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Abstract

B. cereus possesses flagella which allow the organism to migrate within the eye during a blinding form of intraocular
infection called endophthalmitis. Because flagella is a ligand for Toll-like receptor 5 (TLR5), we hypothesized that TLR5
contributed to endophthalmitis pathogenesis. Endophthalmitis was induced in C57BL/6J and TLR52/2 mice by injecting
100 CFU of B. cereus into the mid-vitreous. Eyes were analyzed for intraocular bacterial growth, retinal function, and
inflammation by published methods. Purified B. cereus flagellin was also injected into the mid-vitreous of wild type C57BL/6J
mice and inflammation was analyzed. TLR5 activation by B. cereus flagellin was also analyzed in vitro. B. cereus grew rapidly
and at similar rates in infected eyes of C57BL/6J and TLR52/2 mice. A significant loss in retinal function in both groups of
mice was observed at 8 and 12 hours postinfection. Retinal architecture disruption and acute inflammation (neutrophil
infiltration and proinflammatory cytokine concentrations) increased and were significant at 8 and 12 hours postinfection.
Acute inflammation was comparable in TLR52/2 and C57BL/6J mice. Physiological concentrations of purified B. cereus
flagellin caused significant inflammation in C57BL/6J mouse eyes, but not to the extent of that observed during active
infection. Purified B. cereus flagellin was a weak agonist for TLR5 in vitro. These results demonstrated that the absence of
TLR5 did not have a significant effect on the evolution of B. cereus endophthalmitis. This disparity may be due to sequence
differences in important TLR5 binding domains in B. cereus flagellin or the lack of flagellin monomers in the eye to activate
TLR5 during infection. Taken together, these results suggest a limited role for flagellin/TLR5 interactions in B. cereus
endophthalmitis. Based on this and previous data, the importance of flagella in this disease lies in its contribution to the
motility of the organism within the eye during infection.
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Introduction

B. cereus is a Gram-positive, sporulating bacterium that is more

commonly recognized for causing food-borne illnesses, chronic

skin infections, and systemic diseases such as meningitis and

pneumonia [1]. Nosocomial infection pseudo-outbreaks caused by

B. cereus have been reported in the last decade and have been

attributed to contaminated disinfecting agents like ethyl alcohol [2]

and alcohol swabs [3], or contaminated equipment like airflow

sensors, intravenous catheters [1,4], and ventilator and filtration

units [1,5,6]. A recent nosocomial outbreak identified B. cereus in

contaminated alcohol Prep Pads [7]. B. cereus is also highly

associated with a blinding ocular infection termed endophthalmi-

tis. Endophthalmitis is characterized by intraocular inflammation

and damage to the retina, resulting in partial or complete loss of

vision. Microbes can enter the posterior segment following an

ocular injury (post-traumatic), surgery (post-operative) or from

another site of infection (endogenous) [8,9]. While cases of post-

operative endophthalmitis generally respond positively to treat-

ment, cases of post-traumatic and endogenous endophthalmitis

caused by B. cereus have a significantly greater failure rate,

necessitating the search for better strategies to combat the disease.

The pathogenicity of B. cereus in endophthalmitis is associated

with the inflammogenicity of its cell wall and the production of

secreted toxins and proteases [10–14]. Previous studies have

shown that B. cereus endophthalmitis develops faster and is more

virulent than endophthalmitis caused by other Gram-positive

ocular pathogens such as Staphylococcus aureus [15,16], Enterococcus

faecalis [17,18], or Streptococcus pneumoniae [19,20]. The explosive

nature of B. cereus endophthalmitis dictates the need for immediate

and aggressive therapy to stop the progression of the disease.

Currently, there is no universal therapeutic regimen which

prevents vision loss that occurs during severe forms of endoph-

thalmitis. The use of anti-inflammatory agents in addition to

antibiotics has not proven effective [21–25]. In addition, current

therapies ignore toxins which are proven to contribute to pathogen

virulence in the eye [10,12–19].

