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Animals adjust their lipid metabolism states in response to pathogens infection. However,
the underlying molecular mechanisms for how lipid metabolism responds to infection
remain to be elusive. In this study, we assessed the temporal changes of lipid metabolism
profiles during infection by an integrated transcriptomics and lipidomics analysis.
Ergosterol is identified to be required for proper host defense to pathogens. Notably,
ergosterol level is increased in the hemolymph upon bacterial infection. We show that the
increase of ergosterol level by food supplement or genetic depletion of Acsl, a long-chain
fatty acid-CoA synthetase, promotes host survival against bacterial challenges. Together,
our results suggest a critical role of lipid metabolism adaption in the process of host
defense against invading pathogens.
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INTRODUCTION

Animals evolve to form a set of sophisticated defense systems to cope with a variety of
environmental stresses, such as pathogens infection. Innate immunity is the first line and most
ancient host defense system against invading pathogens, including bacteria, fungi and viruses (1).
The striking conservation of genetic regulation between flies and mammals together with the well-
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established genetic resources have made Drosophila an attractive
model organism to decipher the principles of innate immune
response (2, 3). In Drosophila, immune response comprises
cellular and humoral immunity. In cellular immunity,
hemocytes phagocytose or encapsulate, and trigger
melanization, to destroy the invading pathogens (4). Humoral
immunity, on the other hand, is responsible for the production of
antimicrobial peptides (AMPs) mainly from the hemocytes and
fat body, through the classical Toll and Imd signaling pathways
(5). Although remarkable progress has been achieved during the
past three decades in elucidating the underlying mechanisms for
innate immune response and regulations, how the immune
response activity is regulated physiologically remains
largely unknown.

Innate immune system is critical for host survival, yet
energetically expensive for a full protection during immune
challenges, requiring proper re-distribution of energy (6).
Upon pathogen invasion, Drosophila hemocytes sense and
initiate a metabolic switch to aerobic glycolysis for boosting
the immune response (7, 8). Furthermore, the activation of the
Imd pathway and/or the Toll pathway in fat body disrupts
insulin signaling, results in decreased triglyceride storage and
impaired animal growth (9–11). More recently, dSTING, the
conserved antiviral signaling pathway in both flies and humans
(12, 13), is also reported to regulate lipid metabolism by
modulating fatty acid synthesis (14, 15). The infection-induced
metabolic adaption and reallocation of energy is indispensable
for immune responses, because blocking the metabolic
adjustment has been reported to impair host defense against
pathogens (16).

Emerging evidence has established a linkage between lipid
metabolism and innate immune response, however, the
molecular mechanisms by which infection leads to lipid
metabolism adaption and how lipid metabolites are involved in
immune response are not well understood. In order to
systemically assess the molecular connection between these two
indispensable processes, here, we performed a time-course study
for lipid metabolism genes and metabolites profile dynamics
during bacterial infection by an integrated transcriptomics and
lipidomics analysis, and identified ergosterol as a novel lipid
metabolite involved in proper host defense to bacterial infection.
MATERIALS AND METHODS

Fly Strains and Husbandry
The following fly stocks were used: The wild-type w1118 (#3605)
flies were obtained from Bloomington Drosophila Stock Center.
AcslTHU2816 and Acsl3222 RNAi lines were obtained from
TsingHua Fly Center (THFC) and Vienna Drosophila Resource
Center (VDRC). The key1,MyD88c03881 and w; pUbi-Gal4; pTub-
Gal80ts lines were obtained from Dominique Ferrandon’s lab in
Institut de Biologie Moléculaire et Cellulaire (IBMC). Unless
specifically noted, all flies were kept on standard cornmeal food
with yeast (refer to BDSC Cornmeal Food recipe) at 25°C. For
yeast-free (YF) food, yeasts were not added to the standard
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cornmeal food. For ergosterol food, ergosterol (Macklin) was
added to the yeast-free cornmeal food with ergosterol (100 mM).
For bacterial infection, the newly eclosed flies (within 2 hour)
were collected and transferred to YF, YF+ergosterol and normal
food (NF), respectively and kept at 25°C for 3 days before
bacterial infection. For Acsl RNAi experiment, Ubi-Gal4, UAS-
Acsl RNAi, Tub-Gal80ts and control flies were kept at 29°C for 5
days before bacterial infection.

