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Analogue memory-based deep neural networks provide energy-efficiency and per-area
throughput gains relative to state-of-the-art digital counterparts such as graphics processing
units. Recent advances focus largely on hardware-aware algorithmic training and improve-
ments to circuits, architectures, and memory devices. Optimal translation of software-trained
weights into analogue hardware weights—given the plethora of complex memory non-ide-
alities—represents an equally important task. We report a generalised computational fra-
mework that automates the crafting of complex weight programming strategies to minimise
accuracy degradations during inference, particularly over time. The framework is agnostic to
network structure and generalises well across recurrent, convolutional, and transformer
neural networks. As a highly flexible numerical heuristic, the approach accommodates
arbitrary device-level complexity, making it potentially relevant for a variety of analogue
memories. By quantifying the limit of achievable inference accuracy, it also enables analogue
memory-based deep neural network accelerators to reach their full inference potential.
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ARTICLE

he generation, storage, and processing of ever-increasing

amounts of data in support of rapid and sophisticated

decision-making has spurred remarkable advances in Deep
Neural Networks (DNNs) in recent years!. DNNs have become
ubiquitous within image classification, language processing, pre-
diction, and similar critical tasks across a spectrum of industries.
Advancements in deep learning algorithms, architectures, and
hardware now enable DNNs to boast near-human—and in some
cases—supra-human capabilities. This performance, however,
comes at tremendous computational cost in terms of time and
energy consumption. A distributed implementation of AlphaGo,
which beat the human European champion of the Go strategy
board game, required 1,202 CPUs, 176 GPUs, and hundreds of
kilowatts?. Similarly, a state-of-the-art language prediction model
such as Generative Pre-Trained Transformer 3 (GPT-3) contains
approximately 175 billion weights, cost tens of millions of dollars to
train, and requires approximately eleven Tesla V100 GPUs and
thousands of watts for inference3. Highly optimised GPUs and
tensor processing units (TPUs) form the hardware substrate sup-
porting these systems. Such compute engines, however, are based
on conventional von Neumann architectures, in which the memory
blocks that store the synaptic weights are physically separate from
the computational blocks that process data. This requires high
bandwidth and continual data transport between memory and
computational blocks, exacting unavoidable time and energy
penalties and limiting overall performance (i.e., the ‘von Neumann’
bottleneck). This has spurred interest in the development of alter-
native non-von Neumann architectures for DNN acceleration.

DNN:s rely extensively on vector-matrix multiplication (VMM)
operations, which lend themselves naturally to non-von Neu-
mann crossbar array structures. Within crossbar arrays, analogue
memory elements encode the synaptic weights of the network.
DNN activations are applied along rows of the memory array,
multiplied by the synaptic weights according to Ohm’s law, and
summed along each column according to Kirchhoff’s current law.
This enables the crossbar array to implement VMM operations at
the location of the data to reduce the impact of the von Neumann
bottleneck. This approach was recently shown capable of 280x
speedup in per-area throughput while providing 100x enhance-
ment in energy-efficiency over state-of-the-art GPUs*.

Analogue memory-based DNN accelerators are being widely
developed in academia and industry using a variety of memories>,
including resistive RAM (ReRAM)®7, conductive-bridging RAM
(CBRAM)8, NOR flash?-12, magnetic RAM (MRAM), and phase-
change memory (PCM)!314. To date, each type of analogue
memory exhibits some form of non-ideal behaviour such as
limited resistance contrast, significant non-linearity and sto-
chasticity in conductance-vs-pulse characteristics, strong asym-
metry during bidirectional programming, read noise, and
conductance drift after programming to name a few!>~19. These
memory imperfections ultimately introduce errors into the VMM
computations, and can often lead to diminished DNN accuracy
relative to state-of-the-art digital systems. That said, state-of-the-
art digital systems are currently being optimised to deliver
identical DNN accuracies even when activation-precision and
weight-precision are reduced from 32-bit floating-point (FP32) to
4-bit integer (INT4) representations or less?%21. If DNN models
are inherently capable of delivering accurate predictions despite
low-digital precision compute, there is a strong expectation that
the minimum Signal-to-Noise Ratios (SNRs) within analogue-
memory-based systems needed for similar DNN accuracy should
not be excessively high.

Incorporating hardware non-idealities within DNN training
(i.e., ‘hardware-aware’ algorithmic training) has been shown
effective in making analogue memory-based DNNs more resilient
to hardware imperfections?2-2>. Hardware-aware training

