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Abstract

In many organisms, local deviations from Chargaff’s second parity rule are observed around replication and transcription start sites

and within intron sequences. Here, we use expression data as well as a whole-genome data set of nearly 200 haplotypes to

investigate such compositional skews in Drosophila melanogaster genes. We find a positive correlation between compositional

skew and gene expression, comparable in strength to similar correlations between expression levels and genome-wide sequence

features. This correlation is relatively stronger for germline, compared with somatic expression, consistent with the process of

transcription-associated mutation bias. We also inferred mutation rates from alleles segregating at low frequencies in short introns,

and show that, whereas the overall GC content of short introns does not conform to the equilibrium expectation, the level of the

observed deviation from the second parity rule is generally consistent with the inferred rates.

Key words: Chargaff’s second parity rule, compositional skew, transcription-associated mutation bias, base composition

evolution.

Introduction

Chargaff’s second parity rule, that is, the equal proportion of

complementary nucleotide bases ([A]¼ [T] and [G]¼ [C])

along a strand of DNA, holds globally for most double-

stranded DNA genomes (Mitchell and Bridge 2006).

Nevertheless, local deviations from this rule are common, es-

pecially around replication origins and transcription start sites

and within introns (Francino and Ochman 1997; Frank and

Lobry 1999; Touchon et al. 2004). Compositional “skew”

between strands may be introduced by DNA replication and

transcription as a consequence of the directionality of DNA

and RNA polymerization. Such skews have been regularly

used to identify replication origins (oris) and termini in bacteria

(Lobry 1996; Mrazek and Karlin 1998; Picardeau et al. 2000;

Zawilak et al. 2001). Recent technological advances in nascent

strand purification allowed identification of oris in metazoans

as well, and revealed similar skews surrounding these regions

(Cayrou et al. 2011, 2012; Comoglio et al. 2015).

Compositional skew in transcribed regions has also been

observed, which has generally been attributed to

transcription-associated mutation bias (TAMB) (Green et al.

2003; Touchon et al. 2003, 2004; Mugal et al. 2009;

McVicker and Green 2010). TAMB might arise due to

conditions differing between strands during transcription as

one strand is chemically associated with the transcriptional

machinery and the other exposed in the nucleus, which might

result in strand-specific mutation or repair processes (Svejstrup

2002; Fong et al. 2013).

Here, we investigate compositional skews associated with

transcription in Drosophila melanogaster using developmental

and tissue-specific expression data sets (Chintapalli et al.

2007; Vibranovski et al. 2009; Graveley et al. 2011) and se-

quence data from a large population sample of the ancestral

range of the species (Lachaise et al. 1988; Lack et al. 2015).

We find that noncoding regions within genes show strand-

specific deviations from the second parity rule consistent with

TAMB, whereas the overall GC content deviates from muta-

tional equilibrium, as has been shown before (Kern and

Begun 2005; Zeng and Charlesworth 2010; Clemente and

Vogl 2012; Robinson et al. 2014).

� The Author 2017. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/), which permits

non-commercial re-use, distribution, and reproduction in any medium, provided the original work is properly cited. For commercial re-use, please contact journals.permissions@oup.com

Genome Biol. Evol. 10(1):269–275. doi:10.1093/gbe/evx200 Advance Access publication September 25, 2017 269

GBE

http://creativecommons.org/licenses/by-nc/4.0/


Results

Association between Compositional Skews and Gene
Expression

To investigate compositional skews between strands in tran-

scribed regions, we calculated per gene estimates of CG skew

(SCG) and TA skew (STA) from coding-strand intron sequences,

for the 1,925 autosomal and 478 X-linked genes that passed

our data filtering (see Materials and Methods). If transcription

helps to shape skews, this should be reflected in correlations

between skews and gene expression. We thus examined cor-

relations between skews and gene expression across different

D. melanogaster tissues and developmental stages

(Chintapalli et al. 2007; Vibranovski et al. 2009; Graveley

et al. 2011) for patterns consistent (or inconsistent) with

TAMB.

The skew values calculated by concatenating all introns are

SCG¼ 1.18% (95% CI: 0.97–1.37%) and STA¼ 0.82% (95%

CI: 0.66–0.97%). When looking at per gene skew estimates,

we find that both SCG and STA are positively, though weakly,

correlated with gene expression (fig. 1), consistent with

TAMB, and in keeping with the known preference of C and

T content on the coding strand of Drosophila introns

(Touchon et al. 2004). As expected, the skew parameters

are also positively correlated with each other (Spearman’s

q¼ 0.064, P¼ 0.002), as has been observed for humans

(Touchon et al. 2003).