Bacterial Strains
Gram-negative bacteria Erwinia carotovora carotovora-15 (Ecc15,
renamed as P. carotovorum) strain was obtained from Lei Pan’s lab
in Institut Pasteur of Shanghai, Chinese Academy of Sciences (17).
Serratia marcescens (S.m) (# 1.2818) and Enterococcus faecalis (E.fa)
(#1.2135) were obtained from the China General Microbiological
Culture Collection Centre (CGMCC).

Bacterial Infection
Ecc15, S.m and E.fa were cultured in standard LB medium
overnight, with Ecc15 and S.m incubated at 30°C and E.fa at
37°C. Before infection, bacteria were washed by 1xPBS for 3
times and diluted to the indicated optical density (OD600) of 50, 2
and 0.1, respectively. For infection experiments, flies were
anesthetized on CO2 pad before bacteria was injected
quantitatively into the fly thorax using a microinjector
(Nanoject III, Drummond Scientific Company). The injection
volume of Ecc15, S.m and E.fa were 15, 2.3 and 9.2 nL per fly,
respectively. Of note, the injection volume of Ecc15 in Figure 4A
was 23 nL per fly.

Bacterial Load
To determine the CFU of Ecc15, S.m and E.fa-infected flies,
individual fly was first homogenized gently in 200 mL 1xPBS at
the indicated time points. In brief, a sterile zirconia bead (j=3.0
mm) was added into the sample with 200 mL pre-cooled 1xPBS,
then the sample was crashed by vibrating the zirconia bead with
frequency of 30Hz for 30s in a Retsch MM400 grinding mixer.
Then, 10 mL of homogenates were serial diluted at 1:104. 10 mL of
the diluted-homogenates were placed on standard LB agar plate
at 37°C overnight before counting. Each diluted sample was
performed in duplicate.

qPCR
To measure mRNA levels of indicated fly genes, ~7 flies were
collected for homogenate preparation. For homogenate
preparation, a sterile zirconia bead was added into the sample
with 200 mL pre-cooled RNAiso, then the sample was crashed by
vibrating the zirconia bead with frequency of 30Hz for 3 min in a
Retsch MM400 grinding mixer. Homogenates of fly for each
treatment were then extracted by RNAiso Plus kit (TAKARA).
RNA (1 mg) was reverse transcribed using PrimeScript™ RT
reagent kit (TAKARA). qPCR analyses were preformed using the
TB Green premix Ex Taq™ II kit on a BIO-RAD C1000 Touch™

Thermal Cycle. And the expression levels of target genes were
normalize to rp49 (data are presented as DCT, 2^(Ctrp49 - Cttarget
genes)). Primers used were in Supplementary Table 2.
July 2022 | Volume 13 | Article 933137
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Hemolymph Extraction
The Ecc15-infected w1118 female flies (OD=50, 15 nL) and the
corresponding PBS-injected (control) flies were poked by needle
at thorax and then placed at a 500 mL Eppendorf tube with a hole
in the bottom, which was inserted in a 1.5 mL tube. Flies were
centrifuged at 5,500 rpm for 15 min. The yielded hemolymph
was gently mixed with TBST (0.1% Tween-20) and stored at -80°
C until use.

RNA-Seq and Bioinformatics Analyses
The total RNA of Ecc15-infected and PBS-injection control w1118

