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C-reactive protein, a conserved acute-phase protein synthesized in the liver and involved in inflammation, infection, and tissue
damage, is an informative biomarker for human cardiovascular disease. Out of 258 captive adult common chimpanzees (Pan
troglodytes) assayed for CRP, 27.9% of the data were below the quantitation limit. Data were analyzed by the Kaplan-Meier method
and results compared to other methods for handling censored data (including deletion, replacement, and imputation). Kaplan-
Meier results demonstrated a modest age effect and a strong effect of HCV infection in reducing CRP but did not allow inference
of reference intervals. Results of other methods varied considerably. Substitution schemes differed widely in statistical significance,
with estimated group means biased by the size of the substitution constant, while inference of unbiased reference intervals was
impossible. Single imputation gave reasonable statistical inferences but unreliable reference intervals. Multiple imputation gave
reliable results, for both statistical inference and reference intervals, and was comparable to the Kaplan-Meier standard. Other
methods should be avoided. CRP did not predict cardiovascular disease, but CRP levels were reduced by 50% in animals with
hepatitis C infection and showed inverse relationships with 2 liver function enzymes. Results suggested that hsCRP can be an
informative biomarker of chronic hepatic dysfunction.

1. Introduction

C-reactive protein (CRP), a phylogenetically highly con-
served protein, has become an important biomarker of acute
inflammation and tissue damage in humans [1–3]. CRP is
an important biomarker for many aspects of health and
disease, including cardiovascular disease, type 2 diabetes, and
chronic renal disease and is a predictor of all-cause mortality
[2, 4–7]. CRP is synthesized by hepatocytes when induced
by cytokines including IL-6 [1, 4]. Circulating plasma levels
can rise during the acute-phase response to inflammation,
infection, or trauma by 10,000-fold and decrease just as
rapidly [1, 2, 8]. CRP has many biological functions related
to the recognition and clearance of foreign pathogens and
damaged host cells, binding chromatin and small nuclear
ribonucleoproteins, which suggested a role in clearance of
debris due to apoptosis and necrosis [2, 4, 8]. CRP stimulates
the classical complement pathway [1, 2, 4]. Its activation by

the same Fc receptors used by IgG, and its earlier response to
infection, suggested a role in inducing an adaptive immune
response [4].

CRP is also involved in the development of atheroscle-
rotic lesions and plaque disruption [8, 9]. Epidemiological
evidence for the role of inflammation in the etiology of
coronary heart disease, myocardial infarction, and peripheral
vascular disease has indicated a role for CRP as a biomarker
for cardiovascular disease [8, 10–12]. CRP was a better overall
predictor of cardiovascular events than LDL cholesterol,
conferred additional prognostic information to Framingham
risk scores, and reduce all-cause mortality among otherwise
asymptomatic humans [10, 13–15]. In a 16-year long prospec-
tive study, high levels of hsCRP (>3mg/L) were associated
with a 2-fold increased risk of all-cause mortality relative to
low hsCRP levels (<1mg/L) in healthy humans [7]. Meta-
analyses have consistently demonstrated a strong association
(OR ≥ 2.0) between elevated CRP levels and major coronary
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events, [16, 17] although there remains some debate over
the most informative cut-off values. A 7-year followup study
found that very high levels of hsCRP (>10mg/L) were more
strongly associatedwith risk of clinical cardiovascular disease
and with all-cause mortality, compared to merely high (3–
10mg/L) levels [5, 11, 18].

Cardiovascular disease (CVD) is the primary cause of
morbidity andmortality in captive chimpanzees [19–25].This
suggested the potential utility of CRP as a biomarker of CVD
in aging chimpanzees, not unlike other biomarker studies [19,
20]. Similarly, hepatitis C has been associated with reduced
CRP levels in humans [26–28]. Historical use of chimpanzees
in studies of viral hepatitis [29] suggested a role for hsCRP as
a biomarker of hepatic damage. There was one earlier study
of CRP in chimpanzees [30], but results were limited due to
small sample size (𝑁 = 37) and wide age range (<1 yr to 44 yr
old) with subadults not distinguished from adults (>10 yr
old); sex differences were not evaluated, and associations
with CVD or hepatitis infection were not investigated [30].
Finally, out-dated “normal ranges” were uncritically defined,
rather than using reliable methods from human laboratory
medicine [20, 31].Therefore, it was of interest to evaluate CRP
as a potential biomarker for CVD and hepatic dysfunction
and to define reference intervals in a large captive population
of chimpanzees.

2. Methods

2.1. Colony. At the time of this cross-sectional study, the
Alamogordo Primate Facility (APF) housed 258 adult
research-reserve chimpanzees (Pan troglodytes) primarily
descended from the West African P.t. verus subspecies [32].
The APF animal program and facilities were fully accredited
by AAALAC, with animals maintained in same-sex group
housing, to comply with the NIH breeding moratorium
[33]. The study was fully approved by the ACUC and
conducted in accordance with the Guide for the Care and
Use of Laboratory Animals [34]. Animals were maintained
in socially compatible groups in indoor dens (180 ft2, 9.5 ft
high) with radiant heated floors and air conditioning, 24 hr
access to outdoor dens (242 ft2), andweekly access to outdoor
play yards (802 ft2). Diet consisted of commercial primate
chow (Purina Lab Diet Monkey Diet Jumbo 5LR2) plus daily
fresh fruits and vegetables delivered to simulate naturalistic
foraging opportunities. All animals received a complete
physical examination and health assessment annually [20].
Prior (<2001) experimental exposures resulted in 61 animals
with HCV infection (HCV antibody and PCR positive, >103
HCV genome equivalents/mL), and the remainder (196) not
infected (Table 1). Seven subadults (<10 years old) on-site
were excluded from analyses [19, 20, 35].

2.2. hsCRP Assay. All 258 adults (116 female, 142 male)
were assayed for hsCRP. Ten mL whole blood samples were
collected in serum separator tubes, separated by low-speed
centrifugation, transferred into sterile vials, and shipped
overnight on ice to a clinical reference laboratory (Tri-
core Industries, Albuquerque, NM). Samples were tested

Table 1: Classification of 258 hsCRP values on adult chimpanzees
(≥10 yr old), byHCV status, health status, sex, andCRPmissingness.