typically captures various types of memory non-idealities along
with circuit nonlinearities such as IR-drops within the crossbar
array and activation quantisation due to analogue-to-digital
converters (ADCs) and pulse-width modulators (PWMs). Both
conventional and novel hardware-aware training produce DNN
models comprised of ‘unitless’ synaptic weights. As shown in
Fig. 1, before programming into the analogue memory of choice,
these unitless DNN model-weights must be converted into target
conductances, typically in units of microSiemens. Since analogue
memory weights can be encoded across multiple memory devices,
there can be infinitely many ways to implement the same synaptic
weight. However, each of these choices for how the weight gets
distributed across multiple conductances, will not produce
equivalent weight errors2°, This is further complicated by the fact
that DNNs are typically comprised of millions of weights, ranging
from large positive to near-zero to large negative weight values.
The high degree of inherent interconnectedness present within
DNNs also means that any systemic weight errors introduced
through sub-optimal weight translation strategies will almost
certainly propagate and compound throughout the network. This
causes the trained DNN, which has been highly optimised for a
specific task, to be perturbed with virtually zero probability of
coincidentally landing on a similarly optimal configuration that
was not discovered during the training process, especially due to
the high dimensionality. This ultimately leads to degraded
inference accuracy because there exists a discrepancy between the
DNN that was trained—hardware-aware or otherwise—and the
analogue memory-based DNN that actually exists in the hard-
ware. Worse yet, in the presence of conductance drift after pro-
gramming, this degradation is also changing over time.

The remainder of the introduction, along with Fig. 2, intro-
duces several key concepts to further highlight the complexity of
the problem being addressed. Analogue memory-based weights
typically introduce programming errors due to stochasticity in
conductance-vs-pulse curves, device variability, and imperfect
yield. An ideal weight programming strategy should determine
the target conductances for programming that provide the best-
possible outcome—despite errors in programming the con-
ductances at time f,, the subsequent evolution of these weights
due to conductance drift, and the read noise associated with
performing VMM computations at each point in time (Fig. 2a).
Conductance drift is typically modelled using a power law:

G(t) = Go(t/to)™" M

where G is the initial conductance at a reference time t,, and v is
the drift coefficient that determines how the conductance changes
with time?”. Conductance drift is not captured during training,
but can be considered during the weight translation process in
order to minimise degradations in inference accuracy over time.
For instance, if all devices drift with exactly the same v coefficient,
then we can simply amplify the integrated column currents with a
single scaling coefficient that depends only on the elapsed time
since programming. The only drawback here being that we might
eventually amplify the small amount of background noise such
that the overall SNR might start to decrease. Unfortunately,
conductances typically have complex drift characteristics where v
coefficients exhibit stochastic intra-device (‘shot-to-shot’) varia-
bility. Thus we cannot precisely know the value of v that will
ensue after any given programming event, even for devices that
have been carefully characterised. Furthermore, conductances
also tend to drift more quickly or slowly depending on the
magnitude of the conductance programmed, and the variability in
v coefficients is sometimes observed to be conductance-
dependent as well28,

In Fig. 2¢, each synaptic weight is comprised of multiple
conductances with opposing polarities that will drift at different
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Fig. 1 Overview of the weight programming optimisation framework. 'Unitless’ weights from software DNN models must be re-scaled into an optimal
hardware range (microSiemens), and can be encoded across multiple analogue memory devices: Gt, G—, g*, and g~ with varying significance defined by F.
A weight programming optimisation framework captures all memory imperfections and hardware compensatory techniques, and produces optimal weight
programming strategies using an iterative Differential Weight Evolution (DWE) technique to minimise inference accuracy degradations for analogue

memory-based DNNs, including degradations that change over time. This can be achieved without the need to run costly inference simulations at multiple

time-steps using large datasets.

rates (Fig. 2d) to define the overall evolution of the weight with
time (Fig. 2b centre). Conductances within a weight are identi-
cally fabricated but may also have varying significance as deter-
mined by the scaling factor F between the Most Significant Pair
(MSP) and Least Significant Pair (LSP)2°. This can be advanta-
geous because the MSP can be used to increase the overall
dynamic range and program the bulk of the weight, whereas the
LSP can be used to fine tune the programmed weight for better
precision. The significance factor can be implemented in a
number of ways, but is limited to discrete values in this case,
which can be readily implemented by multiplying the pulse
durations of the input activations applied to the MSP relative to
the LSP3%31, The use of multiple conductances per weight also
introduces a level of redundancy to mitigate device variability and
occasional device failures (i.e., imperfect yield).

Figure 2b depicts an example of what is termed a naive pro-
gramming strategy, in which the majority of the weight is pro-
grammed in the MSP, and the LSP is then intuitively used to fine
tune the weight in an attempt to eliminate weight errors. The
weight distribution being programmed is shown in the back-
ground (blue). Programming and drift characteristics are plotted
for the individual conductances (Fig. 2d) and the rgsulting
weights (Fig. 2b). The evolution of weight errors Wy = aW — W
as a function of time is depicted, including read noise. Due to the
conductance changes over time (Fig. 2d), drift causes weight
magnitudes to decline with time, which causes the activations
stemming from VMM computations to also decline and adversely
affect inference accuracy. As mentioned earlier, this can be
mitigated using a drift compensation technique®?, where

activations are amplified close to their original levels using drift
compensation factor a, which may or may not be uniform along
the column-wise dimension of the crossbar array. Drift com-
pensation factors can be calculated using a calibration technique
where one or more randomised input vectors are applied to the
crossbar array immediately after weight programming. The
resulting output activations are saved either locally or off-chip
and can be compared with future applications of the same ran-
domised vectors to determine the appropriate drift compensation
factor a. For this particular set of drift characteristics, a drift
compensation factor a of 1.8 is needed after approximately one
month (Fig. 2b, e right side).