Innate immune mechanisms drive inflammation by the

recognition of distinguishing molecules on the surface of the

invading bacterium via a class of pattern recognition receptors

called Toll-like receptors (TLRs) expressed on host cells. TLRs are

expressed in ocular surface, retinal, iris, and corneal epithelial cells

[26–28]. In the context of intraocular infections, TLRs have been

found to be important in inflammation in S. aureus [29] and B.
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cereus [30] endophthalmitis. For experimental B. cereus endoph-

thalmitis, the absence of TLR2 resulted in a diminished

inflammatory environment when compared to controls [30], but

there was still some degree of inflammation in B. cereus-infected

TLR22/2 eyes. This suggests that other TLRs and/or compo-

nents of innate immunity are involved in intraocular inflammation

during B. cereus endophthalmitis.

When B. cereus infects the eye, the organism migrates rapidly

throughout all parts of the eye, from the initial site of injection in

the vitreous into the anterior segment within 6 to 12 hours [31].

This ability of B. cereus to migrate throughout the eye contributes to

endophthalmitis pathogenesis [12,32,33]. The absence of motility

affects toxin production and hence non-motile Bacillus caused less

severe disease pathogenesis [12,32,33]. B. cereus use peritrichous

flagella [34] as motility appendages which render the bacterium

capable of movement throughout the eye. Moreover, flagella may

impact the inflammatory response mounted against B. cereus since

flagellin, the monomer which comprises full-length flagella, is a

natural ligand for TLR5 [35]. Since B. cereus is a flagellated

bacterium, we hypothesized that B. cereus flagella contributed to

the pathogenesis during endophthalmitis by activating the ocular

inflammatory response via TLR5. This hypothesis was tested by

analyzing the immune response against B. cereus flagellin in vitro and

in vivo, and by comparing the pathogenesis of B. cereus infection in

an experimental model of endophthalmitis in wild type control

and TLR52/2 mice.

Methods

Ethics Statement
These experiments involved the use of mice. All procedures

were carried out in strict accordance with the recommendations in

the Guide for Use of Laboratory Animals of the National Institutes

of Health, institutional guidelines set forth by the University of

Oklahoma Health Sciences Center IACUC, and the Association

for Research in Vision and Ophthalmology Statement for the Use

of Animals in Ophthalmic and Vision Research. The OUHSC

IACUC approved these studies under protocols 11–068 and 11–

090.

Experimental B. cereus endophthalmitis
Wild type C57BL/6J mice were purchased from commercially

available colonies (Stock No. 000664, Jackson Labs, Bar Harbor

ME). An original breeding pair of TLR52/2 mice on the

C57BL/6 background was a kind gift from Dr. Richard A. Flavell

(Yale University, New Haven CT). Following rederivation,

TLR52/2 mice were bred on the C57BL/6J background and

maintained in-house on a 12 hour on/12 hour off light cycle

under barrier facility conditions. All animals were acclimated to

conventional housing after arrival/weaning for at least 2 weeks

and were used in experiments at 8–10 weeks of age.

Experimental endophthalmitis was induced by injecting

100 CFU B. cereus strain ATCC 14579 into the mid-vitreous

using a sterile capillary needle as previously described [30,36–38].

At different time points postinfection, quantitation of intraocular

bacterial growth, proinflammatory cytokines and chemokines,

myeloperoxidase (MPO, to estimate PMN infiltration), and retinal

function were performed, as described below.

Intraocular Bacterial growth
Bacteria were quantified by harvesting infected eyes at 0, 4, 8,

and 12 hours postinfection. The eyes were homogenized with

1 mm sterile glass beads (Biospec products, Inc., Bartlesville OK)

in 400 ml PBS. Bacteria were then track diluted 10-fold onto brain-

heart infusion (BHI) agar and quantified [30,37,38]. Values

represent the mean 6 standard deviation (SD) for N$4 eyes per

time point.