HCV status Health status Sex hsCRP
Quantified Nondetects

Healthy M 62 21

Uninfected Healthy F 64 13
Unhealthy M 19 0
Unhealthy F 16 2
Healthy M 9 21

Infected Healthy F 7 10
Unhealthy M 8 2
Unhealthy F 1 3

for hsCRP with a rate turbidimetric immunoassay using
polyclonal goat and mouse anti-CRP antibody bound to
latex particles [36, 37]. The detection limit (DL, sometimes
mistakenly called analytical sensitivity) was 0.06mg/L, below
the level recommended to predict cardiovascular events
[11]. The reporting or quantitation limit (QL), below which
non-linearity and high error relative to signal render single
reportable numbers unreliable, was 0.4mg/L, well within
reported limits (mean QL = 8.6 ∗ DL) for other hsCRP
assays [38–40]. Unreliable estimates below the QL threshold
are termed left censored and require use of statisticalmethods
designed for analysis of left-censored data [39].

To validate the use of the human CRPH assay, chim-
panzee CRP DNA sequence (NCBI entry XM 001170732)
and its deduced amino acid sequence were aligned with the
human homologues (NCBI NM 000567) [28] and species-
specific differences identified with ClustalX2 [41, 42]. The
effects of species-specific amino acid substitutions on the
structure and function of chimpanzee CRP, relative to the
human protein, were inferred using Polyphen-2, an on-line
protein structure/function server, based on biochemical and
comparative principles [43, 44]. Chimpanzee CRP mRNA
showed 9 nucleotide (nt) substitutions and 2 indels relative
to the human sequence. Of these, 3 substitutions (bases 367,
374 and 601) occurred in the actual protein coding region,
2 of which resulted in non-synonymous substitutions. The
first (nt position 367) involved an A/G transition at the
second codon position and resulted in a non-synonymous
amino acid change, from aspartic acid in humans to glycine
in chimpanzees (D88G). The second (nt 374) involved an
A/G transition at the third wobble codon position and was
silent. The third (nt 601) involved an A/G transition at the
second codon position and resulted in a non-synonymous
amino acid change, from glycine in humans to glutamic acid
in chimpanzees (G166E). Both coding mutations occurred
in the pentaxin domain, D88G in a beta-pleated sheet,
and G166E in an alpha helix [45]. Neither occurred at a
critical site in the mature protein, such as calcium binding
sites or disulfide bonds [3, 45]. Structural predictions using
PolyPhen [43, 44] indicated that both mutations were benign
(D88G, Polyphen score = 0.000; G166E, Polyphen score =
0.001). The mouse CRP protein sequence (Uniprot P14847)
exhibited 70 amino acid differences (29.4%) from the human
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Figure 1: (a) Frequency histogram of hsCRP levels from the case-wise deletion and 4 substitution (QL, QL/2, zero) datasets. (b) Frequency
histograms of hsCRP from the MLE and MI datasets.

protein sequence, including alanine at mutated position 166,
compared to only 2 differences (0.9%) between humans and
chimpanzees. In short, there was no evidence that either of
the 2 non-synonymous mutations would alter the binding
efficiency or reduce the reliability of the CRPH assay in
chimpanzees.

2.3. Statistical Methods. All statistical analyses were per-
formed on SYSTAT Version 11.0 (SYSTAT Software, Inc.,
Richmond,CA).Wehypothesized that hsCRP levelswould be
elevated in unhealthy versus healthy animals, and that HCV-
infected animals would have reduced CRP levels, compared
to uninfected animals [20, 28, 31]. The Kaplan-Meier non-
parametric product-limit method (KM) was used to analyze
left-censored data, after “flipping” the data by subtraction
from a large constant, resulting in a right censored dataset
[39, 46, 47]. Choice of constant is arbitrary but does not affect
results [39]. Statistical significance was assessed by Tarone-
Ware 𝑋2 statistics, which are intermediate in value between
log-rank and Wilcoxon statistics [48]. KM was considered
the inferential standard of reference for the other statistical
methods described below. KM does have some limitations.
Estimated means are unreliable due to extensive skew of
non-normally distributed survival data [39]. The median
is more robust to skew and outliers [49]. But depending
on the pattern and extent of censoring, the exact median
cannot always be estimated by KM. Therefore, KM does not
necessarily allow reliable estimation of effect sizes. Finally,
unless censored data are replaced by probable values, the
bottom end of the distribution remains missing, and infer-
ence of reliable reference intervals is not possible. Therefore,
other statistical methods for analyzing censored data (sub-
stitution, single MLE imputation, and multiple imputation)
were used to replace censored observations with probable

values. Those results were compared to the KM standard
and also used to estimate reference intervals. ANOVA was
used to analyze continuous data in the substitution and
imputation datasets, with statistical significance determined
by omnibus F statistics and single degree-of-freedom focused
comparisons [50, 51]. Age and sex were used as covariates
because they influence the distribution of health, disease, and
CRP levels in populations [3, 19–21, 52]. The Shapiro-Wilks
goodness-of-fit test rejected the assumption of a Normal
(Gaussian) distribution (𝑊 = 0.677, 𝑃 < 0.000). Substitution
datasets could not be normalized, due to clustering of
identical substituted values at the bottom of the distribution
(Figure 1(a)). The case-deletion, MLE, and MI datasets were
normalized with a log

𝑛
transformation [11, 18, 53–55]. Trans-

formation efficacy was confirmed visually (Figure 1(b)) and
with coefficient-based tests (G1/skew and G2/kurtosis) [31,
56]. Outliers were detected and eliminated using the robust
interquartile method [49]. Categorical data were analyzed
with contingency table methods, with statistical significance
determined by likelihood ratio 𝐺2 statistics [57, 58].