Finally, Fig. 2e illustrates how an optimised weight program-
ming strategy can allow drift compensated hardware pro-
grammed weights aW to more closely track ideal weights W,
including as a function of time. This is indicated by the lower
standard deviation in weight errors associated with Fig. 2e relative
to Fig. 2b. In this case, weight errors are reduced by approxi-
mately 39% at f, immediately after programming and by
approximately 17% at one month. In such optimised weight-
programming strategies, individual target conductances exhibit
complex dependencies on the input unitless software weights:
GH(W), G=(W), gH(W), g~ (W) (left side of Fig. 2e). Allowing for
these complex programming schemes provides the flexibility
necessary to mitigate equally complex distortions in DNN
weights resulting from the combination of multiple analogue
memory non-idealities. Weight errors also become amplified by
the drift compensation factor «, making it critical to find optimal
weight programming strategies to limit accuracy degradations

NATURE COMMUNICATIONS | (2022)13:3765 | https://doi.org/10.1038/s41467-022-31405-1 | www.nature.com/naturecommunications 3


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/541467-022-31405-1

a Trained Programming ) . . .
Model Target G Etrors Drift ~ Read Noise Drift Read Noise
n v L 4
[ ; — —
wial} - £ - sl Glus) [T G=6+46 | |Gt
F
G*(W) |
G (W) i
g (W) Time of Programmed G Programmed G
g+ w) Convergence Initial Read Future Read
b to1lm lhr 1day 1mo to1lm lhr 1lday 1mo
25 Naive ; \ Program Drift Rﬁogr\am Drift
56 \\ L & 50/ = U:}_ 50] = ‘
U'_'\ 15 ( g/t G‘ y — = = —— \ -
= — g~ = o] <aglf 2 o= ———
o | NS , | -
| . — | = =0 (h(o=1805)
5 -50 —_— 5] 2 1 month (o = 2.9 uS)
0{ w—= ¥ — s — ‘
-1.0 -05 00 0.5 1.0 0t 10° 10° 00 10° 10°
W 1] Time [s] Time [s]
c tolm 1 hr 1 day 1 mo to1lm 1hr 1 day 1 mo
| | 25| Program Drift 25| Program Drift
« « =20 —20 S
0 %)
+ 31 215 =
G G + 10 I 10 /' ® =
. . Q© Q] —————
Most Significant Pair B 5
(MSP) 0 0
10? . 10° 10° 10t ) 10° 10°
w = F(G*‘ -G+ g+ -9 Time [s] Time [s]
to1lm 1hr 1lday 1mo tolm lhr 1lday 1mo
| | 10 Program Drift 15 Program} Drift
it e,
« — 8] f — [ ~~
« 0 | o 0 f S
£ f L fl "y
i = 1] - . — N
g g + g | m—
S aS—— S il s
Least Significant Pair 21 o = — — e
(LSP) o1 i .
10* 103 10°
Time [s]
e to1m 1hr 1day 1 mo
25 Optimized G* Program Drift
50 = =
—< G- — @
'_'20 G+ o g
(%) g
3° — g | 2 0 S
o 10 = |
= to (0=1.1 piS)
5 \ -50 S 501 1 month (o = 2.4 uS)
0 ¢
-1.0 -05 0.0 0.5 1.0 00 107 10° 00 10° 10°
W 1] Time [s] Time [s]

Fig. 2 Impact of different programming strategies on weight fidelity. a Unitless weights of software-trained DNN models are translated to analogue
memory-based synaptic weights comprised of multiple conductances, which are subject to imperfections including programming errors, conductance drift,
and read noise. b A sub-optimal weight programming strategy for a distribution of weights (blue) leads to outsized hardware weight errors at ty that
become progressively worse with time, even after drift compensation factor « is applied. € Each synaptic weight may be comprised of multiple
conductances of varying significance as indicated by the factor F, which separates the Most Significant Pair (MSP) and Least Significant Pair (LSP).

d Individual conductance-programming errors are compounded by subsequent drift over time. @ An optimised weight programming strategy for the same
weight distribution (blue) results in minimal weight errors as indicated visually and by the lower standard deviation in weight errors.

over time. Both examples (Fig. 2b, e) use identical device models certainly result in sub-optimal weight fidelity and excessive
for programming errors, drift, and read noise and are re-scaled accuracy degradation for analogue memory-based DNNs, parti-
into the same hardware weight range for fair comparison. cularly as conductances drift over time. This problem is further