Secondly, spatial and temporal patterns of gene expression

and skew are also broadly consistent with some effect of

transcription. Specifically, only mutations occurring in the

germline, or early in development (prior to the differentiation

of germline tissues), are inherited and thus affect long-term

base composition (Touchon et al. 2003; McVicker and Green

2010). Thus, we asked how the strengths of the correlations

between skew and expression depend on expression in the

germline or developmental stage. In fact, the correlation is

relatively stronger between skew and expression levels in

germ cells, for both ovaries and testes, than for somatic ex-

pression (fig. 1A and D), as is also observed in humans

(McVicker and Green 2010) and in mice spermatogonia

(Arneodo et al. 2011). Further, in a data set consisting of

gene expression for three different tissues of the Drosophila

testes, the association between skew and expression during

early spermatogenesis (in mitotic and meiotic cells) is stronger

than that between skew and postmeiotic expression (fig. 1B

and E). Similarly, the association between skew and gene ex-

pression is stronger for early developmental expression than

for later developmental stages (fig. 1C and F). All correlation

coefficients are listed in supplementary table S1,

Supplementary Material online.

Although these trends are consistent with TAMB, there are

a few caveats that require further analysis. The enrichment of

C content on the coding strand could, in principle, be due to

annotation errors if many annotated introns are in fact protein

coding exons, as these tend to be C-rich in Drosophila (Akashi

1994). However, the correlation patterns remain qualitatively

similar when excluding introns with lengths that are multiples

of three (supplementary fig. S1, Supplementary Material on-

line), which are the most likely to be misannotated exons, as

they do not imply frame-shifts. In addition, none of the com-

parisons based on germline, somatic, or developmental stage

expression individually show statistically significant differences

(as indicated by the overlapping CIs in fig. 1), though all are

stronger in the direction predicted by the TAMB hypothesis.

Notably, the correlation between somatic expression and

skew is positive (fig. 1A and D), which is not a prediction of

the TAMB hypothesis. However, this correlation may be a by-

product of the positive correlation between somatic and

FIG. 1.—Pearson’s coefficients (with 95% CIs) for the correlations

between compositional skew and gene expression across different tissues

and developmental stages. (A–C) Correlation of CG skew and gene ex-

pression. (D–F) Correlation of TA skew and gene expression. Although 0-

to 2-h expression in embryos most likely reflects maternal transcription,

which should not necessarily affect germline development, the correlation

between maternal expression and later putative zygotic expression (2–4h)

is strong (Spearman’s q¼0.937, P<0.001).
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germline expression. We therefore calculated pairwise partial

correlations for skew values and gene expression for ovaries,

testes, and soma to estimate the independent effects of each.

The results show that there is no relationship between skew

values and somatic expression, whereas germline expression

remains significantly correlated to skew (supplementary tables

S2 and S3, Supplementary Material online). Furthermore, we

compare the level of skews between concatenated introns

from the 10% most highly and lowly expressed genes in ova-

ries and testes (table 1). As expected, the 10% most highly

expressed genes have significantly higher skew values com-

pared with the 10% most lowly expressed genes, for both

ovaries and testes (as indicated by the nonoverlapping CIs in

table 1). These results indicate that the level of skew is mainly

driven by germline expression.

Population Genetic Analysis

To further analyze the likely causes of strand-specific nucleo-

tide composition, we analyzed sites in autosomal short introns

(�65 bp in length) in a sample of 197 Zambian chromosomes

from the putatively ancestral population of D. melanogaster

from Zambia (Lack et al. 2015; supplementary table S4,

Supplementary Material online). Short introns appear to be

the least selectively constrained of all sequence classes

(Halligan and Keightley 2006; Parsch et al. 2010; Clemente

and Vogl 2012), and thus should most closely reflect muta-

tional processes. We first focus on the sites that are fixed (i.e.,

monomorphic) in the population sample alignment for one of

the four possible nucleotides. The proportion of sites fixed for

complementary nucleotides on the coding strand of autoso-

mal short introns differs from a 1:1 ratio (calculated from a

total of n¼ 191,747 sites; supplementary table S4,

Supplementary Material online), with an excess of C over G

(17.35% C vs. 14.91% G; v2¼ 352.8, d.f.¼ 1, P< 0.001)

and T over A nucleotides (34.49% T vs. 33.24% A;

v2¼ 43.871, d.f.¼1, P< 0.001). Therefore, the resulting

skews in short introns are SCG¼ 7.55% (95% CI: 6.78–

8.34%) and STA¼ 1.84% (95% CI: 1.35–2.41%). A similar

pattern holds for all autosomal introns (n¼ 9,894,445 sites;