2.4. Data Imputation. hsCRP levels were assayed for all 258
adult chimpanzees (≥10 yr old). Of these, 185 adults (88
females, 98 males) had reliably quantified hsCRP levels,
while 72 animals (28 females, 44 males) had unreliable
(sub-threshold) levels (Table 1). This degree of censoring
is considered moderate [59]. These data involved type I
censoring, characterized by a fixed cut-off value at the
quantitation limit (QL) and a variable number of censored
observations [59]. (Type II censoring involves a variable
cut-off value but a fixed number of censored observations
[59]. For example, an LD

50
study would terminate after

observing 50% mortality, regardless of the survival times
of the remaining study subjects [60]. Type II censoring
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will not be further discussed.) We used Little’s [61] missing
completely at random (MCAR) test statistic and contingency
table methods [57, 58] to test for nonrandom patterns of
hsCRP data missingness (nondetected or observed) relative
to other factors (age, sex, hepatitis C infection, cardiovascular
disease, and health status).

Many scientific fields, from medicine to zoology, en-
counter an otherwise peculiar feature of data, wherein some
observations fail to exceed a lower (or exceed an upper)
threshold of detection [20, 39, 46, 47]. Such unobserved
data are called censored, and the observations are called
nondetects. Censoring that occurs relative to a lower limit is
called left censored. In environmental epidemiology, many
environmental pollutants occur at such minute concen-
trations that they cannot be reliably measured [62]. Left
censoring raises the questionwhether nondetects represented
true zero concentrations, or whether they were very small,
but nonzero quantities only reported as zero, due to technical
constraints [39]. Censoring that occurs relative to an upper
limit is called right censored. Data on patients in prospective
epidemiological studies who survive to the last date of fol-
lowup are right censored, because the event of interest (such
as mortality or cancer remission) was not observed during
the study’s timeframe [63]. Patients alive at last observation
will have a minimum survival duration. Similarly, very high
biomarker concentrations will exceed the limit of linearity
(LOL) of the concentration/signal response, resulting in a
minimum concentration [38, 39]. The presence of lower or
upper limits result in informative or non-ignorable censoring
[64]. Although exact values remain unknown, censored data
are informative because they are known to be less than
(or greater than) some lower (or upper) threshold [19, 39].
The class of statistical methods developed to handle this
troublesome feature of censored data is known as censored
data analysis (CDA) methods.

The first CDA method compared was casewise deletion,
which simply deleted all nondetects from the analysis [39].
Casewise deletion remains widely used [39], even though
exclusion of left-censored nondetects means elimination
of the smallest values, which introduces upward bias into
parameter estimates [39, 65, 66]. We also compared the
effects of 3 CDA methods to replace nondetects with single
numerical estimates. First were substitution methods, which
replace all nondetects with an arbitrary constant (typically
zero, some function of QL, or the mean) [62, 67]. Problems
with substitution methods include the arbitrary choice of
constant and underestimation of variability associated with
the use of a constant rather than a randomly distributed
variable [62]. Three substitution datasets were created by
replacing each nondetect with a constant (zero, QL/2, and
QL).

The second CDA method used maximum likelihood
estimation (MLE) for single imputation. The mean (𝑥 =
−0.485) and standard deviation (𝑠 = 0.910) of the lognor-
mal distribution assumed to generate the censored hsCRP
dataset were estimated from observed data [68, 69]. The
assumption that the true underlying distribution of observed
hsCRP values was lognormal [67, 68] was confirmed by the
Anderson-Darling test and by coefficient-based tests [70].

Realistic values were simulated for all nondetects by random
sampling from a lognormal distribution defined by the esti-
mated parameters [69]. Simulated values below the QL were
considered eligible as replacements and randomly substituted
for all nondetects [11, 55, 71, 72].

The last CDAmethod used theNORM statistical software
for multiple imputation (MI) [73]. MI datasets were formed
by imputing probable values for all hsCRP nondetects, based
on information derived from the variance/covariance matrix
plus random error [74, 75]. Imputed values were only consid-
ered eligible substitutions for nondetects if theywere less than
the QL, in order to preserve the informative left-censoring
mechanism, and were randomly substituted for nondetects.
For data missing at random (non-informative censoring), as
few as 𝑚 = 5 imputed datasets may be needed [75, 76]. Due
to the informative nature of left-censored data, we used more
imputations (𝑚 = 13), as recommended [64, 77]. Regression
coefficients and estimated group means were averaged across
imputations, and within and between variance components
estimated following Rubin’s method [76, 78]. Results from
the Kaplan-Meier (KM) non-parametric method [46] were
treated as the standard of comparison for the other CDA
methods.

2.5. Reference Intervals. The KM approach to censored data
does not substitute probable imputed values for nondetects
but relies on analysis of the original censored dataset. Use of
the casewise deletion dataset, in which all of the lowest values
remain unobserved (nondetects), will yield biased reference
intervals.Therefore, the substitution and imputation datasets
were compared for their reliability in reference interval
estimation. There are two common mistakes in estimating
so-called “normal ranges” for clinical analytes. The first
is to uncritically apply statistical methods based on the
normal distribution to nonnormally distributed variables
(biomarkers and other clinical analytes), rather than using
appropriate methods from laboratory medicine [19–21, 31].
The second mistake is to assume that statistically significant
covariates are automatically useful as clinical guidelines [19–
21, 31]. Partitioning requires justification that the resulting
subgroups have less reduced variability and narrower ref-
erence intervals relative to pooled data [31, 79, 80]. We
used several guidelines to determine when to partition into
subgroups. A 𝑧∗ statistic that exceeded the critical value of
5.0 was sufficient justification for partitioning. Alternately, a
𝑧
∗
> 3.0 and either ≥10% reduction in subgroup standard

deviations relative to pooled data, or a ratio of standard devi-
ations ≥1.5, also justified partitioning [31, 79, 80]. Reference
intervals were estimated using the non-parametric Harrell-
Davis bootstrap for large (𝑛 ≥ 120) samples [81, 82] or the
robust method for smaller samples [67, 83]. All calculations
were performed on MedCalc version 12.2.1.0 [84].