As seen in Fig. 2, given the many different potential error complicated by the fact that it becomes impractical to run time-
sources injected into VMM computations by analogue memory, consuming inference simulations and evaluate training, validate
along with the complexity of device-level models and the infinite or test datasets in an iterative fashion—especially at multiple
number of potential weight programming strategies, any unin- time-steps to include drift—while exploring the vast search-space
formed or naive weight programming strategy will almost of possible weight programming strategies.
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The overarching objective is to find software-to-hardware
translation functions GH(W), G=(W), g (W), and g~ (W) for
weight programming such that

By, W = FIG"(W) = G- (W) +g"(W) =g~ (W) (2)

where W is the unitless software weight, 8, is the software-to-
hardware weight re-scaling factor, and F is the MSP to LSP sig-
nificance factor. In this paper, we present a generalised frame-
work capable of producing complex weight programming
strategies for analogue memory-based DNNs in light of these
constraints. The framework is agnostic to DNN structure, and is
shown to generalise well across a variety networks including Long
Short-Term Memory (LSTM), Convolutional Neural Networks
(CNNs), and Transformers. The numerical framework is capable
of accommodating arbitrary device-level complexity and auto-
mates the process of finding optimal weight programming stra-
tegies—a critical capability given the continual evolution of
analogue memory devices. Solving this problem represents a
pivotal step towards allowing analogue memory-based DNNs to
realise their full energy-efficiency and throughput benefits, while
helping to close accuracy gaps with state-of-the-art digital
approaches.

Results

We solve a complex and highly-capable form of weight pro-
gramming optimisation, in which each synaptic weight is com-
prised of four conductances G, G—, g+, and ¢~ and includes a
varying significance factor F. This results in a ~4N dimensional
parameter space, where N is the number of weights within the
network (typically millions). Two additional dimensions are
added to the problem: 8, which is the scale factor converting
the unitless software weights into hardware weights; and F, which
is the MSP to LSP significance factor. That brings the total
number of parameters to 4N + 2, making the dimensionality of
the weight programming optimisation problem potentially larger
than the DNN itself. Exploring such a large space, especially with
the inference simulations at multiple time-steps within the feed-
back loop to optimise for drift, quickly becomes intractable. It
then becomes critical to reduce the dimensionality of the opti-
misation problem without hampering the ability to find advan-
tageous weight programming strategies.

Our proposal is to identify the optimal programming strategy
for a handful of discretised weights across the useful weight
programming range—as opposed to the entire continuous weight
distribution—and then linearly interpolate these results for all
intermediate weights. The dimensionality can be further reduced
by taking advantage of symmetry in DNN weight distributions.
Weight distributions for the trained LSTM, CNN, and Trans-
former networks are highly symmetric about the origin. Thus the
programming optimisation results for positive weights, for
instance, can be mirrored for negative weights—further reducing
the number of parameters by a factor of two. The framework
remains readily extensible to strongly asymmetric weight dis-
tributions—the dimensionality of the problem simply doubles
when it is important to solve for distinct programming strategies
for positive and negative weights. For symmetric weight dis-
tributions, however, the dimensionality has now been effectively
reduced from ~4N + 2 to 4D + 2, where D is the number of
discretised positive weights. The reported results make use of six
evenly spaced discretised weight intervals. We choose six points
as a compromise between capturing the complexity of the opti-
mised weight programming strategy and compute time (as each
additional discretised point adds four dimensions to the search
space). It is important to note that different memory device
characteristics and network weight distributions could lead to
scenarios where having more (or fewer) discretisation points is

beneficial. Additional details on how the number of points D
impacts the optimised weight programming strategy are provided
in the Supplementary Information. As an example, our trans-
former model, BERT-base, has approximately 86 million weights,
of which 53 million are unique. Our dimensional-reduction
approach has decreased the number of potential weight pro-
gramming parameters from approximately 212 million down to
twenty-six. Despite this significant reduction, there still exist
infinitely many different weight programming strategies to
explore, because the search space is still continuous for each
conductance parameter and there are infinitely many ways to
combine programming strategies for each of the unique dis-
cretised weights D.

Although the dimensionality of the problem has been reduced
to something tractable, it is still important to address the time-
consuming inference simulations within the weight programming
optimisation loop. Ideally, the best way to gauge the quality of a
weight programming strategy is to simulate weight programming
using a particular strategy, run inference simulations on the test
dataset at multiple time-steps to account for drift, and record the
DNN accuracy as a function of time. Because there still exist
infinitely many programming strategies to explore, running
inference simulations repeatedly at different time-steps to opti-
mise for drift while using large datasets becomes impractical—
even given the highly parallelised compute capabilities of a large
GPU cluster.

We propose an alternative metric to serve as a proxy for DNN
inference accuracy and allow accelerated exploration of the weight
programming space, without the need for costly inference simula-
tions within the optimisation loop. We observe that in the limit as
weight errors approach zero, hardware weights become exact
replicas of the software-trained weights and DNN accuracy becomes
identical to the baseline trained accuracy. It then follows that
minimising weight errors (ie., preserving weight fidelity), including
across multiple time-steps after conductance programming, should
improve DNN inference accuracy over time. One reason this works
well is that it remains highly unlikely that introducing large sto-
chastic weight errors will coincidentally move the DNN into a better
weight configuration than the one discovered during training,
especially given the high dimensionality of the DNN. As a result, the
closer a system with imperfect conductances can stay to the initial
target DNN weights, the better it should perform.

