura 2-
parameter method in MEGA4. All positions containing alignment gaps and missing data were eliminated in pairwise sequence comparisons (pairwise deletion option).
AF, A. filiformis; FP, F. penicillioides; GG, G. grandis; LC, L. curvula; TE, T. elegans and TC, T. chaetocladium. Pt, Portugal; Az, Portugal (Azores); Sp, Spain; It, Italy; Aus,
Australia.
doi:10.1371/journal.pone.0045289.t001
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Southwest Europe (continental Portugal, Portuguese Azores

archipelago, Spain and Italy) and East Australia. The 6 selected

species are common in all these geographically distant locations

[27,29]. Neighbour-Joining trees based on ITS showed substantial

intrapopulation diversity for A. filiformis, F. penicillioides, G. grandis

and T.elegans, and intraspecific clades were supported by bootstrap

Figure 1. Neighbour joining trees based on ITS sequences. Neighbour joining trees based on ITS sequences using Kimura 2-parameter
distances for A. filiformis (A), G. grandis (B), L. curvula (C), T. elegans (D), F. penicillioides (E) and T. chaetocladium (F); bootstrap values above 50%
calculated from 1000 full heuristic replicates are shown at the nodes. Scale bar indicates one base change per 100 nucleotides. The sequence of
Articulospora tetracladia UMB-014.00 (GQ411288) from GenBank was used to root the trees.
doi:10.1371/journal.pone.0045289.g001

Phylogeography of Aquatic Fungi

PLOS ONE | www.plosone.org 4 September 2012 | Volume 7 | Issue 9 | e45289



values generally $70%. By using computer simulations and

a laboratory-generated phylogeny, Hillis and Bull [39] found that

bootstrap values $70% usually correspond to a probability $95%

that the corresponding clades are real. Four of the species (A.

filiformis, F. penicillioides, G. grandis and T. elegans) displayed higher

evolutionary divergence between isolates from different continents

(Australia and Europe) than within continents. However, we

should point out that some sampling sites belonging to the same

continent were very close (e.g. sampling sites in Portugal and Spain

for G. grandis), and thus these differences are expected to occur.

Although European and Australian isolates from A. filiformis, F.

penicillioides, G. grandis and T. elegans grouped into different clades,

there was no linear relationship between geographic distance and

evolutionary divergence (p = 0.26, r2 = 0.065). For example,

isolates of F. penicillioides from Portugal and Spain (ca. 450 km

apart) diverged by 1.7%, while from Spain and Australia (ca.

18000 km apart) diverged only by 0.3%.

The maximum divergence of 4.2% was found between isolates

of T. elegans from Australia and Portugal (ca. 18000 km apart),

which exceeds the values reported for fungal intraspecific

variability (0–3%) inferred from ITS sequences [40]. This may

suggest the presence of cryptic species within the T. elegans species

and deserves further investigation. Considerable intraspecific

diversity was previously reported for T. elegans by random

amplified polymorphic DNA (RAPD, [41]) and by amplified

fragment length polymorphism (AFLP, [42]). However, no

significant correlation was found between geographical and

genetic distances, probably because streams were geographically

close (0.5–18.5 km) [42].

Molecular diversity indices, hs and hP, of isolates within

a country were higher for Portugal than for Australia, except for

L. curvula. On the other hand, G. grandis did not show any

difference within isolates of the same country, but it should be

noted that the number of isolates was low (2 to 5 per country

contrasting with 3 to 10 per country for L. curvula or 2 to 13 per

country for F. penicillioides, respectively). In addition, isolates of G.

grandis were sampled at unique sites within each country, except

for Portugal. The same pattern was found for Australian isolates of

A. filiformis and T. elegans that were also sampled at unique sites. On

the other hand, intraspecific diversity was greatest for Azores

isolates of F. penicillioides that were sampled at two stream sites in S.

Miguel Island.

European countries did not share any haplotypes with Australia,

except for T. chaetocladium. It has been suggested that meiospores

may be responsible for long-distance dispersal of aquatic

hyphomycetes [43] and their production by Hydrocina chaetocladia

(teleomorphic phase of T. chaetocladium) and Nectria penicillioides

(teleomorph of F. penicillioides) have been documented [44].