female flies were extracted at 12, 24, 48 and 72 hpi. The
eukaryotic mRNA was enriched by Oligo (dT) beads, and
rRNA was removed by Ribo-Zero™ Magnetic Kit (Epicentre
Madison, WI, USA). Then, the RNA was quantified, reverse
transcribed and sequenced by Illumina sequencing platform.
These eukaryotic mRNA enrichment, rRNA elimination,
cDNA library preparation and sequencing procedures were
performed by Guangzhou Genedenovo Biotechnology Co., Ltd.
The raw sequencing data were filtered by trim galore software
(v0.6.4) to remove plausible remaining adapter sequences in
reads and low quality (Q-value<=20) reads. The resulting clean
data were aligned to fly’s genome dm6 using the STAR software
(v2.7.2b) (18). Gene expression levels (gene counts and TPM-
Transcripts Per Million) were quantified by rsem software
(v1.3.1) (19). The following bioinformatics analyses were
performed base on R software (v3.5.3). In detail, Weighted
Correlation Network Analysis (WGCNA) was performed based
on WGCNA package (v1.69) (20). In brief, the TPM gene
expression matrix generated by rsem software was log2
transformed and was transposed; Second, soft thresholding
powers were then calculated by WGCNA::pickSoftThreshold
function; Third, automatic network construction and module
detection were calculated by WGCNA::blockwiseModules
function with soft thresholding powers calculated above (in
this study, sft=14); Forth, the correlation value between
module and time-course treatment (such as Ecc15 12 h, PBS 12
h et al.) were calculate by WGCNA::cor function; In the last step,
the visualization of the correlation ship modules and time-course
treatment by WGCNA:: labeledHeatmap function. Gene
Ontology (GO) and Gene Set Enrichment Analysis (GSEA)
analysis were performed using clusterProfiler package(v3.10.1)
(21). In brief, for GO analysis, the indicated gene list were
imported to the clusterProfiler::enrichGO function to preform
biological process GO terms enrichment analysis. For GSEA
analysis, the down-regulated genes of PBS vs Ecc15 12 h/24 h
were imported to clusterProfiler::gseGO function to perform
GSEA analysis. The visualizations of lipid metabolic process
(GO:0006629) were plotted by clusterProfiler::gseaplot
function. Transcription factor binding motifs enrichment
analysis was performed by RcisTarget package (v1.2.1) (22). In
brief, the lipid metabolism process related-genes identified by
WGCNA analysis in the red module were imported to the
RcisTarget::cisTarger function to identify DNA motifs
that were significantly over-represented in the gene-set. In this
step, the Hnf4 binding motif was identified (NES=9.72 and
Frontiers in Immunology | www.frontiersin.org 3
AUC =0.249) using dm6_motifRanking_mc8nr (https://
resources-mirror.aertslab.org/cistarget); Second, to get the
incident matrix of significant genes which were highly ranked
for Hnf4 binding motif, RcisTarget::getSignificantGenes was
used. In the last, the visualization of the incident matrix was
plotted by Cytoscape software (v3.7.2)

Differential expression genes (DEGs) were identified by DEseq2
package (v1.22.2) (23). In brief, the gene counts expression matrix
generated by rsem software were imported to the DESeq2::DESeq
function to calculate differential expression analysis based on the
Negative Binomial distribution, then the gene expression
comparison results of each group (such as such as “PBS vs Ecc15
12 h”, “PBS vs Ecc15 24 h” et al.) were obtained by DESeq2::
result function.

Lipid Extraction
Lipid were extracted from Drosophlia hemolymph using a
modified version of the Bligh and Dyer’s method as described
previously (24). In brief, add 750 µL of chloroform: methanol 1:2
(v/v) with 10% deionized water to samples. Then samples were
incubated at 1,500 rpm for 1 h at 4°C. After the incubation, 350
µL of deionized water and 250 µL of chloroform were added to
samples to induce phase separation. The samples were then
centrifuged and the lower organic phase containing lipids was
extracted and transferred into a clean tube. Lipid extraction was
repeated once by adding 500 µL of chloroform to the remaining
aqueous phase, and the lipid extracts were pooled into a single
tube and dried in the SpeedVac under OH mode. Samples were
stored at -80°C until further analysis.

Lipidomic Analyses
Polar lipids were analyzed using an Exion UPLC system coupled
with a triple quadrupole/ion trap mass spectrometer (6500 Plus
Qtrap; SCIEX) as described previously (25–27). Separation of
individual lipid classes of polar lipids by normal phase (NP)-
HPLC was conducted using a Phenomenex Luna 3µm-silica
column (internal diameter 150 × 2.0 mm) with the following
conditions: mobile phase A (chloroform: methanol: ammonium
hydroxide, 89.5:10:0.5) and mobile phase B (chloroform:
methanol: ammonium hydroxide: water, 55:39:0.5:5.5). MRM
transitions were set up for comparative analysis of various polar
lipids. Individual lipid species were quantified by referencing to
spiked internal standards. PC-d31(16:0/18:1), PE-d31(16:0/18:1),
PS-d31(16:0/18:1), PI-d31(16:0/18:1), PA(17:0/17:0), PG-d31
(16:0/18:1), C17-Cer, C12-PECer were obtained from Avanti
Polar Lipids. Dioctanoyl phosphatidylinositol (PI) (16:0-PI) was
obtained from Echelon Biosciences, Inc. Glycerol lipids including
diacylglycerols (DAGs) and triacylglycerols (TAGs) were
quantified using a modified version of reverse phase HPLC/
MRM. Separation of neutral lipids were achieved on a
Phenomenex Kinetex-C18 2.6 µm column (i.d. 4.6x100 mm)
using an isocratic mobile phase containing chloroform:
methanol: 0.1 M ammonium acetate 100:100:4 (v/v/v) at a flow
rate of 170 µL for 17 min. Levels of short-, medium-, and long-
chain TAGs were calculated by referencing to spiked internal
standards of TAG (16:0)3-d5 and TAG (18:0)3-d5 obtained from
July 2022 | Volume 13 | Article 933137
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CDN isotopes, respectively. DAGs were quantified using d5-
DAG16:0/16:0 as internal standards (Avanti Polar Lipids). Free
cholesterols and cholesteryl esters were analyzed as described
previously with d6-cholesterol and d6-cholesteryl ester (CE)
(CDN isotopes) as internal standards.
RESULTS