We propose a time-averaged and normalised mean-squared-
error metric as a less computationally expensive proxy for
inference accuracy in the weight programming optimisation
process. The error metric is

S

333 [(@ /B~ Wy max(WD| 3

M=~
Mo

where T is the number of time steps over which to optimise
inference accuracy, D is the number of discretised weights
selected for optimisation, and S is the number of sample weights
simulated at each discretised weight to estimate variance in
weight errors. «; is the relative importance of the discretised
weight within the DNN weight distribution, a; is the drift com-
pensation factor, W is the target weight including all hardware-
associated errors (e.g., programming errors, conductance drift,
read noise), f,,, is the software-to-hardware weight distribution
re-scaling factor, W, is the ideal unitless target weight from
software, and W represents the entirety of the unitless software
DNN weight distribution. Minimising mean-squared-error
encourages weight errors to be normally distributed with zero
mean, which helps prevent introducing unwanted bias terms that
would adversely impact accuracy. This error metric is normalised
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Fig. 3 Algorithmic details of weight programming optimisation. DNN gradients are uncorrelated with weight value as shown for (a) LSTM, (b) ResNet-
32, and (c) BERT-base. This leads to a weight error importance «;, as defined in our error metric, which depends solely on weight density. The weight
programming parameter space is then explored using (d) Differential Weight Evolution (DWE) on parameter vectors x within a ~4D + 2 dimensional
hypercube, where D represents the number of positive discretised weights. e De-normalised hypercube parameters produce valid conductance
combinations that capture optimisation constraints due to conductance inter-dependencies. f A two-dimensional projection of the weight programming
strategies explored, including the optimal solution (solid lines). Background violin plots show coverage of the weight programming space explored and
reveal underlying programming constraints. g Outlines of correlation distributions for drift compensated hardware weights aW versus ideal weights W
showing an outward diffusion over time. h The corresponding probability density function of weight errors across all weight magnitudes, showing a similar
outward diffusion with time. i The resulting normalised weight error distribution used to define the error metric.

by the weight range max (JW|) to minimise errors in relation to
the overall width of the distribution.

Our error metric includes a temporal component to enable
DNN inference optimisation over time in the presence of drift.
We opt for a time-averaged error metric that implies all time
steps are of equal importance. This is equivalent to saying
inference accuracy at one second is just as important as inference
accuracy at one hour. This time weighting, however, is easily
modified to account for situations where inference accuracy may
be non-uniformly important over time. It may also be beneficial
to introduce different temporal weighting schemes, or to organise
the time-steps in a non-uniform (e.g., logarithmic) way (due to
the power-law nature of conductance drift in phase-change
memory (PCM), for instance). Lastly, all weight errors are treated
as equally important, which results in errors being weighted using

k; according to their relative frequency (density) in the DNN

weight distribution. This stems from the fact that we find zero
correlation between weight values and their gradients during the
last epoch of training (Fig. 3a—c). These gradients are a direct
estimate of the adverse impact of weight perturbations (errors) on
the DNN loss function (accuracy) during the last steps of training,
and thus can serve as a proxy for the network’s sensitivity to
errors on each weight.

Figure 3 provides a high-level overview of several key steps in
the weight programming optimisation process for three very
different DNNs: LSTM, ResNet-32, and BERT-base (Fig. 3a-c).
Optimisation is performed on a 4D + 2 dimensional hypercube
(Fig. 3d) because W =F(G" — G )+g" —g  represents a
hyperplane, which reduces the dimensionality of the search space
but also adds constraints to the optimisation problem. To avoid
4D inter-dependent conductance constraints, optimisation is
performed on a hypercube, which is then ‘de-normalised’ into
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valid conductance combinations in an intermediate step shown in
Fig. 3e. Further details on this denormalisation process can be
found in the Supplementary Information.

Figure 3f represents a two-dimensional projection of the weight
programming exploration space, including an example of an
optimised weight programming strategy GT(W), G~ (W), g™(W),
and g~ (W) indicated by solid lines. Violin plots in the background
highlight the range of conductance values being explored, illus-
trating some of the conductance constraints. For instance, there is a
great amount of overlap in violin plots at 0 uS because small
weights can be constructed using small and large conductances
alike. Large positive weights, however, must be constructed using
large GT and g values while minimising G~ and g~ values,
especially if we are to make effective use of the dynamic range and
minimise relative weight errors. This is evidenced by the reduction
in the range of valid conductance combinations explored when
determining how to program larger-magnitude weights.