3. Results

3.1. NonrandomMissingness of hsCRP. We first tested for the
presence of bias or nonrandom patterns of missing hsCRP
data relative to the covariates (see Table 1). There was no
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Table 2: Results of Kaplan-Meier analysis of flipped right censored data.

Factor 𝑋
2 Estimated effect sizes

Factor level 1 (median) Factor level 2 (median) Factor level 3 (median)
HCV infection 37.746 (<0.000)∗∗ Infected 0.30 Not infected 0.79 —
Decade of life 4.910 (0.086) 10–19 yr 0.66 20–29 yr 0.66 30+ yr 0.66
Sex 1.561 (0.211) Male 0.65 Female 0.65 —
Health status 5.051 (0.025)∗ Healthy 0.62 Unhealthy 0.79 —
CVD 0.730 (0.393) No CVD 0.66 CVD 0.66 —
Tarone-Ware𝑋2 statistics (𝑃 value) for 5 covariates (HCV infection, decade of life, sex, health, and CVD). Data was the right censored “flipped” version of the
original left-censored data. All 𝑋2 tests were on 1 degree of freedom, except decade which used 2 degrees of freedom. Estimated medians were interpolated
from the ranked KM results.
∗
𝑃 < 0.05, ∗∗𝑃 < 0.01.

association of hsCRP (observed, nondetects) with sex (𝐺2
1
=

1.67, 𝑃 = 0.197) or decade of life (𝐺2
1
= 2.92, 𝑃 = 0.232).

hsCRP levels had a near-significant association with heart
disease (𝐺2

1
= 3.564, 𝑃 = 0.059). There were significant

associations between hsCRP and both HCV infection (𝐺2
1
=

38.42, 𝑃 < 0.000) and health status (𝐺2
1
= 10.29, 𝑃 =

0 = 0.013). These associations were quite strong. HCV-in-
fected animals were 6.4 times more likely to have hsCRP
nondetects, compared to uninfected animals (Little’s MCAR
𝑡 = 38.280, 𝑃 < 0.000). Similarly, healthy animals were 2.9
times more likely to have hsCRP nondetects, compared to
unhealthy animals (Little’s MCAR 𝑡 = 7.655, 𝑃 = 0.022).
These associations signaled a need to account for the effects
of HCV infection and health status in subsequent analyses.

3.2. Determinants of Serum hsCRP Level. We analyzed the
different hsCRP datasets (casewise deletion, substitution,
single MLE substitution, and multiple imputation) using
the covariates age, sex, HCV infection, and cardiovascular
disease. The casewise deletion dataset (𝑁 = 185) was smaller
than all other CDAdatasets (𝑁 = 257). Results of the Kaplan-
Meier survival analysis were treated as the standard, against
which the other strategies were compared.

3.3. Kaplan-Meier. Neither sex (𝑋2
1
= 1.56, 𝑃 = 0.211) nor

CVD status (𝑋2
1
= 0.73, 𝑃 = 0.393) had significant

associations with hsCRP levels. As a quantitative covariate,
age had a significant linear effect on hsCRP (𝑡 = 2.933,
𝑃 = 0.003). Each year of life increased hsCRP by 0.027mg/L.
At that rate, a 10-year-old chimpanzee with 1.00mg/L hsCRP
would be expected to rise to 1.31mg/L by the age of 20 yr.
But when categorized by decade of life, the age trend failed
to reach significance (𝑋2

2
= 4.91, 𝑃 = 0.086; 10–19 yr,

0.59mg/L; 20–29 yr, 0.68mg/L; 30+ yr, 0.76mg/L; overall
mean equaled 0.66mg/L; see Table 2). Health had a modest
effect (𝑋2

1
= 5.051, 𝑃 = 0.025), with healthy animals hav-

ing lower median hsCRP (0.62mg/L) than sick animals
(0.79mg/L; see Table 2). HCV infection strongly reduced
hsCRP levels (𝑋2

1
= 37.75, 𝑃 < 0.000). Infected animals had

an estimated median of 0.30mg/L of hsCRP, compared to
0.79mg/L for uninfected animals (Table 2).These KM results
were taken as the standard for comparison of other CDA
methods.

3.4. Casewise Deletion. The casewise deletion dataset was
analyzed next (𝑁 = 185). Neither sex nor health nor CVD
status had any effect on hsCRP levels (Table 3). HCV status
was highly significant (𝐹

1,180
= 11.074, 𝑃 = 0.001; Table 3).

Modeled as a quantitative covariate, age had a statistically
significant effect of hsCRP (𝐹

1,180
= 6.624, 𝑃 = 0.011) but

its effect was relatively weak (𝛽Age = 1.02). A 10-year-old
animal with 1.00mg/L of hsCRP would be expected to rise
to 1.22mg/L by the age of 20 yr. When categorized by decade
of life, there was an insignificant tendency for hsCRP to
increase linearly across decades (𝐹

1,183
= 2.800, 𝑃 = 0.096;

see Table 3). Specifically, 10–19 yr olds had lower mean levels
of hsCRP (0.91mg/L) than 20–29 yr olds (1.02mg/L), which
were lower than the 30+ yr olds (1.14mg/L).

3.5. Substitution Methods. ANOVA analyses of the 3-
substitution datasets (zero, QL/2, and QL) indicated agree-
ment on lack of significance for sex and CVD and significant
effects for HCV infection and age (Table 3). But results for
health status varied by substitution model. Health was not
significant for QL substitution, but it was significant for
QL/2 and especially zero substitution (Table 3). The main
difference between substitution models was that estimated
effect sizes (group means) for age and HCV status reflected
the size of the substitution constant (Figures 2(a) and 2(c);
Tables 4 and 6).

3.6. MLE Single Imputation. We then analyzed the MLE
single imputation dataset. Results indicated that age, health,
and HCV infection status all significantly influenced hsCRP
levels (Table 3). But there was no effect of sex or heart disease
(Table 3).