30.04% A, 19.87% C, 19.25% G, 30.84% T; supplementary

table S4, Supplementary Material online), though the skew is

weaker than for short introns—SCG¼ 1.55% (95% CI: 1.46–

1.65%) and STA¼ 1.32% (95% CI: 1.24–1.40%)—probably

because the sequence composition of long introns is more

selectively constrained (Haddrill et al. 2005). Notably, the G:

C ratio in short introns (�0.86) is more extreme (v2¼ 202.03,

d.f.¼ 1, P< 0.001) than the A: T ratio (�0.96).

As an alternative to mutation, strand-specific selection

could explain strand-specific skews. In particular, selection

to avoid the canonical GT and AG splicing signals within in-

tron sequences (Farlow et al. 2012) might lead to an excess of

C content on the coding strand compared with the noncod-

ing strand (though note that short introns are AT-rich overall).

To test whether mutation alone is sufficient to explain the

observed compositional patterns, we estimated mutation

rates from singleton frequencies of the autosomal short

introns, that is, from sites in the sample alignment which

contain a single copy of the minor allele variant. The relatively

young age of these low frequency mutations makes it unlikely

that their composition has been affected by directional selec-

tion (Kimura and Ohta 1973; Messer 2009); instead it should

be predominantly influenced by mutation. The mutation rates

estimated from singleton frequencies (table 2) agree with pre-

vious estimates (supplementary fig. S2, Supplementary

Material online). These rates indicate that any mutational

asymmetry between coding and noncoding strands is weak,

similar to previous findings (Zeng 2010). Furthermore, we find

no evidence for mutation-associated compositional skews

when directly comparing singleton frequencies between the

coding and noncoding strands for each of the complementary

nucleotide pairs (supplementary table S5, Supplementary

Material online). When we analyze the estimated

strand-specific mutation rates overall, however, they do imply

C- and T-biased composition on the coding strand: the G-to-C

Table 1

Skew Values with Their Corresponding 95% CIs (in Square Brackets)

Calculated from Concatenating Introns in Genes with the 10% Highest

and 10% Lowest Expression in Different Germline Tissues (Number of

Genes in Each Category is n¼141)

Ovary Expression Testes Expression

High Low High Low

SCG (%) 4.19 0.67 4.33 0.55

[3.24, 5.17] [�0.04, 1.36] [3.18, 5.39] [�0.08, 1.19]

STA (%) 2.31 �0.45 2.58 �0.16

[1.54, 3.06] [�0.99, 0.15] [1.75, 3.39] [�0.68, 0.35]

Table 2

Mutation Rates qij from Nucleotide i to j with the Corresponding 95% CIs,

Estimated from the Coding Strand of Autosomal Short Introns

i fi j qij (Fij/Mi) qij 95% CI

A! C 0.0048 (308/64,053) 0.0043–0.0053

A! G 0.0120 (776/64,521) 0.0112–0.0128

A! T 0.0110 (709/64,454) 0.0102–0.0118

C! A 0.0181 (615/33,886) 0.0167–0.0195

C! G 0.0080 (270/33,541) 0.0071–0.0089

C! T 0.0293 (1,008/34,359) 0.0276–0.0310

G! A 0.0324 (957/29,556) 0.0304–0.0344

G! C 0.0089 (256/28,885) 0.0079–0.0099

G! T 0.0175 (508/29,107) 0.0161–0.0190

T! A 0.0100 (667/66,779) 0.0093–0.0107

T! C 0.0113 (753/66,885) 0.0105–0.0121

T! G 0.0047 (314/66,446) 0.0042–0.0052

NOTE.—Fij is the frequency of singletons of type j with major allele i and Mi is the
sum of the frequency of sites fixed for nucleotide i and the frequency of singletons of
type Fij.
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and A-to-T rates are 1.1 and 1.08 times higher than their

corresponding reverse mutation rate estimates. Given the

point estimates of the mutation rates from table 2, the equi-

librium frequencies of fixed sites on the coding strand are (pA,

pC, pG, pT)¼ (0.3653, 0.1245, 0.1231, 0.3871), resulting in

the equilibriums skews of SCG¼ 0.57% and STA¼ 2.90%.