Figure 3g outlines the correlation between hardware weights
and ideal weights at various points in time, but with the drift
compensation factor «a included, so that correlation plots for
different points in time now overlap each other. In order to
distinguish the distributions at different times, each has been
plotted only at the locus of points corresponding to an outline
of the entirety of the distribution (i.e., capturing 100% of
weights). Thus optimisation seeks to bring these curves closer
to the diagonal, yet because weights drift in complex ways due
to conductance-dependent v values and v variability, the weight
errors become progressively worse and the curves inherently
move out away from the diagonal over time. The objective here,
as described in the error metric, is to preserve weight fidelity to
the extent possible given the complex behaviours of the dif-
ferent underlying devices models, and to do so across multiple
time steps. The distribution of the weight errors depicted in
Fig. 3h shows a similar inevitable outward diffusion over time
due to drift. Lastly, Fig. 3i shows the same distribution after
normalisation with respect to the maximum weight, which
reflects how our error metric is computed. Weight errors
depicted in Fig. 3d-f have not been discretised to better con-
ceptually illustrate what is happening to the DNN weight dis-
tribution as a whole.

Although the constrained optimisation problem has been
transformed into the exploration of a hypercube, simultaneously
accommodating multiple complex and stochastic analogue
memory device models still translates into optimising a high-
dimensional non-convex and stochastic (e.g., noisy) error metric.
Numerically evaluating the Hessian of the error metric reveals it
is not positive semi-definite. This renders gradient-descent-based
optimisation techniques—which could potentially further accel-
erate the search through the weight programming space—inef-
fective. We also find that combinations of gradient-descent and
basin-hopping (i.e., simulated annealing) fail to reliably find
adequate minima. Additional information regarding the difficulty
of finding suitable minima is reported in the Supplementary
Information. We report, however, that the evolutionary algorithm
known as Differential Evolution33, when well-tuned and popu-
lated with different starting points, consistently performed well
and identified good weight programming strategies. As a result,
we appropriately refer to this heuristic optimisation strategy as
Differential Weight Evolution (DWE).

Now that we have enabled extensive optimisation in a high-
dimensional space across multiple time-steps—in a way that is
completely agnostic to network structure, size, and test datasets
thanks to the use of a proxy error metric—the question becomes
whether the resulting weight programming strategies can actually
materially improve inference accuracy in analogue memory-
based DNNGs.

Generalisation across different DNN types. We simulate the
programming of tens of millions of weights according to the strate-
gies derived from the weight programming optimisation computa-
tional technique, and evaluate a variety of DNNs and test datasets at
multiple time-steps, to show that weight programming optimisation
consistently enhances the accuracy of analogue memory-based
DNNs. Analogue memory device models are experimentally
derived from mushroom-type phase-change memory (PCM) devices.
Figure 4a-c depicts the set of stochastic device models that define
weight programming errors, drift coefficients, and read noise, all as a
function of conductance. For each device characteristic, both the
average response (solid line) and the variability around this (shaded
region, corresponding to plus-minus one standard deviation) are
used by the optimisation algorithm.

We find that our weight programming optimisation generalises
well across different DNN types, including recurrent neural
networks (RNNs), Convolutional Neural Networks (CNNs), and
Transformer-based networks. All reported inference results are
produced using simulated hardware as opposed to physical
hardware. For RNNs, we evaluate a two-layer Long Short-Term
Memory (LSTM) network on the Penn Treebank dataset34
(Fig. 4d). For CNNs, we examine a ResNet-32 network using
the CIFAR-10 dataset®> (Fig. 4e). And for Transformer-based
networks, we evaluate BERT-base on the MNLI dataset3¢ (Fig. 4f).
In this way, we not only demonstrate that weight programming
optimisation enhances the accuracy of analogue memory-based
DNNs relative to sub-optimal programming strategies, but we
also provide evidence that our optimisation approach generalises
well across a wide variety of very different network architectures.
These accuracy enhancements are achieved while being com-
pletely agnostic to any network feature other than the weight
distribution including network type, size, structure, complexity,
type of nonlinear activations function employed, etc.

The results for several non-optimised or naive programming
strategies are shown in Fig. 4d-f as a reference to clearly
demonstrate the added benefit of weight programming optimisa-
tion. In the first naive weight programming strategy, the entirety
of the weight is programmed into the MSP, while making
minimal use of the LSP and using an F factor of one. This
represents an intuitive approach in which one simply tries to
converge on the target weight as quickly as possible using the
MSP and subsequently uses the LSP only for fine-tuning. In the
second naive approach, weights are split equally between the MSP
and LSP using an F factor of one. Introducing such redundancy
has been shown to offer accuracy benefits by effectively counter-
ing some of the variability present in analogue memory26-37-38,

It is important to note, that even before any optimised weight
programming is brought to bear, Fig. 4d-f vividly illustrates the
benefits of hardware-aware (HWA) training (solid) relative to 32-bit
floating-point (FP) trained networks (dashed), even when using
naive programming strategies (MSP only, MSP/LSP (50/50)).
Simulation results are the compilation of twenty-five independent
weight programming and inference simulations over time, showing
the average result with central lines surrounded by shaded regions
representing plus-minus one standard deviation. By subjecting the
DNN to memory and circuit non-idealities during training?2-2>,
HWA training clearly makes the DNN more resilient to the various
hardware non-idealities, and significantly enhances network accu-
racy relative to floating-point training across the board. HWA
training alone, however, is insufficient for achieving and maintaining
iso-accuracy as compared to the training baseline, especially as
weights evolve after programming due to conductance drift.