Time-Course Lipidomic Profiling of
Drosophila Hemolymph After Ecc15
Infection Reveals a Dynamic Remodeling
of Lipid Profiles
Immune challenges induce systemic adaptive changes of lipid
metabolism to coordinate the proper mobilization of energy for
host defense. Drosophila hemolymph, the open and circulating
system, is the major platform for materials and energy exchange
between tissues/organs (28). Thus, lipid metabolites profiling of
the hemolymph during bacterial infection will provide important
hints to assess the lipid metabolic status at the organismal level.

To this end, we collected the hemolymph from Ecc15
(renamed as P. carotovorum)-challenged and control (PBS)
flies at different time points (12, 24, 48, 72 hpi), and performed
a quantitative lipidomic analysis to assess their dynamic lipid
metabolites profiles, including glycerides, phospholipids,
glycerophosphatides, sphingolipids and sterols. Our lipidomic
analysis revealed that several lipids, mainly phospholipids,
sphingolipids and sterols, were significantly changed when flies
were challenged with Ecc15 infection, such as diacylglycerols
(DAGs), ceramides (Cer), hydroxyceramide (OH-Cer),
phosphoinositides (PIs), and phosphatidylethanolamines (PEs).
These results indicate that a systemic adaptive change of lipid
metabolites occurs in Ecc15-challenged flies (Figure 1A,
Supplementary Table 1). In particular, the level of PIs,
commonly as membrane ingredients and intracellular signal
transducing molecules, was down-regulated in both clean-
wounded and Ecc15-infected flies (Figure 1B). The facts that
supplementation of the diet with PIs, not other lipids, suppresses
the proinflammatory cytokine levels in mammals (29), imply
that the decrease of PIs in early stage of challenges is an active
response of host to release the brakes for a full activation of
immune response. Additionally, Cer and OH-Cer showed
similar trend with PIs after infection (Figures 1C, D), which
suggests that flies may increase the threshold to the oxidative
stress damages through reducing the Cer and OH-Cer levels, as
ceramides act as mediators of oxidative stress and inflammation
in several human diseases (30–32). Infection-induced DAGs loss
in the hemolymph (Figure 1E), likely either through renal
purging of DAGs to prevent from oxidative stresses (33) or
enhanced intake by surrounding tissues for energy supply (34).

Unlike PIs and Cer, the level of PEs, the second most
abundant glycerophospholipid in flies, was significantly
increased in Ecc15-infected flies compared to control
(Figure 1F). Interestingly, we found that the Ecc15-infected
flies contained high level of ergosterol, the major sterol in flies,
Frontiers in Immunology | www.frontiersin.org
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in the hemolymph, compare with PBS-injected flies (Figure 1G).
Taken together, our temporal lipidomic analysis reveals that

activation of immune response by bacterial stimuli results in the
intense dynamic remodeling of lipid metabolism profiles, leading
to the reallocation of large quantities of lipid metabolites during
host defense.