The resulting expected A: T ratio based on mutation rates

deviates from a 1:1 ratio (v2¼ 121.11, d.f.¼ 1, P< 0.001)

in the direction of the observed T over A excess, but more

extremely (with an expected ratio equal to 1.060 vs. an ob-

served ratio of 1.037; v2¼ 14.592, d.f.¼ 1, P< 0.001). The

expected G: C ratio is in the same direction as the observed C-

bias for the coding strand, but does not differ significantly

from a 1:1 ratio (v2¼ 1.518, d.f.¼ 1, P¼ 0.218).

Importantly, these results have been obtained using only point

estimates, when in reality there is uncertainty in the estimates.

We therefore used a parameter search algorithm (see

Materials and Methods) and asked whether there are combi-

nations of mutation rates, within the 95% CIs of these esti-

mates, which are consistent with the data. Specifically, we

asked if mutation rates can explain both the skew and overall

base composition. The results show that the estimated muta-

tion rates can explain the levels of CG and TA skew observed

in short intron sequences (fig. 2A and B). However, the com-

binations of mutation rates that give rise to the observed levels

of skew cannot explain the overall base composition in short

introns (fig. 2C and D)—the observed GC-content is too high

to be consistent with these rates, that is, the GC content is

not in mutational equilibrium, as noted by previous studies

(Kern and Begun 2005; Zeng and Charlesworth 2010;

Clemente and Vogl 2012; Robinson et al. 2014).

Finally, we used a generalized linear model (GLM) to ana-

lyze the association between mutation rates and gene expres-

sion. Specifically, we analyze the effect of expression on the

frequency of singleton mutations from nucleotide i-to-j for

the coding strand, using a GLM with a binomial response

variable consisting of successes (singletons of type i) and fail-

ures (fixed sites of type j); the expression estimates from ova-

ries, testes, or soma (Chintapalli et al. 2007) were taken as

explanatory variables. We analyzed either singletons only in

short introns (supplementary table S6, Supplementary

Material online), and, in order to perform a more powerful

analysis, we repeated the analysis using singletons in all

introns (supplementary table S7, Supplementary Material on-

line). As singletons are unlikely to be affected by selection

(Kimura and Ohta 1973; Messer 2009), restricting this analysis

to putatively neutral short introns may unnecessarily limit

power. The results show that the correlations are, regardless

of which data set is used, consistently negative with few

exceptions, suggesting a possible role of transcription-

coupled repair in reducing overall mutation rates (Svejstrup

2002; Fong et al. 2013). In cases where the results of the GLM

analyses indicate expression as a significant predictor of mu-

tation rates, the associated coefficient is usually negative, im-

plying that transcription is not mutagenic overall.

Nonetheless, correlation coefficients associated with C or T

singletons tend to be less negative than those associated with

G or A singletons (supplementary fig. S3, Supplementary

FIG. 2.—Distributions of skew estimates and nucleotide content obtained from 10,000 independent parameter search runs, conditional on the observed

compositional skew in autosomal short introns and the 95% CIs of mutation rates in table 1. (A and B) Distributions of CG and TA skew, respectively; the red

dashed line is the observed skew level. (C) The distribution of G (red) and C (black) content; the dashed lines are the observed values. (D) The distribution of A

(red) and T (black) content; the dashed lines are the observed values.
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Material online), implying that mutation rates change with

expression in a manner consistent with the observed direc-

tions of compositional skews.

Discussion

In eukaryotes, transcription appears to drive asymmetries in

the frequencies of complementary nucleotides between the

coding and noncoding strands of transcribed regions

(Touchon et al. 2003, 2004; McVicker and Green 2010).

Generally, T is more abundant than its complement A on

the coding strand, whereas either G or C content is observed

at higher frequencies in vertebrates or invertebrates, respec-

tively (Touchon et al. 2004).

In D. melanogaster, we find that gene expression in differ-

ent tissues and across development correlates with composi-

tional skew in a manner consistent with TAMB (fig. 1).

However, these correlations are weak and explain only a small

proportion of the variance in skew levels between genes. The

reason that the TAMB signal is weak is likely partly due to the

fact that base composition in Drosophila introns changes with

sequence length, and is affected by both purifying and pos-

itive selection (Andolfatto 2005; Haddrill et al. 2005; Singh

et al. 2005; Halligan and Keightley 2006; Haddrill and

Charlesworth 2008). Nevertheless, weak genome-wide corre-

lations can shed light on molecular processes shaping nucle-

otide base composition over evolutionary time: for example,

the relationship between intronic GC content and recombi-

nation is similarly weak, but probably reflects the action of

GC-biased gene conversion, now a well-established phenom-

enon of eukaryote genome evolution (Pessia et al. 2012).