Haplotypes of F. penicillioides from continental Portugal were also

distinct from the ones in the Azores Islands, but the latter shared

haplotypes with Spain and Italy. Flagellospora penicillioides has been

reported as endophyte of plant roots [45], as all other species of

Figure 2. Molecular diversity indices, Theta S (hS) and Theta pi (hp) for each species within each country. Molecular diversity indices
estimate the level of diversity existing within each country for each aquatic hyphomycete species. NA, not available.
doi:10.1371/journal.pone.0045289.g002
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this study with the exception of T. elegans [46]. Plant trading events

in the 18th and 19th centuries and other historical or current

commercial interactions [47], may have facilitated the genetic

exchange between European countries and Azores. In some fungi,

asexual reproductive structures (mitospores) have been reported to

disperse within (e.g. continental Europe to Great Britain, [48]) and

between continents (e.g. from South Africa to Australia, [49]; for

other examples, see [5]). The relatively delicate conidia of aquatic

hyphomycetes seem ill suited for longer distance dispersal.

Nevertheless, in the current study, some widely distributed

morphologically defined aquatic hyphomycete species were di-

vided into genetically distinct populations with more narrow

geographical distributions. A similar pattern was recently found for

Articulospora tetracladia, whose genotypes appear to be widespread

with the exception of Malaysian haplotypes [23]. Additional

samples are needed to decide whether or not these differences are

sufficiently consistent to define phylogenetic species. There is

a growing concern that accelerating species loss may jeopardize

ecosystem function and services. To evaluate this threat, we need

to know intra- and interspecific variability of ecological functions

and which species concept (morphospecies, phylospecies) is more

relevant for capturing functional variability. An earlier review

concluded that morphospecies of aquatic hyphomycetes have

broadly overlapping functions [50]. On the other hand, conspe-

cific strains, isolated from geographically close streams, can differ

significantly in their ability to tolerate heavy metals and other

pollutants (e.g., [51,52]). It seems unlikely, though untested, that in

these cases genetic differences have resulted in the formation of

new phylospecies. Several examples from other fungal groups have

been discussed by Taylor et al. [5]. The non-congruence of

morphospecies and phylogenetic species is more pronounced in

microorganisms than in macroorganisms. Taylor et al. [5] offer

two non-exclusive reasons. Smaller organisms are morphologically

less complex, providing less information to differentiate among

forms. In addition, the rate of morphological change is slower for

organisms with less elaborate development and fewer cells. The

expected course of events in geographically widespread microbial

species is therefore genetic differentiation, followed by reproduc-

tive and eventually morphological differentiation.

Our study suggests that there is no consistent inter- and intra-

continental phylogeographic structure in aquatic fungi. The

preliminary conclusion is that the biogeography or the extent of

geographic distribution of aquatic hyphomycetes may be species-

specific. Unfortunately, our sample size was small, since we relied

on DNA from pure cultures that had been established from single

conidia. This conventional approach is time-consuming and its

success is greatly affected by chance. Analyses based on DNA

extracted from individual spores potentially lower this hurdle [53],

as will emerging next-generation sequencing techniques. Both

nevertheless depend on a rich reference library of sequences from

described fungal strains, which does not exist for aquatic

hyphomycetes. Pyrosequencing potentially recovers all sequences

in an environmental sample [54]. Access to these extensive

datasets will vastly expand our capability of addressing phylogeo-

Figure 3. Haplotypes found for each aquatic hyphomycete species within each country. For each species one bar represents one country
and similar patterns denote shared haplotypes. NA, not available.
doi:10.1371/journal.pone.0045289.g003
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graphy at a multi-species level, providing a better foundation to

investigate biogeographic patterns in aquatic hyphomycetes.

Supporting Information

Table S1 Aquatic hyphomycete species, isolate refer-
ence, year of isolation, country of stream location,
sampled substrate and Genbank accession number of

sequenced isolates of the current study and those
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The Ecology of Aquatic Hyphomycetes. Springer-Verlag, Berlin.
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