Ergosterol Is Required for Host Defense of
Bacterial Infection in Drosophila
Above results indicate that ergosterol level in hemolymph is
significantly increased during Ecc15 infection, implying a
potential role of ergosterol in host defense to bacterial
infection. Unlike the well-characterized ergosterol synthesis
pathway in fungi, there are no genes encoding the enzymes
required for ergosterol de novo synthesis in Drosophila genome
(35). Thus, ergosterol can only be ingested by flies from food. In
standard fly food, yeast is the main source for ergosterol (35).
Therefore, to investigate the potential role(s) of ergosterol in
immune response, we reared the adult flies on yeast-free (YF)
food and YF food with 100 mM ergosterol supplement (YF +
ergosterol), respectively, and examined their susceptibility to
Ecc15 infection. We found that flies reared on ergosterol food
were more resistant to Ecc15 infection, as indicated by the
extended survival curve (Figure 2A). Moreover, ergosterol
supplement also rendered flies more resistant to S.m and E.fa
infection (Figures 2B, C). Further, we wonder whether the
increased host defense to infection was contributed by their
enhanced immune response activity by ergosterol supplement.
To address this question, we determined the transcriptional level
of antimicrobial peptides Attactin A (AttA) and Diptericin (Dpt),
which are indicators for the activation of Imd immune response
pathway after Ecc15 infection. However, ergosterol feeding did
not increase the AttA and Dpt mRNA level (Figures 2D, E).
Besides, ergosterol feeding did not change the bacterial load
(Figure 2H). Similar results were observed in S.m and E.fa-
challenged flies (Figures 2F, G, I, J). Together, these results
demonstrate that ergosterol, as a potent immune modulator,
enhances host defense against bacterial infection, without
changing the immune response strength.

Time-Course Transcriptomic Analysis
Reveals That Changes of Lipid Metabolism
Related Gene Expression Profiles Occur in
Response to Ecc15 Infection
Next, we wondered how the ergosterol level in the hemolymph was
regulated during infection. It is reported that bacterial infection
decreases the feeding behavior by triggering food avoidance in
Drosophila larvae (36) and pathogens infection also initiates a rapid
renal purging of hemolymph lipids to reduce the lipid peroxidation
level, lessening tissue damages (33). These studies suggest that the
elevated ergosterol level in the hemolymph after infection is unlikely
due to increased feeding or decreased defecating behaviors in
response to pathogens invasion, raising the possibility that
infection induced ergosterol level change is regulated intrinsically
by host lipid metabolism machineries.
July 2022 | Volume 13 | Article 933137
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To investigate the regulatory mechanism for ergosterol level,
we collected the whole flies at indicated time points (12, 24, 48
and 72 hpi) after Ecc15 infection, and performed a temporal
transcriptomic analysis for their global RNA expression profiles
(Supplementary Table 3). Large number of genes were
upregulated after Ecc15 infection, compared with PBS-injected
control flies (Figure 3A). Interestingly, along with the infection
time, the numbers of upregulated genes increased (154, 170, 203
and 217) while the numbers of down-regulated decreased (146,
Frontiers in Immunology | www.frontiersin.org 5
127, 6 and 4) (Figure 3A), indicating the different response
profiles at different time after infection.

Next, we performed a Gene Ontology (GO) analysis for the
up-regulated genes in Ecc15-challenged flies. The GO analysis
revealed that genes related to host defense were enriched
(Supplementary Figures S1A, B), as expected. Notably, genes
involving lipid metabolism was significantly enriched in the
downregulated genes (designated as “lipid metabolic process”,
“fatty acid metabolic process” and “fatty acid biosynthetic
A

B D

E F G

C

FIGURE 1 | Time-course lipidomic profiling of Drosophila hemolymph after Ecc15 infection reveals a dynamic remodeling of lipid profiles. (A). Heatmap for selected
lipid species profiles at indicated time points (12, 24, 48, 72 hpi) in control (PBS) and Ecc15-challenged (Ecc15) flies. 5 duplicates were performed for each group.
(B–G). Box-plot of phosphatidylinositols (PI) (B), Ceramides (Cer) (C), Hydroxyceramide (OH-Cer) (D), Diacylglycerols (DAG) (E), Phosphatidylethanolamines (PE) (F),
ergosterol (G) at indicated time points (12, 24, 48, 72 hpi) in control (PBS) and Ecc15-challenged (Ecc15) flies. *, p<0.05; **, p<0.001. (wilcox test).
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process”) (Figure 3B; Supplementary Table 4), suggesting that
lipid metabolism was extensively regulated during infection.
Next, we performed Gene Set Enrichment Analysis (GSEA)
analysis for the down-regulated genes after Ecc15 infection,
genes involving lipid metabolic process were highly enriched
Frontiers in Immunology | www.frontiersin.org 6
(Figure 3B). These data indicated a systemic adaption in host
lipid metabolism during bacterial infection.