Materials and Methods

Data Used in the Analyses

Expression data were taken from Chintapalli et al. (2007),

Vibranovski et al. (2009), and Graveley et al. (2011). The

raw expression estimates were transformed with

log2(valueþ 1). For RNAseq data, these values are FPKM val-

ues; for the microarray analyses, they are relative flourescence

intensities. Per gene expression values for soma and later de-

velopmental stages were calculated as averages across the

nongermline and late developmental stage expression values,

respectively. Replication start sites (RSS) were determined as

peaks of the nascent strand signal or as a site of maximum

coverage within a given ori region as identified in Cayrou et al.

(2011) and Comoglio et al. (2015), respectively. We further

analyzed a sample of the Zambian D. melanogaster popula-

tion (Lack et al. 2015). In total, the data set consists of 197

sequences for each autosome and 196 sequences for the X

chromosome. Sequences were annotated using the reference

genome annotation of D. melanogaster (r5.57 from http://

www.flybase.org/; last accessed March 10, 2017). For statis-

tical analyses, R (R Core Team 2014) was used.

Calculation of the Skew Parameters

The skew parameters (SCG and STA) were calculated for each

gene using the D. melanogaster reference sequence (r5.57

from http://www.flybase.org/; last accessed March 10,

2017). All intron sequences of the longest transcript of a

gene were concatenated and estimates of skews per gene

were calculated as: SCG¼ (C�G)/(CþG) and STA¼ (T�A)/

(TþA). Additionally, seven bases were trimmed from the 50

end and 35 bases from the 30 end of each intron to exclude

genomic regions where the nucleotide composition is af-

fected by the presence of splicing sites (supplementary fig.

S4, Supplementary Material online). Furthermore, genes over-

lapping regions 6500 bp around RSS were excluded from the

analysis. Only genes containing�100 bp of concatenated in-

tron sequence were considered. This filtering procedure left

us with 1,925 autosomal and 478 X-linked genes available for

analysis. The 95% CIs for each of the skew parameters were

estimated from 1,000 bootstrap-resamples. Each resample

consisted of the number of observations equal to the number

of sites used to calculate the original skew parameter, and the

probabilities of drawing a specific nucleotide equal to the

observed relative frequencies of nucleotides.

Inference of Site Frequency Spectra and Mutation Rates

Site frequency spectra were inferred from the Zambian

D. melanogaster sample (Lack et al. 2015) for all six possible

combinations of base pairs, for both autosomal short introns

(�65 bp in length; Halligan and Keightley 2006; Parsch et al.

2010; Clemente and Vogl 2012), and all introns (supplemen

tary table S4, Supplementary Material online). Using custom

Python scripts, we filtered out sites that overlapped coding

sequences or contained an undefined nucleotide state in at

least one of the sequences in the sample alignment.

Furthermore, sites belonging to the longest transcript of a

gene were considered and sites with more than two alleles

were filtered out. Intron sequences were trimmed as de-

scribed previously. Mutation rates were calculated from auto-

somal short intron sequences as qij¼Fij/Mi, where qij indicates

the mutation rate from nucleotide i to j, Fij is the frequency of

singletons of type j with major allele i, and Mi is the sum of the

frequency of sites fixed for nucleotide i and the frequency of

singletons of type Fij. The CIs for the mutation rate estimates

were determined by assuming binomial probabilities with the

number of successes x¼ Fij and the number of corresponding

observations n¼Mi.

Analysis of Skew Level and Mutation Rate Estimates

We applied a parameter optimization algorithm to search for

combinations of mutation rates, within their respective 95%

CIs (table 1), which would recapitulate the observed levels of

skew. To this end, we utilized the Sequential Least SQuares

Programming (SLSQP) method as implemented in the Python
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library “scipy” (Jones et al. 2001). The parameters for each

optimization run were randomly initialized within the 95% CIs

of the inferred mutation rates.

GLM Analysis

The GLM analysis was conducted using the “glm” function in

R (R Core Team 2014) with the response variable following a

binomial distribution and the default logit link function. The

response variable was given as a two-column matrix where

the first column contained the number of singletons of a

specific type (“successes”), whereas the second contained

the number of corresponding fixed sites (“failures”). These

frequencies were estimated per gene. The explanatory varia-

bles were gene expression estimates for either ovaries, testes,

or soma provided in Chintapalli et al. (2007).

Supplementary Material

Supplementary data are available at Genome Biology and

Evolution online.
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