Electroretinography
Retinal function was analyzed in wild type and TLR52/2

mice by electroretinography (ERG) as previously described

[30,37,38]. ERGs were performed at 8 and 12 hours postinfection

(Espion E2, Diagnosys LLC, Lowell MA). After dark adaptation

for at least 6 hours, eyes were exposed to a transient flash of light.

Bright flashes resulted in a response which consisted of an A wave

initial negative amplitude followed by a B wave positive deflection.

A-wave provides a direct measure of photoreceptor activity, while

B-wave represents the action of Muller cells, bipolar cells, and

second order neurons. A- and B-wave amplitudes were recorded

for each infected eye and compared with the uninfected eye. The

percentage of retinal function retained was then calculated using

the formula 100 – {[1 – (experimental A-wave amplitude/control

A-wave amplitude)] 6100} or 100 – {[1 – (experimental B-wave

amplitude/control B-wave amplitude)] 6100} [38]. Values

represent the mean 6SD for N$4 eyes per time point.

Histology
Whole eyes were harvested at 0, 4, 8, and 12 hours after

infection and incubated in buffered zinc formalin fixative for

24 hours at room temperature [30,37,38]. Globes were then

transferred to 70% ethanol and embedded in paraffin, sectioned,

and stained with hematoxylin and eosin. Images are representative

of 4 eyes/time point.

Inflammatory Cell Influx
PMN influx into the eye was estimated by quantifying MPO

levels in whole eye homogenates by sandwich ELISA (Mouse

MPO ELISA Kit, Hycult Biotech, Plymouth Meeting PA), as

previously described [30]. Eyes were harvested and analyzed for

MPO activity at 0, 4, 8 and 12 h postinfection. Harvested eyes

were suspended in PBS containing protease inhibitor cocktail

(Roche Applied Science, Indianapolis IN) and homogenized.

Homogenates of uninfected eyes served as negative controls. The

lower limit of detection for this assay was 2 ng/ml. Results are

reported as mean 6SD for N$4 eyes per group per time point.

Inflammatory Mediator Expression
Ocular proinflammatory cytokine and chemokine expression

was quantified as previously described [30,36,37]. Eyes were

harvested at 0, 4, 8 and 12 hours postinfection. Harvested eyes

were suspended in PBS containing protease inhibitor cocktail and

homogenized. Concentrations of IL6, TNFa, IL1b, and KC were

quantified in harvested wild type and TLR52/2 eyes using

commercial enzyme linked immunosorbent assay (ELISA) kits

(Quantikine, R&D Systems, Minneapolis MN). The lower limits of

detection for each assay were: TNFa, 2 pg/ml; KC, 2 pg/ml; IL6,

2 pg/ml; IL1b, 2 pg/ml. Values represent mean 6SD for N$4

eyes/time point.

Purification of B. cereus Flagellin
Flagellin preparations from B. cereus were generated based on a

previously described method [39,40]. Motile B. cereus was grown

overnight in 1L Luria Bertani (LB) media with minimal rotary

shaking (80 rpm) to avoid damage to intact flagella. Bacteria were

harvested by centrifugation at 40006g for 30 min, the pellet was

resuspended in 15 ml of PBS containing protease inhibitor

cocktail, and the suspension was vigorously mechanically shaken

TLR5/Flagella and Intraocular Infection
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to remove the flagella. Two cycles of differential centrifugation

were done at 15,0006g for 30 min to remove bacterial debris and

again at 78,0006g for 2 h to sediment flagella. Purified flagella

was then resuspended overnight in 1ml PBS with protease

inhibitor and stored at 4uC. Purity of flagellar monomers was

analyzed by SDS-PAGE. A single band of approximately 29 kD

was identified, extracted from the gel, and sequenced (LC/MS/

MS; OUHSC Laboratory for Molecular Biology and Cytometry

Research, Oklahoma City OK). The purified flagellin protein

sequence matched those of B. cereus ATCC 14579 flagellin

(Accession No. gi|30019803) and B. thuringiensis flagellin A1

(Accession No. gi|189164115).