To further identify the genes or gene sets whose expression
profiles were most tightly correlated with host defense in the
bacterial infection processes, a weighted correlation network
A B

D

E
F

G

H

C

I J

FIGURE 2 | Ergosterol is required for host defense of bacterial infection in Drosophila. (A–C). Survival curves of w1118 and key1 or Myd88c03881 flies infected with
Ecc15 (A), S.m (B), and E.fa (C), reared on different food. ****, p<0.0001 (Log-rank test). (D, E). Q-PCR plot of AttA and Dpt mRNA level in flies infected with Ecc15
at 6hpi, reared on different food. ns, not significant. (One-way ANOVA test with a Sidak test). (F, G). Q-PCR plot of Drs and Mtk mRNA level in flies infected with E.fa
at 48hpi, reared on different food. ns, not significant. (One-way ANOVA test with a Sidak test). (H–J). CFU assay of w1118 and key1 or Myd88c03881 flies infected with
Ecc15 (H), S.m (I), and E.fa (J), reared on different food. ns, not significant. (One-way ANOVA test with a Sidak test). NF, normal food; YF, yeast-free food; YF
+ergosterol, yeast-free food containing ergosterol (100 mM).
July 2022 | Volume 13 | Article 933137
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analysis (WGCNA) was performed. We identified 37 signature
modules with distinctive correlation features to Ecc15 infection
(Figure 3C). Module Green was significantly positively
correlated to infection at 12 and 24 hpi, in which the immune
Frontiers in Immunology | www.frontiersin.org 7
related genes (49 genes in GO:0006955) were significantly
enriched, suggesting that flies initiated an extensive immune
response against bacterial stress at a relatively early stage
(Figure 3C, Supplementary Figure 2 and Supplementary
A

B

D E

C

FIGURE 3 | Time-course transcriptomic analysis reveals that changes of lipid metabolism related gene expression profiles occur in response to Ecc15 infection. (A).
Volcano plot of differentially expressed genes (DEGs) with >2-fold up- or >0.7-fold down-regulation changes (p-adj<0.001) in flies infected with Ecc15 at indicated
time points (12, 24, 48, 72 hpi), compared with control flies. (B). GO analysis (upper panel) for the down-regulated genes in (A) and GSEA analysis (lower panel) for
genes with GO termed “lipid metabolic process” (GO:0006629) in down-regulated genes at indicated time points (12, 24 hpi). (C). Left panel, WGCNA analysis for
time-course transcriptomic data. Middle panel, GO analysis for Module Red of WGCNA result. Right panel, hub-gene analysis (right-upper) and TF binding motifs
enrichment analysis (right-lower) for genes with GO termed “lipid metabolic process” (GO:0006629) in Module Red. (D, E). Transcripts per million (TPM) (D) and Q-
PCR (E) plot of Acsl mRNA level in control (PBS) and Ecc15-challenged (Ecc15) flies at indicated time points (12, 24, 48, 72 hpi). *, p < 0.05; **, p < 0.001. (One-
way ANOVA test with a Sidak test).
July 2022 | Volume 13 | Article 933137
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Table 5). Interestingly, Module Red, which exhibited
significantly negative correlation with Ecc15 infection, was
identified (Figure 3C). In this module, a bunch of lipid
metabolism-related genes (47 genes in GO:0006629, designated
as “lipid metabolic process” and “fatty acid metabolic process”)
was enriched (Figure 3C and Supplementary Table 6). Further
network analysis identified Acsl, a long-chain fatty acid-CoA
synthetase, as a hub gene in the Module Red. Both RNA-Seq and
qPCR results confirmed that Acsl were down-regulated in Ecc15-
infected flies (Figures 3D, E).

To find out the key regulator(s) responsible to these down-
regulated lipid metabolic genes in this module, we performed a
transcription factor (TF) binding motifs enrichment analysis,
and the result supported a pivotal role of HNF4, a master
regulator for lipid mobilization and fatty acid beta-oxidation,
as a core transcription factor for lipid metabolism change during
Ecc15 infection (Figure 3C). Altogether, these data demonstrate
that host coordinates multiple biological machineries, especially
lipid metabolism processes, to efficiently fight with
pathogen invasion.