3.7. Multiple Imputation. We then analyzed the MI datasets.
Results indicated that neither sex nor CVD were associated
with hsCRP levels (Table 3). However, hsCRP was signif-
icantly associated with HCV infection, health status, and
decade of life (Table 3).

3.8. Comparison of CDA Methods. Comparison of these
analyses revealed several trends in the results of the differ-
ent CDA methods. First, casewise deletion always yielded
the largest estimated group means, while zero substitution
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Table 3: ANOVA 𝐹-statistics (𝑃 values) for 5 covariates in 6 datasets.

Dataset HCV infection Decade of life1 Sex Health status CVD
Casewise deletion 11.074 (0.001)∗∗ 2.800 (0.096) 0.013 (0.910) 0.217 (0.642) 1.385 (0.241)
QL 33.230 (<0.000)∗∗ 2.211 (0.112) 0.078 (0.780) 2.601 (0.108) 0.881 (0.349)
QL/2 48.518 (<0.000)∗∗ 1.733 (0.172) 0.279 (0.598) 6.630 (0.011)∗ 0.327 (0.568)
Zero 50.860 (<0.000)∗∗ 1.231 (0.294) 0.702 (0.403) 9.739 (0.002)∗∗ 0.044 (0.834)
MLE 37.777 (<0.000)∗∗ 1.333 (0.266) 0.062 (0.803) 7.284 (0.007)∗∗ 0.739 (0.391)
MI 47.208 (<0.000)∗∗ 3.738 (0.045)∗ 0.068 (0.794) 4.083 (0.044)∗ 0.513 (0.474)
𝐹-statistics (𝑃 value) for 5 covariates (HCV infection, age by decade of life, sex, health, and cardiovascular disease), for each of 6 different datasets used to
handle missing data. Datasets include casewise deletion (the original left-censored data with 72 sub-threshold nondetects), 3 substitution datasets [QL, QL/2
or Zero], MLE (a single imputation based onmaximum likelihood estimation from a log-normal distribution), andMI (multiple imputation of estimates based
on the variance-covariance matrix plus random error).
∗
𝑃 < 0.05, ∗∗𝑃 < 0.01.

1A single degree of freedom linear contrast (−1 0 +1) was used to test the hypothesis that hsCRP increased linearly with decade of life (10–19 yr olds, 20–29 yr
olds, and 30+ yr olds).

Table 4: Expected hsCRP level (mg/L) by decade of life, in 7 CDA
datasets.

Dataset 10–19 yo 20–29 yo 30+ yo
K-M standard 0.66
Casewise deletion 0.84
Substitution: QL 0.65
Substitution: QL/2 0.54
Substitution: Zero 0.10
MLE 0.56
Multiple imputation 0.55 0.58 0.71
Expected level of hsCRP (mg/L) by decade of life. For datasets wherein
decade of life was not statistically significant, groupmeans were not relevant,
cells were combined, and the single cell entry reflects the single overall mean.
Number for the KM standard refers to estimated median level. All others
refer to estimated means.

Table 5: Expected hsCRP level (mg/L), by health status, in 7 CDA
datasets.

Dataset Healthy Not healthy
Kaplan-Meier standard 0.62 0.79
Casewise deletion 0.79
Substitution: QL 0.64
Substitution: QL/2 0.46 0.64
Substitution: Zero 0.05 0.19
MLE 0.48 0.68
Multiple imputation 0.54 0.68
Expectedmean level of hsCRP (mg/L), by HCV infections status (infected or
uninfected). Numbers for the KM standard refer to estimated median levels.
All others refer to estimated means.

always yielded the smallest (Figures 2(a), 2(b), and 2(c);
Tables 4, 5, and 6). This was because exclusion of the
smallest (left censored) values by casewise deletion inevitably
introduced upward bias in estimated group means. Con-
versely, zero substitution introduced downward bias. The
other CDA methods yielded group means intermediate to
these extremes. Secondly, substitution methods introduced
severe bias. Specifically, estimated group means from the
substitution datasets were related to the magnitude of the

Table 6: Expected hsCRP level (mg/L), by HCV status, in 7 CDA
datasets.

Dataset HCV negative HCV-infected
Kaplan-Meier standard 0.79 0.30
Casewise deletion 1.01 0.65
Substitution: QL 0.85 0.49
Substitution: QL/2 0.81 0.35
Substitution: Zero 0.41 0.02
MLE 0.83 0.39
Multiple imputation 0.89 0.42
Expected mean level of hsCRP (mg/L), by HCV infections status (not
infected, infected). All datasets detected significant group differences, but
resulted in different expected group means. Numbers for the KM standard
refer to estimated median levels. All others refer to estimated means.

substitution constant. For decade, health and HCV infection,
estimated means were largest for QL, intermediate for QL/2,
and lowest for zero substitution (Figures 2(a), 2(b), and
2(c); Tables 4, 5, and 6). Substitution methods also failed
to distinguish different group means by decade of life,
resulting instead in a constant mean (Table 4; Figure 2(a), flat
horizontal lines). By contrast, MLE and MI detected more
subtle differences among group means already identified by
KM (Figures 2(a), 2(b), and 2(c), sloped lines across factor
levels). And only MI detected the significant increase in
hsCRP levels across decade of life (Figure 2(a); Table 4).
Substitution methods performed erratically for health status.
QL failed to detect significant group differences, but QL/2
and zero detected some differences (Figure 2(b); Table 5).
Casewise deletion failed to detect a significant effect of health
status, while MLE and MI detected large increases in hsCRP
by health (Figure 2(b); Table 5). Finally, all CDA methods
agreed in detection of lower levels of hsCRP inHCV+animals
(Figure 2(c); Table 6). This suggested that the effect of HCV
infection on hsCRP was so strong that even biased methods
could easily detect it. Note that the between-group difference
was more or less constant, as indicated by parallel lines
(Figure 2(c); Table 6), except MI, which detected a steeper
drop in hsCRP forHCV+ animals.The real issue concerns the
reliability of the inferred groupmeans depending on theCDA
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Figure 2: (a) Expected mean hsCRP levels by Decade of life, for all 6 datasets. (b) Expected mean hsCRP levels by Health Status, for all 6
datasets. (c) Expected mean hsCRP levels, by Hepatitis C infectious status, for all 6 datasets.

method used, with substitution methods being particularly
subject to bias.