Weight programming optimisation is thus introduced to
augment HWA training. As shown by the green lines in Fig. 4d+f,
the combination of HWA training together with weight
programming optimisation further enhances DNN accuracy,
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Fig. 4 Weight programming optimisation improves inference accuracy. Stochastic analogue memory device models, in this case derived from the
measurement of mushroom-type phase-change memory (PCM) devices, for (a) conductance-dependent programming errors, (b) conductance-dependent
drift coefficients, and (¢) conductance-dependent read noise, with solid red lines representing the mean and shaded red regions representing plus-minus
one standard deviation. Simulated inference results show the benefits of both hardware-aware (HWA) training?? and the weight programming
optimisation process introduced in this paper, showing good generalisation across (d) a recurrent neural network such as a two-layer Long Short-Term
(LSTM) network evaluated on the Penn Treebank dataset, (e) Convolutional Neural Networks such as ResNet-32 evaluated on the CIFAR-10 dataset, and
(f) Transformer-based networks such as BERT-base, evaluated on the MNLI dataset. Average inference performance and plus-minus one standard
deviation are denoted by lines and shaded regions, respectively. Target baselines (dash-dot purple) are computed using conventional (i.e., non-hardware-
aware) training using 32-bit floating-point (FP) precision. g-i The corresponding optimised programming strategies (solid lines) and weight distributions
(blue highlight) for each network. Inference simulation results are compiled from twenty-five independent inference accuracy simulations over time for
various training and weight programming strategies. The optimal MSP/LSP significance factor F, also a parameter solved for in the weight programming

optimisation process, was determined to be two in each scenario.

driving the inference accuracy (solid green) as close as possible—
given the underlying memory non-idealities—to iso-accuracy
with the trained model (dashed-dot purple line). Weight
programming optimisation is able to devise much more complex
weight programming strategies where programmed conductances
can be functions of the unitless weight: G*(W), G~ (W), gT(W),
and g~ (W). Optimal programming strategies for each DNN are
depicted in Fig. 4g-i and are quite similar, which is reasonable
given that each DNN is implemented using the same device
models. This also demonstrates repeatability of the heuristic given
that each optimisation initialised with a completely random set of
programming strategies. It is interesting to note that Fig. 4h finds
an optimal weight programming strategy that programs non-zero
values into the g~ conductance even when the overall weight
being implemented is positive. It is precisely these complex and
potentially counter-intuitive programming strategies, which also

translate into improved inference accuracy, that our optimisation
framework is able to find. Minor variations in programming
strategies are likely due to differences in the DNN weight
distributions. Hyper-parameter scans for the hardware-aware and
32-bit floating-point training for each DNN are provided in the
Supplementary Information.

It is the combination of hardware-aware DNN training and
subsequent weight programming optimisation that drives infer-
ence accuracy as close as possible to iso-accuracy for analogue
memory-based DNNs. As such, weight programming optimisa-
tion represents a computational technique that can contribute
toward the eventual elimination of accuracy gaps between
analogue memory-based DNNs and state-of-the-art digital
approaches. This in turn enables analogue memory-based DNN's
to better highlight their energy-efficiency and per-area through-
put benefits, while minimising potential trade-offs in accuracy.
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Generalisation across different device models. We now modify
the underlying analogue memory device characteristics and
repeat the weight programming optimisation, to see if our opti-
misation approach generalises well to different device models.
This is a critical feature given that analogue memories are con-
tinually being modified and improved. If our weight program-
ming optimisation technique generalises well across different
device characteristics, we can effectively automate the process of
finding optimal weight programming strategies. This represents
an important step not just for closing potential accuracy gaps, but
also for establishing a way to reliably and rapidly connect device
characteristics to resulting DNN accuracy. Weight programming
optimisation allows one to determine, for the first time to our
knowledge, the expected best-case inference accuracy potential
for a given set of complex analogue memory characteristics, using
a modest set of simulations for each network type. As a result, we
can now effectively and objectively compare proposed devices
against each other in terms of best-possible DNN inference per-
formance. Weight programming optimisation then becomes a
critical tool for guiding the evolution of analogue memory
devices.

This is depicted in Fig. 5, where the underlying analogue
memory conductance drift model has been modified to a match a
different phase-change memory (PCM) device previously
reported?8. Despite different conductance-dependent and stochas-
tic conductance drift models, the weight programming optimisa-
tion again effectively drives the inference accuracy results as close
to the hardware-aware training baseline as possible (dash-dotted
line). Comparison of Figs. 4 and 5 shows that the weight
programming optimisation technique generalises well across
different device models. This comparison also shows, however,
that the analogue memory device of Fig. 5 actually performs worse
across the board for LSTM, CNN, and Transformer models
relative to the device described in Fig. 4, when both are evaluated
in the limit of what is optimally achievable with either device. This
is counter-intuitive because the memory device of Fig. 5 provides a
larger dynamic range with g = 30uS and exhibits lower
conductance-dependent drift on average. Furthermore, if one
had compared these two devices under naive programming
strategies, one might have incorrectly concluded that the device of
Fig. 5 was better (compare the orange curves for HWA: MSP/LSP
(50/50) between Figs. 4d and 5d).