Flagella-Induced Inflammation in the Eye
Purified B. cereus flagellin suspensions in PBS were injected into

C57BL/6J or TLR52/2 mouse eyes as described above. 0.5 ng/

0.5 mL flagellin were injected into each eye. ERGs were performed

and eyes were harvested for histology at 0, 8, and 12 hours

postinfection, as described above. ERG values represent the mean

6SD for N$2 eyes/time point.

Flagellin Activation of TLR5
Purified flagellin was tested for its ability to activate TLR5 in a

TLR5 reporter cell line which expresses human TLR5 and

secreted alkaline phosphatase reporter gene under the transcrip-

tional control of NFkB (IML-105, TLR5/SEAPorter HEK 293

cells, Imgenex, San Diego CA). The positive control for this assay

was purified flagellin FliC from Salmonella typhimurium (IMG-2205,

Imgenex) tested at equal concentrations (0.1, 0.5, 1.0, 5.0, and

10.0 ng/mL). Results were analyzed by reading absorbance at

405 nm. Values represent mean 6SD for 2 replicates per

concentration.

Statistics
Results represent the arithmetic means 6 standard deviations

(SD) for all samples from each experimental group. A two-tailed,

two-sample Student t test assuming equal variance was used to

compare the statistical significance of the experimental groups.

Statistical significance was determined at P#0.05.

Sequence Analysis
Flagellin sequences for B. cereus (NP_831435.1), B. anthracis

(WP_001222388.1), B. thuringiensis (ABD33778.1), and S. enterica

serovar typhimurium (S07276) were aligned, displayed, and analyzed

with ClustalW (European Bioinformatics Institute, Cambridge-

shire UK) [41].

Results

Intraocular Growth of B. cereus
Bacterial growth in wild type C57BL/6J and TLR52/2 eyes is

shown in Figure 1. The rates of bacterial growth followed a similar

pattern but were statistically different at 4 hours (P = 0.002) and

12 hours (P = 0.01) postinfection. B. cereus reached maximum

concentrations of approximately 6.5 (TLR52/2) and 7.3

(C57BL/6J) log10 CFU/eye by 12 hours postinfection. This result

suggested that the absence of TLR5 did not greatly affect the

overall rate of B. cereus growth in the eye.

Retinal Function
Retinal function analysis of B. cereus endophthalmitis in wild

type C57BL/6J and TLR52/2 mice is summarized in Figure 2.

Amplitudes of A-wave and B-wave declined significantly both in

wild type C57BL/6J and TLR52/2 eyes at 8 and 12 hours

following infection with B. cereus. The A-wave amplitudes in

C57BL/6J infected eyes was similar at 8 h postinfection (P = 0.07),

but slightly less at 12 h postinfection (P = 0.02). B-wave amplitudes

retained were greater in TLR52/2 infected eyes at 8 h

postinfection (P = 0.008), but both groups had similar ERG values

at 12 h postinfection (P = 0.1). By 12 hours postinfection, both A-

wave and B-wave amplitudes retained decreased to approximately

20% or less in infected eyes, indicating significant and comparable

retinal function loss in both groups of mice.

Intraocular Inflammation
Histology of uninfected (control) and B. cereus-infected globes in

wild type C57BL/6J and TLR52/2 mice is depicted in Figure 3.

At 4 hours postinfection, wild type C57BL/6J and TLR52/2

mice had similar levels of fibrin deposition in the anterior segment

and minimal fibrin and polymorphonuclear leukocyte (PMN)

infiltration in the posterior segment. At this time, retinas were

intact in eyes of both groups. At 8 hours postinfection, eyes of both

groups had significant fibrin deposition in the anterior chamber

and in the posterior segment, corneas were edematous, and

significant numbers of PMN were present in the vitreous. In

C57BL/6J and TLR52/2 mouse eyes, retinal layers were intact

but retinal detachments were present. At 12 hour postinfection,

whole globe inflammation was significant and retinal layers were

indistinguishable in both groups of mice.