Flies With Acsl Depletion Are More
Resistant to Bacterial Infection Than the
Wild Type
Our previous results have established the pro-survival role of
ergosterol in flies challenged with bacteria. Thus, we wonder
whether Acsl, the hub gene in infection-induced lipid
Frontiers in Immunology | www.frontiersin.org 8
metabolism profile, also regulates ergosterol level and plays a
role in host defense by regulating ergosterol level. Systemic
knockdown of Acsl lead to flies lethal, thus, we utilized
temperature-sensitive (with Tub-Gal80ts) Gal4/UAS system to
spare the normal functions of Acsl during development. Taking
this system, we ubiquitously knockdown Acsl mRNA level in
adult flies (Supplementary Figure 3), and examined their
susceptibility to bacterial infection. Indeed, the survival rates of
Acsl RNAi flies were significantly higher than wild type flies
against systemic Ecc15 infection (Figure 4A). Notably, Acsl
knockdown also rendered flies more resistant when challenged
with E.fa, a Gram positive bacteria (Figure 4B). Next, we
collected the fly hemolymph and determined the ergosterol
level by LC/MS in Acsl RNAi flies. Ergosterol level in the
hemolymph was significantly increased when flies were
ubiquitously depletion of Acsl (Figure 4C). These results
suggest that modulation of ergosterol level through Acsl
manipulation regulates the sensitivity of flies to bacterial
infection, representing a previously uncharacterized role of
Acsl-ergosterol metabolism pathway in host defense to
pathogen invasion.
DISCUSSION

Pathogen invasion triggers an immune response in the host. Flies
respond to immune challenges by activating a conserved Toll-Dif
A B

C

FIGURE 4 | Flies with Acsl depletion are more resistant to bacterial infection than the wild type. (A). Survival curves of Acsl RNAi and key1 flies infected with Ecc15.
*, p<0.05; ****, p<0.001. (Gehan-Breslow-Wilcoxon test). (B). Survival curves of Acsl RNAi and Myd88c03881 flies infected with E.fa. **, p<0.01; ***, p<0.005. (Gehan-
Breslow-Wilcoxon test). (C). Box plot of ergosterol in control and Acsl RNAi flies. **, p<0.01 (wilcox test).
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or/and Imd-Relish pathway that stimulates synthesis and
secretion of substantial antimicrobial peptides (AMPs) into
hemolymph (37). Usually, activation of innate immune
signaling is energetically demanding, requiring the
coordinating of nutritional supply system and host defense
system, to achieve efficient pathogens killing. Lipid metabolism
has been shown to be involved in providing energy and signal
transduction processes during immune responses. In both flies
and humans, excessive immune activation leads to metabolic
dysregulation, while loss of metabolic homeostasis usually results
in the weakening of the immune system, demonstrating an
intimate link between lipid metabolism and immune response
(38). The coordination of immune and metabolic pathways and
functional conservation of these pathways between flies and
mammals make Drosophila an ideal model for the study of
immune-metabolism crosstalk at organismal level.

Metabolic adaption occurs in response to bacterial infection.
However, how bacterial infection leads to lipid metabolism
changes during infection and what are the main lipid
metabolites that involving host defense are still largely
unknown. We performed a temporal lipidomic and
transcriptomic analysis to investigate the dynamic profiles of
lipid metabolic genes and lipid metabolites in the hemolymph of
flies challenged with Ecc15 infection. Systemic metabolic change
was observed in Ecc15-infected flies, indicating a complicated
role of specific lipid metabolites in respond to pathogen invasion.

Lipidomic analysis revealed profound changes of several
components of phospholipids, sphingolipids and sterols, such
as PIs, PEs, Cer/OH-Cer, DAGs, and ergosterol, implying their
potential roles in host defense. Rather than cholesterol,
ergosterol is the main sterol in flies (35). We wonder whether
the increased ergosterol induced by Ecc15 infection is functional
or not in immune system. Notably, artificially increase of
ergosterol level in the hemolymph, by oral feeding or genetic
manipulation, significantly enhanced host defense to bacterial
infection by promoting host survival. Consistent with our
finding, Adrien Franchet et al. found that feeding ergosterol
promoted host survival against the microsporidium
Tubul inosema rat i sbonens i s through an unknown
mechanism (39).