3.9. Association of hsCRP with Liver Enzymes. We then tested
for an association of hsCRP with 2 standard enzymes used
to examine hepatocyte damage, alanine aminotransferase
(Alt), and alkaline phosphatase (Alp) [85]. hsCRP was tri-
chotomized (nondetect, <1.0mg/L, and ≥1.0mg/L). Archival
data on Alt and Alp levels in healthy adult chimpanzees were
log
𝑛
transformed to induce normality, then trichotomized

by tertiles (<89, 89–125.9, and ≥126U/L). There was a
strong inverse association between Alp and hsCRP levels

(𝐺2
4
= 11.02, 𝑃 = 0.026). Specifically, a chimpanzee with

sub-threshold levels of hsCRP was 1.8 times more likely
to have high rather than low levels of Alp, compared to
chimpanzees with high levels of hsCRP. Alt was likewise
trichotomized (<34U/L, 34–47.9, and ≥48U/L) and similar
results were obtained. There was a highly significant inverse
association betweenAlt and hsCRP (𝐺2

4
= 29.15,𝑃 < 0.000).

Specifically, chimpanzees with sub-threshold levels of hsCRP
were 11.8 times more likely to have high rather than low levels
of Alt, compared to chimpanzees with high levels of hsCRP.

The effects of HCV infection on the liver enzymes, Alp
andAlt, were further analyzedwith ANOVA. For Alp, neither
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sex nor age were significant as covariates (𝐹
1,235
= 1.284, 𝑃 =

0.258; and 𝐹
1,235
= 0.001, 𝑃 = 0.970). But HCV infections

was a powerful predictor of Alp levels (𝐹
1,237
= 13.884,

𝑃 < 0.000). Chimpanzees with HCV infection averaged
128.8U/mL of Alp, for an increase of 22% from average
level for non-infected animals (105.6U/mL). For Alt, age was
not significant (𝐹

1,235
= 0.006, 𝑃 = 0.938). There was a

significant sex difference (𝐹
1,236
= 30.218, 𝑃 < 0.000) with

males having higher levels of Alt (55.0U/mL) than females
(43.9U/mL). HCV infection was again a strong predictor of
Alp levels (𝐹

1,236
= 156.182, 𝑃 < 0.000). Chimpanzees with

HCV infection averaged 66.3U/mL of Alp, representing an
increase of 82% from average levels for non-infected animals
(36.5U/mL).

3.10. Reference Intervals. To determine justification for sep-
arate reference intervals, all statistically significant covari-
ates in each CDA dataset (Table 3) were evaluated with
partitioning tests (Table 7). For casewise deletion, the only
significant covariate was HCV infection (Table 3). Results
of the partitioning test did not suggest a need for separate
reference intervals. Therefore, all observed data regardless
of HCV infection status were used to construct a single
90% reference interval for all animals. This interval ranged
from 0.40mg/L to 3.37mg/L, with a median of 0.80mg/L
(Figure 3(a)).

For the substitution datasets, partitioning tests justified
separate intervals by HCV status. For uninfected animals,
the substitution datasets yieldedmedians (0.7mg/L) and 95th
percentiles (3.3mg/L) identical to the casewise deletion and
MLE intervals (Figure 3(a)). The only differences were in
their lower (5%ile) boundaries, which varied according to the
size of the substitution constant (0, 0.2, and 0.4). Substitution
of a constant eliminated variation at the bottom of these
distributions, so the robust method could not be used to
estimate reference intervals for HCV-infected animals in the
substitution datasets [80]. So reference intervals for the 3
substitution datasets were not presented.

For the MLE dataset, HCV negative animals had an
upper boundary (3.3mg/L) and a median (0.7mg/L) nearly
identical to casewise deletion. But the bottom 5th percentile
(0.2mg/L) was considerably lower in MLE (0.2mg/L) than
casewise deletion (0.4mg/L). For HCV-infected animals, use
of the necessary robust procedure [80] with the small sample
size resulted in a biologically impossible negative value
(−0.1mg/L) for the lower 5th percentile (Figure 3(a)). Both
upper and lower MLE boundaries were more extreme than
the MI intervals (Figure 3(a)). This was probably because
random substitution used in MLE was unconstrained by
the need to select statistically probable values based on
the variance/covariance matrix, as implemented in the MI
procedure.

For the MI datasets, partitioning tests did not justify
collapsing by health or decade of life, but HCV was highly
significant (Table 7). The 90% reference interval for HCV
uninfected chimpanzees was (0.3, 3.3) mg/L (Figure 3(b)).
The 90% reference interval for HCV-infected chimpanzees
was (0, 0.7) mg/L (Figure 3(b)). HCV-infected animals had

Table 7: Partitioning statistics for (a) health status, (b) decade of life,
and (c) HCV infection status, for all 6 CDA datasets.

(a) Health status

Dataset 𝑧
∗

𝑠1/𝑠2 ℎ

Casewise deletion 2.05 1.07 0.8%
Zero 2.89 1.31 1.75
DL/2 2.08 1.05 0.9%
DL n/a n/a n/a
MLE 2.39 1.15 1.2%
MI n/a n/a n/a

(b) Decade of life

Dataset 𝑧
∗

𝑠1/𝑠2 ℎ

Casewise deletion 1.77 1.03 0.7%
Zero n/a n/a n/a
DL/2 n/a n/a n/a
DL n/a n/a n/a
MLE n/a n/a n/a
MI n/a n/a n/a

(c) HCV infection status

Dataset 𝑧
∗

𝑠1/𝑠2 ℎ

Casewise deletion 4.19 1.30 3.5%
Zero 6.31 1.17 7.4%
DL/2 7.57 1.31 10.2%
DL 7.29 1.74 9.5%
MLE 6.79 1.36 8.4%
MI 6.99 1.30 8.9%
Listed factors (health, decade, and HCV) were considered clinically
significant and separate reference intervals constructed if 𝑧∗ > 5.0, 𝑠1/𝑠2 >
1.50, or ℎ > 10%. Only statistically significant covariates were tested (see
Table 2). n/a means the factor was not significant and was not tested. See
text for discussion.