PMN infiltration in whole eyes following B. cereus infection is

depicted in Figure 4. Myeloperoxidase (MPO) levels increased

significantly after 4 hours postinfection in C57BL/6J and

TLR52/2 infected eyes. MPO levels were similar in these

groups at all time points postinfection (P$0.17). These results

suggest that the absence of TLR5 did not alter the PMN response

during infection, supporting the histology data.

Figure 1. Influence of TLR5 on bacterial growth during
experimental B. cereus endophthalmitis. C57BL/6J wild type and
TLR52/2 mouse eyes were injected with 100 CFU B. cereus. Eyes were
harvested, homogenized, and analyzed for bacterial growth. Overall, B.
cereus grew to similar concentrations in infected eyes of TLR52/2 and
C57BL/6J mice, suggesting that the absence of TLR5 did not influence
the overall growth of B. cereus in the eye. Values represent the mean
log10 CFU6SD of N$4 eyes per time point for at least 2 separate
experiments. *P#0.05.
doi:10.1371/journal.pone.0100543.g001

TLR5/Flagella and Intraocular Infection
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The presence of proinflammatory cytokines and chemokines in

the eye during infection is depicted in Figure 5. In general, all

cytokines and chemokines tested increased significantly in both

groups of mice during experimental endophthalmitis. TNFa levels

were similar in C57BL/6J and TLR52/2 eyes at 8 and 12 hours

postinfection (P$0.1). TNFa levels increased approximately 12-

fold in both groups between 4 and 12 hours postinfection. KC

levels were similar at all time points postinfection (P$0.05), with

an approximate 7-fold increase in KC in both groups between 4

and 12 hours postinfection. IL6 levels were similar in C57BL/6J

and TLR52/2 eyes at 8 and 12 hours postinfection (P$0.57).

IL6 levels increased an average of 30-fold in both groups between

4 and 12 hours postinfection. IL1b levels were similar in C57BL/

6J and TLR52/2 mice, except at 8 hours postinfection when

IL1b levels were slightly but significantly greater in infected

C57BL/6J eyes (P = 0.001). IL1b levels increased 8-fold and 13-

fold in C57BL/6J and TLR52/2 mouse eyes between 8 and

12 hours postinfection (P# 0.0001). Despite a few time points

where proinflammatory mediators were slightly but significantly

greater in C57BL/6J eyes compared to that of TLR52/2 eyes,

the data suggest that overall, the cytokine and chemokine response

to B. cereus infection was not altered by the absence of TLR5.

These results coincided with the histology and MPO data,

indicating that TLR5 did not significantly contribute to the

inflammatory response in experimental B.cereus endophthalmitis.

Intraocular Effects of Flagellin
It has been reported that flagellin monomers elicit a TLR5-

mediated response because the flagellar TLR5-binding domain is

exposed in monomers, but not in polymerized flagellin [42,43].

These findings were reported for Salmonella and Pseudomonas

flagellin, but, to our knowledge, these effects have not been

analyzed for B. cereus flagellin. To determine whether flagellin

alone could cause intraocular inflammation in the absence of B.

cereus organisms, flagellin monomers (Figure 6A) were purified and

intravitreally injected into mouse eyes as described in the Methods.