Then, as the main sterol in flies, how does ergosterol function
in immune response? We proposed that ergosterol may function
as cholesterol substitute in immune response, based on the
following: 1) Ergosterol and cholesterol share highly similar
molecular structure. 2) They can substitute each other for
supporting fly growth and survival. Based on these, it is
plausible that ergosterol has the ability to be converted into
hormones, such as ecdysone, which plays an important role in
promoting innate immune response, by increasing phagocytic
activities on blood cells or promoting pattern recognition
receptors (i.e. PGRP-LC and PGRP-LE) expression (40).
However, regardless of the structural similarity to cholesterol
(41), ergosterol cannot be converted into ecdysone, instead, into
24-epi-MaA, dh-methylE and dhMaA, which can also support
the whole life cycle of fruit fly (42). Our data showed that
ergosterol did not alter AMPs mRNA level and bacterial load,
Frontiers in Immunology | www.frontiersin.org 9
indicating that ergosterol did not promote immune response
signaling activation, even though ergosterol or its metabolites
showed overlapped functions with ecdysone in supporting
animal growth.

Ergosterol is the main sterols in the plasm membrane (PM) in
flies, and sterols are required for special microdomain formation,
for example, lipid rafts and immune-synapses, on the PM. We
wonder whether ergosterol is required for host defense by
boosting immune signaling activation through clustering
immune components for pathogens recognition and sequential
signal transduction. However, our findings are not supportive to
this hypothesis due to the observations that ergosterol feeding
did not change AMPs expression level. Interestingly, increased
ergosterol level caused by Acsl depletion in Huang et al.’s study
was associated with impaired Dpp signaling (43), implying a
context (e.g., tissue, pathway)-dependent action of ergosterol
in flies.

Alternatively, ergosterol severs as an integrate component of
membrane and promotes membrane fusion (44, 45), raising the
possibility that ergosterol tends to participate in maintaining the
immune homeostasis and tissue repair (resilience), instead of
killing pathogens or activating immune response (resistance).
This possibility is supported by the findings that in yeast the
ergosterol can sustain membrane integrity by regulating
membrane fluidity and permeability (46) through interacting
with phospholipids and membrane-anchored proteins (47).
Additionally, the tolerance capacity of yeast to environmental
stresses is tightly correlated to its intracellular ergosterol levels
(48). Further studies are needed to decipher whether ergosterol
functions in membrane repair and integrity.

Our further study identified Acsl as the key regulator for lipid
metabolism adaption in respond to pathogen infection. It is
reported that knockdown of Acsl increased the ergosterol level in
fly brains (43). Consistently, our results showed ergosterol level
in the hemolymph was increased in Acsl knockdown flies. So,
how does Acsl affects ergosterol level in vivo? As a key player in
fatty acid synthesis with its palmitoyl-CoA ligase activity, Acsl is
localized on ER (43, 49), promotes de novo formation of lipid
droplets (49), which are identified as the central hub integrating
and coordinating cellular metabolism and the immune system
(50), to cope with intrinsic and extrinsic stresses. Lipid droplets
are primarily composed of polar lipids and residual proteins on
the monolayer membrane surface with neutral lipids in the core
content, including TAG and sterols (51). Interestingly, it is
reported that in yeast the ergosterol can be converted into the
form of steryl-esters (SEs) and stored in lipid droplets, serving as
a sterol pool to maintain the balance of intracellular sterols (52,
53). Although lacking of direct evidence, it is possible that Acsl
reduces the free ergosterol level by promoting the ergosterol
packing into lipid droplets, while knockdown of Acsl increases
ergosterol by breaking down the lipid droplets, releasing
ergosterol into the hemolymph. Recently, Huang et al.
reported that knockdown of Acsl in the fly brain resulted in
significant changes of several lipids, such as ergosterol,
phosphoethanolamine ceramide (CerPE), and mannosyl
glucosylceramide (MacCer), by an unknown mechanism,
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Deng et al. Lipid Metabolism of Drosophila Against Infection
impairing signaling transduction (43). In line with our
observations, it is suggested that lipid metabolites may work
synergistically to deal with intrinsic and extrinsic stresses.

Taken together, our study identified a previously unidentified
role of Acsl-ergosterol metabolism axis in immune response,
providing a potential alternative way for modulating host defense
for infection diseases treatment.
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