median hsCRP levels (0.35mg/L) half the size of uninfected
animals (0.70mg/L). The range of variation was 4 times
greater among HCV non-infected than infected animals
(Figure 3(b)). This may reflect the presence of other, as-yet
unidentified conditions that influence hsCRP levels in unin-
fected animals, as in humans [55]. Median hsCRP level for
HCV-negative animals (0.7mg/L) was higher than the upper
90% boundary (0.3mg/L) for HCV-positive animals, and
equaled their 90th percentile. This small overlap indicated
that hsCRP is considerably reduced inHCV-infected animals.
In contrast toMLE, theMI dataset did not result in a negative
lower boundary for HCV+ animals (Figures 3(a) and 3(b)).

4. Discussion

hsCRP was of interest for its potential role as a biomarker
of CVD and hepatic damage in chimpanzees. One problem-
atic feature of these data was the presence of a moderate
degree (28%) of censoring.The Kaplan-Meier nonparametric
product-limit method for right censored survival data has
well-understood properties but has seldom been applied to
left-censored biomarker data [39, 47]. KMresults showed that



Journal of Biomarkers 9

0.4
0.2

0.8 0.7
0.3

3.4 3.3

0.8

0

0.5

1

1.5

2

2.5

3

3.5

All casewise

CR
P 

(m
g/

dL
)

−0.1

−0.5

MLE HCV− MLE HCV+

90% hsCRP reference intervals HCV+

(a)

0.3
0

0.7
0.4

3.3

0.7

0

0.5

1

1.5

2

2.5

3

3.5

CR
P 

(m
g/

dL
)

Hepatitis C infection
HCV− HCV+

90% hsCRP reference intervals by HCV status

(b)

Figure 3: (a) 90% reference intervals, by HCV status (healthy adults, both sexes). (a) Casewise deletion andMLE reference intervals, by HCV
status. (b) Multiple imputation reference intervals, by HCV status.

hsCRP levels were weakly associated with age, modestly asso-
ciated with ill health, and strongly associated with hepatitis
C infection. For age, there was a significant positive linear
effect on hsCRP levels, and the trend was nearly significant
when categorized by decade. For health status, sick animals
had estimated median hsCRP (0.62mg/L), 27% higher than
healthy animals (0.79mg/L). HCV-infected animals had
estimated median hsCRP levels (0.3mg/L) reduced by 62%
relative to noninfected animals (0.79mg/L).

The KM results provided a standard for comparison
of the performance of other CDA methods, all of which
replaced nondetects with single specific values by different
methods [76, 77]. Overall, the MI results most closely repli-
cated the KM standard and also gave more precise results,
such as group means, than KM. MLE single imputation
gave reasonable results, even without utilizing information
from the variance/covariance matrix, like MI. The casewise
deletion dataset was highly upward biased, giving the largest
estimated group means, while sometimes failing to detect
significant effects. Inferences from the substitution datasets
varied widely, making it difficult to identify any single “best”
substitution constant. For example, only QL/2 identified the
presence of a significant health effect known by KM results
to exist (Tables 2 and 5). Furthermore, bias was evident
in the group means estimated from all the substitution
datasets, with the extent of bias determined by the size of the
substitution constant.

Regardless of CDA method, hsCRP was not associated
with the presence of cardiovascular disease. This association
has been observed repeatedly in prospective human studies
[5, 7, 18, 53]. Its absence in chimpanzees was particularly
surprising because chimpanzee CVD is characterized by
myocardial fibrosis [22, 25] which is probably induced by
hypertension [20, 21], and hsCRP is known to promote
myocardial fibrosis [86].The reason(s) for this lack of associ-
ation in chimpanzees probably cannot be answered without
detailed analysis of long-term (20+ years) followup data.

Such prospective studies would also be needed to determine
if hsCRP is also associated with non-vascular mortality, as
observed in humans [53]. Also consistent with KM results,
no other CDAmethod identified a sex difference. The lack of
a sex difference in hsCRP levels has been repeatedly observed
in human studies [55, 72, 87, 88].

The significant effect of health status on hsCRP in KM
was identified in all but 2 CDA datasets (casewise deletion,
QL). Health has also been shown to influence chimpanzee
blood pressure [20, 21]. Interestingly, serum levels of hsCRP
in healthy chimpanzees estimated by KM (0.62mg/L) andMI
(0.54mg/L) were less than mean levels in healthy humans
(0.8mg/L; see also Table 5) [89].

For age, only MI identified the significant linear effect of
age on hsCRP levels. For KM, this age trend declined to near-
significance (𝑃 = 0.086) when categorized by decade, while
for MI the decade effect remained significant (𝑃 = 0.045;
Tables 2 and 3). The presence of a modest age effect has
been reported in numerous human studies [35, 37, 72, 90–93].
This age trend was observed earlier in chimpanzees, although
not reported as such. Reanalysis of published chimpanzee
data showed near-significant effect of age on hsCRP levels
(𝐺2
1
= 3.47, 𝑃 = 0.063), with subadults (<10 yo) 3.9 times

more likely to have low (<1.0mg/L) hsCRP levels than adults
(≥10 yo;) [30]. Similarly, in the present study, 6 of 7 subadults
excluded from analysis had sub-threshold levels of hsCRP.
These observations suggest that elevated hsCRP may be a
salient clinical characteristic of geriatric chimpanzees that
deserves further study.