Based on a report of an average of 11 flagella per B. cereus cell [44],

an estimated 20,000 flagellin subunits per filament [45], and a

calculated molecular mass of 29 kD [46], we estimated that

injecting 0.5 ng flagellin into an eye would equate to that quantity

of flagellin found in 4.726105 CFU B. cereus. Extrapolation of the

CFU data in Figure 1 suggests that this concentration of B. cereus

Figure 2. Influence of TLR5 on retinal function during experimental B. cereus endophthalmitis. C57BL/6J wild type and TLR52/2 mouse
eyes were injected with 100 CFU B. cereus. Retinal function was assessed by electroretinography (ERG). A) A-wave amplitudes were slightly greater in
C57BL/6J infected eyes at 12 h postinfection (P = 0.02), while B-wave amplitudes were greater in TLR52/2 infected eyes at 8 h postinfection
(P = 0.008). By 12 hours postinfection, A-wave and B-wave amplitudes retained in both groups decreased to approximately 20% or less in infected
eyes, indicating significant retinal function loss in both groups of mice regardless of the presence of TLR5. Values represent the mean 6SD of N$4
eyes per time point for at least 2 separate experiments. *P#0.05. B) Representative averaged waveforms from wild type (WT) and TLR52/2 mice at
12 h postinfection, with one eye infected and the contralateral eye serving as the uninfected control. Representative of N$4 eyes per time point.
doi:10.1371/journal.pone.0100543.g002

TLR5/Flagella and Intraocular Infection
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was present in the mouse eye at approximately 8 hours

postinfection, a time when retinal function loss and inflammation

were significant in infected eyes (Figures 2–4). At 8 hours following

injection of 0.5 ng of purified flagellin, posterior segment

inflammation was minimal and retinal function decreased slightly

(but not significantly) from that at time 0 (Figure 6BC, P$0.4).

These results suggest that B. cereus flagellin alone may not have

contributed significantly to retinal function loss or inflammation

during an actual infection. Delayed intraocular inflammation was

observed at 12 h following injection of 0.5 ng flagellin (Figure 6C);

however, infected eyes at 12 h (Figure 3) demonstrated much

greater pathology than that seen at 12 hours in eyes injected with

flagellin alone. No posterior segment inflammation was observed

in eyes injected with 100-fold less purified flagellin (data not

shown). Injection of 0.5 ng flagellin into TLR52/2 eyes resulted

in slightly less but still significant inflammation and similar

retained A-wave (P = 0.16) and B-wave (P = 0.76) amplitudes

compared to that of wild type eyes at 12 h postinjection (Figure

S1). These results suggest that TLR5 may not be essential to

intraocular inflammation caused by flagellin, and that flagellin,

when present, may induce inflammation through a different

pathway when TLR5 is absent.

Because the degrees and timing of intraocular inflammation

present in infected eyes versus those injected with purified flagellin

differed so greatly, we analyzed whether B. cereus flagellin was an

agonist of TLR5. TLR5 activation of purified B. cereus flagellin was

compared with that of purified Salmonella typhimurium flagellin in

vitro. Compared to Salmonella flagellin, B. cereus flagellin was a weak

TLR5 agonist, resulting in significantly less NFkB activity at

comparable flagellin concentrations (Figure 6D). Taken together,

these results suggest that B. cereus flagellin/TLR5 interactions in

the eye may not be significant enough to greatly impact the overall

course of intraocular inflammation during experimental endoph-

thalmitis.

Discussion

TLR5 is an important innate immune regulator of inflamma-

tion in infections, including those caused by Salmonella [47,48],

Legionella [49,50], Clostridium [51], Pseudomonas [52,53], E. coli [54],

and others. TLR5 is also an important mediator of gut

homeostasis [55]. TLR5 has been detected in cells of the eye

[27,56,57]. TLR5 has been reported to modulate corneal

inflammation and the innate antimicrobial response in vitro [58–

60] and is important in ocular inflammation during bacterial and

fungal keratitis [52,61]. We therefore sought to determine the role

of TLR5 in endophthalmitis caused by B. cereus, an organism

which possesses the TLR5 ligand, flagella.

The majority of studies on flagellin/TLR5 interactions have

been done with Gram-negative organisms. Few studies have

Figure 3. Whole eye histology of experimental B. cereus endophthalmitis. C57BL/6J and TLR52/2 mouse eyes were injected with 100 CFU
B. cereus. Whole globes were harvested and processed for hematoxylin and eosin staining. Infected eyes of both groups had significant inflammation
by 12 h postinfection, suggesting that the absence of TLR5 did not greatly impact intraocular inflammation. Sections are representative of 4 eyes per
group. Magnification, 10X.
doi:10.1371/journal.pone.0100543.g003

Figure 4. Influence of TLR5 on infiltration of PMN into mouse
eyes during experimental B. cereus endophthalmitis. C57BL/6J
and TLR52/2 mouse eyes were injected with 100 CFU B. cereus. PMN
infiltration was estimated by quantifying MPO in whole eyes by
sandwich ELISA. MPO levels were similar in these groups at all times
points postinfection (P$0.17), suggesting that the absence of TLR5 did
not alter the PMN response during infection. Values represent the mean
6SD for N$4 per group for at least 2 separate experiments. *P#0.05.
doi:10.1371/journal.pone.0100543.g004

TLR5/Flagella and Intraocular Infection
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analyzed interactions between Gram-positive flagella and TLR5.

Listeria and Clostridium flagellin have been shown to be TLR5

agonists [35,62]. Although B. subtilis flagellin is commercially

marketed as a TLR5 agonist, in vitro results disagree on its ability to

activate TLR5 [56,63–65]. The B. cereus sensu lato group, including

pathogens B. cereus, B. anthracis, and B. thuringiensis, have

peritrichous flagella. Because the motility of B. cereus, and therefore

its flagella, are important in the virulence of B. cereus during

endophthalmitis [8,66], we hypothesized that flagellin/TLR5

interactions also contributed to the pathogenicity of infection.

Despite our finding that B. cereus flagellin was a weak TLR5

agonist in vitro, physiological concentrations of purified B. cereus

flagellin monomers caused inflammation in wild type and

TLR52/2 mouse eyes. However, this inflammation was dissim-

ilar to the degree of inflammation caused by active infection when

that concentration of flagellin would have been present in the eye.

B. cereus migrates through all parts of the eye during endophthal-

mitis [31], so its flagella are likely polymerized. The disparity could

therefore be explained by the fact that flagellin monomers of other

organisms, but not polymerized flagellin, have been shown to

activate TLR5 [42,43]. If flagellin monomers were not present in

the eye during infection, this may explain why the absence of

TLR5 did not significantly impact intraocular inflammation

during infection. The results also suggest that unlike the

environment in the inflamed gut where high levels of flagellin

monomers exist [67,68], flagellin monomers are either not present

or are present at non-inflammogenic concentrations in the eye

during endophthalmitis.

The potential lack of a significant role for polymerized flagellin

in intraocular inflammation also brings forth an interesting

question about the physiological state of B. cereus in the eye during

infection. We demonstrated that mutant B. cereus which cannot

swarm do not migrate into the anterior segment and cause a less

virulent infection than wild type B. cereus that can swarm [33]. In

vitro, swarming cells are elongated and hyperflagellated on media

[69], but the swarming state of B. cereus in the eye during

endophthalmitis has not been analyzed. If B. cereus is in a

physiological state of swarming in the eye, then our concentration

of flagellin injected into the eye may have been too low, as 40-fold

increases in flagellin have been reported for swarming B. cereus

[70]. However, if flagellin monomers were not present in the eye

during infection, the increased number of flagella present in

swarming organisms would be irrelevant, and TLR5/flagellin

interactions would still not be as important to the outcome of

infection.

B. cereus and B. subtilis do not fall into the category of organisms

whose flagellin is not recognized by TLR5 [71]. Therefore, a

TLR5 evasion mechanism similar to that demonstrated by

Helicobacter or Campylobacter [71] may not be occurring here.

ClustalW alignments of the B. cereus ATCC 14579 and S.

typhimurium H1-A flagellin sequences demonstrated significant

similarity (81%) in a region shown to be important for IL8

activity in Caco2 cells (amino acids 30252) (Figure 7) [72].

However, ClustalW comparisons of these flagellin sequences also

demonstrated that B. cereus flagellin contains differences in the

TLR5 recognition and binding sites. The S. typhimurium FliC-

TLR5 stimulatory activity lies within amino acids 89-96 in the N-

terminal D1 domain [43]. Important residues for TLR5 activation

also exist in the C-terminal conserved domain (430–445) [43].