All CDA methods confirmed the KM result that hsCRP
levels declined with HCV infection. But effect sizes varied
widely among methods. Estimated KM medians showed
that HCV infection reduced serum hsCRP to less than half
the level (0.30mg/L) of uninfected animals (0.79mg/L).
These results were reasonably closely approximated by
MLE (0.39mg/L infected; 0.83mg/L uninfected) and MI
(0.42mg/L infected, 0.89mg/L uninfected). This difference,
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known in humans, has not previously been reported in
chimpanzees [26–28, 89]. Contingency table analysis also
indicated that HCV-infected animals were 6.4 times more
likely to have sub-threshold hsCRP levels, relative to unin-
fected animals. These results indicated that reduced hsCRP
levels (including nondetects) could be useful for monitoring
and early detection of progressive liver dysfunction related
to hepatitis C infection. Similar findings in humans led to
a recommendation that separate reference intervals be esti-
mated for HCV-infected individuals [28]. In humans, hsCRP
levels initially rose in response to liver inflammation due to
hepatitis infection, then declined with persistent infection
[28, 89].This patternwas thought to result from reducedCRP
production in the liver secondary to progressive destruction
of liver tissue [28, 89]. Analysis of 2 liver enzymes, Alt and
Alp, demonstrated that liver dysfunction was associated with
reduced serum hsCRP. High enzyme levels were associated
with low hsCRP levels.These liver enzymeswere also elevated
by 22–82% in HCV-infected chimpanzees. The elevation of
liver enzymes in HCV-infected animals, while hsCRP was
reduced, suggested specific impairment of CRP synthesis, as
in human studies [28, 89]. Thus, hsCRP appears to be an
informative biomarker for long-term liver damage in HCV-
infected chimpanzees. Confirmation of this etiology will
requiremonitoring long-term (20+ yr) changes in hsCRP lev-
els, across the course of hepatitis infection, plus postmortem
evidence of hepatocellular damage.

Overall, the 6CDAmethods for handling nondetects pro-
duced different outcomes, including statistical significance of
covariates, estimated group means, and reference intervals.
Compared to the KM standard, the best method was MI,
which it most closely resembled. The worst method was
casewise deletion, which gave highly biased results. Casewise
deletion even failed to detect the powerful influence of
HCV infection in reducing hsCRP levels, found in all other
datasets. Consequently, the casewise deletion method should
be avoided in biomarker analyses. Substitution methods
performed poorly because they failed to identify significant
covariates, while estimated group means depended strongly
on the substitution constant used to replace nondetects. Such
bias is a serious limitation, because estimation of effect sizes
is the primary reason for use of statistical methods in the
first place. Constant substitution methods should always be
avoided in biomarker analysis. Finally,MLEperformed better
than casewise deletion and substitution methods but was less
precise than MI for statistical inference. Although the values
imputed byMLEderived probabilistically fromanunderlying
lognormal distribution, they did not reflect probable values
of hsCRP. That is because, unlike MI, MLE does not utilize
information in the variance/covariance matrix. And MLE’s
reliance on a single imputed value fails to account for random
variation in estimated nondetects [39]. Overall, MI gave
results most similar to the KM standard. Although KM is
a well-accepted method in survival analysis, it has not been
used widely for biomarker analyses [39]. The primary limita-
tions of KM are that estimated group means do not represent
real effect sizes, because skew in the original censored data
introduces bias, but medians may not be directly estimable
depending on the pattern of censoring. Therefore, the best

analytical method for handling left-censored biomarker data
was MI.

Regarding reference intervals, KM used the original left-
censored data, equivalent to casewise deletion, which yielded
upward biased reference intervals. Substitution methods
biased the lower reference limit, with each lower limit equal
to the substitution constant. Furthermore, substitution of a
constant prevented use of the robust method for estima-
tion of reference intervals for HCV-infected animals, which
was another severe limitation of substitution methods. The
MLE reference intervals were wider than the MI reference
intervals, probably due to the inability of the MLE method
to utilize information from the variance : covariance matrix.
These limitations are further reasons to avoid casewise dele-
tion, substitution, and MLE methods for biomarker analysis.
For MI, the effect of decade of life was statistically signif-
icant but too small (0.08mg/L/decade) to improve clinical
precision and did not justify separate reference intervals.
Separate reference intervals by HCV infection status were
indicated in all datasets except casewise deletion. MI pro-
duced more reasonable intervals, with unbiased and positive
lower boundaries (unlike casewise deletion, substitution,
and MLE). Furthermore, the reduction in median hsCRP
among infected (0.4mg/L) versus uninfected chimpanzees
(0.7mg/L; Figure 3(b)) was comparable to the reduction
observed among HCV-infected humans relative to healthy
controls [28] that these differences were thought to result
from cumulative liver damage from chronic HCV infection,
[26–28, 50, 89] suggested the need to distinguish chimpanzee
reference intervals based on HCV infection status.

In summary, hsCRP data was moderately (27.9%) leftcen-
sored. Missing data, although common, are not commonly
reported. Standard reporting practices should include a
description of the pattern and degree of missingness and the
probable censoring mechanism, because different censoring
mechanisms can bias results in different ways. Bias can also
result from use of inappropriate analytical methods. Put
another way, the presence of nondetects depends on the
censoring mechanism, while the extent of bias depends on
how missing data are handled in analysis. Casewise deletion
ignores missing data and results in upward bias. Substitution
methods introduce bias depending on the size of the sub-
stitution constant and should also be avoided. MLE-based
single substitution was adequate for statistical inference but
inadequate for reference intervals, because it gave biologically
impossible negative values for lower boundaries. KM analysis
using flipped censored data can be considered the analytical
standard. But KM estimates of mean effects will be biased
due to skew, while median effect sizes may not be estimable
at all, depending on the pattern and extent of censoring.
MI gave the best results for both statistical inference and
reference intervals, although it was somewhat more com-
plicated to implement. Overall, results demonstrated that
hsCRP decreased significantly withHCV infection, increased
moderately with health status, and increased modestly with
age. We urge the use of KM or MI to handle left-censored
biomarker data by other researchers, because other methods
will yield biased and unreliable results. We recommend
use of the hsCRP reference values estimated from the MI
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data (Figure 3(b)), as clinical guidelines for evaluating liver
dysfunction in captive chimpanzees, in conjunctionwith liver
enzymes, Alt and Alp.
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