Additional residues located between the IL8 activity region and

the N-terminal D1 domain (58, 59 of S. typhimurium) and within the

C-terminal D1 domain (411 of S. typhimurium) are also required for

TLR5 recognition, as these residues are in physical contact with

the N-terminal TLR5 binding region [43]. B. cereus shares 62.5%

Figure 5. Influence of TLR5 on proinflammatory mediator
expression during experimental B. cereus endophthalmitis.
C57BL/6J and TLR52/2 mouse eyes were injected with 100 CFU B.
cereus. Ocular proinflammatory cytokines and chemokines were
analyzed by sandwich ELISA. Overall, similar levels of TNFa, KC, IL6,
and IL1b were synthesized in infected eyes of C57BL/6J mice compared
with that in infected eyes of TLR52/2 mice, suggesting that the
absence of TLR5 did not alter the inflammatory mediator response
during infection. Values represent the mean 6SD for N$4 per group for
at least 2 separate experiments. *P#0.05.
doi:10.1371/journal.pone.0100543.g005
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identity with the 89-96 region of S. typhimurium, including identity

with three amino acids deemed essential for TLR5 binding

activity, protofilament assembly, and motility [43]. Only 25% of

the residues in the C-terminal conserved domain are identical

between these flagellins. Residues 58, 59, and 411 were not

identical, suggesting that the three dimensional structure of TLR5

binding by B. cereus flagellin is different from that of S. typhimurium.

This is not a surprise, as B. cereus flagellin is 221 residues shorter

than S. typhimurium FliC. Whether or not these differences account

for the reduced TLR5 agonism of B. cereus flagellin or whether this

lack of agonism extends to other members of the B. cereus sensu lato

group (Figure 7) is an open question. A recent report supports the

idea of differential activation of TLR5 and NAIP5/NLRC4

inflammasome receptors by the flagellins of different organisms

[73]. In evaluating the use of Bacillus cereus sensu lato group flagellins

for vaccine development, species-specific differences in these

domains are important to consider.

Our results demonstrated that B. cereus flagella/TLR5 interac-

tions, if present, did not contribute significantly to endophthalmitis

pathogenesis. Although B. cereus flagella may not have contributed

to inflammation during infection, its role in migration throughout

the eye during infection is clearly important. We previously

demonstrated that non-motile and non-swarming flagellated

mutants are significantly less virulent than their motile and

swarming wild type parental strains [32,33]. Therefore, immobi-

lization of the organism is paramount during the early stages of

infection. Realistically, this would be achieved with appropriate

administration of bactericidal antibiotics at the site of infection as

early as possible during the infection course to sterilize the eye

[25]. However, antibiotics do not inactivate the multitude of toxins

synthesized by B. cereus or other organisms in the eye during

infection which contribute to intraocular virulence. Future efforts

to improve the visual outcome of patients with endophthalmitis

caused by B. cereus and other virulent pathogens should include

anti-toxin strategies with sterilization and better anti-inflammatory

drugs to prevent the inflammation and tissue damage which results

in vision loss during this disease.

Supporting Information

Figure S1 Flagellin causes similar inflammation and
retinal function changes in wild type and TLR52/2

mice. A) Purified B. cereus flagellin (0.5 ng) was injected into

C57BL/6J mouse eyes as depicted in Figure 6. Injection of

flagellin resulted in slightly less but still significant inflammation in

TLR52/2 eyes compared to that of wild type eyes (representative

of N = 3 TLR52/2 eyes at 12 h postinjection. B) Eyes underwent

electroretinography as depicted in Figure 6. At 12 h postinjection,

retained A-wave (P = 0.16) and B-wave (P = 0.76) amplitudes were

similar between wild type and TLR52/2 eyes (mean 6SD, N$

2/group).

(TIF)
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