Because our computational technique enables the extraction of
optimal programming strategies and the corresponding max-
imum accuracy potential for each set of device characteristics, we
can now more definitely say that it is preferable to implement
DNNss using the device of Fig. 4 than the device introduced in this
section. This is a key finding. Figures 4 and 5 show that there is
considerable spread or variability in inference accuracy results
when sub-optimal weight programming strategies are employed.
In the absence of the weight programming optimisation approach
introduced in this paper, this uncertainty makes it very virtually
impossible to evaluate—analytically or through intuition—the
true inference potential from a given set of device characteristics.
Our weight programming optimisation approach can thus—given
a fairly modest set of conductance-programming, drift and noise
characteristics (Figs. 4a-c and 5a-c)—provide uniquely accurate
feedback as to which device will eventually provide the best DNN
accuracy.

Interestingly, the derived programming strategies shown in
Figs. 4 and 5 are quite similar to each other. This is likely
because while the underlying device drift model changed
between the two devices, the programming error model—
which exerts a large influence on the resulting optimal
programming strategy—remained quite similar. We also note

that F = 2 produced the optimal weight programming strategy,
probably because this choice increases the overall dynamic
range of the weight distribution. One might intuitively think
this implies one should program the bulk of the weight in the
MSP first, and then use the LSP for fine tuning. In contrast, our
weight programming optimisation framework chooses to
program the entirety of the weight in the LSP whenever
possible, and only makes use of the MSP for larger weights
when it becomes absolutely necessary. This is because any
programming errors in the MSP get amplified by the F = 2
factor—the strategy thus avoids such error amplification
whenever possible. These types of programming strategies can
be counter-intuitive at first glance, but often make sense in
hindsight. The beauty of this weight programming optimisation
process is that it reliably automates finding these strategies, and
does so in a quantitative fashion. A series of LSTM and ResNet-
32 weight programming optimisation results are provided in
the Supplementary Information across a variety of
conductance-drift models. These results provide further evi-
dence that this computational technique can reliably identify
optimal programming strategies, and that the resulting
inference accuracy consistently outperforms naive and other
manually-constructed programming strategies.

Discussion

Optimal translation of software-trained weights into analogue
hardware weights represents a critical step in achieving and
maintaining iso-accuracy over time for analogue memory-based
DNNs. We report a computational framework that automates the
process of crafting complex weight programming strategies for
analogue memory-based DNNs in order to minimise accuracy
degradations during inference, including over time. We solve a
complex and highly flexible form of weight programming opti-
misation, where each synaptic weight is comprised of four con-
ductances G, G~, g", and g~ of varying significance F. The
optimisation framework is agnostic to all DNN features (e.g., size,
layer type, activation function) with the exception of weight
distribution, and is shown to consistently improve inference
accuracy across a variety of networks including Long Short-Term
Memory (LSTM), Transformer, and Convolution Neural Net-
works (CNNs).

This highly flexible numerical heuristic accommodates arbi-
trary device-level complexity, making it potentially relevant for a
variety of analogue memories with rapidly-evolving device char-
acteristics. Our approach also identifies the limit of achievable
inference accuracy given the imperfections in analogue memory.
As such, this optimisation framework represents a new and cri-
tical tool for enabling analogue memory-based DNNs to reach
their full inference potential. This capability also allows analogue
memory characteristics to be more objectively compared, since
we can now readily evaluate the best-possible accuracy potential
of new devices, as constrained by the complex and subtle inter-
play of their memory non-idealities. Interestingly, this compu-
tational technique optimises inference accuracy without ever
running inference simulations or evaluating training, validation,
or test datasets. It should also be pointed out that weight pro-
gramming optimisation represents a critical step in translating
DNNs into analogue hardware, irrespective of how those DNN's
were originally obtained—through hardware-aware training or
otherwise. We focus primarily on hardware-aware trained DNN’s
in this work to demonstrate that weight programming optimi-
sation can extend and augment the benefits of hardware-aware
training. These largely independent steps, when combined, help
analogue memory-based DNNs reach and maintain inference
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Fig. 5 Weight programming optimisation improves inference accuracy for a different set of device characteristics. An alternative device with different
underlying stochastic analogue memory device models for (a) conductance-dependent programming errors, (b) conductance-dependent drift coefficients,
and (¢) conductance-dependent read noise, with solid red lines representing the mean and shaded red regions representing plus-minus one standard
deviation. Simulated inference results still generalise well across (d) a two-layer Long Short-Term (LSTM) network evaluated on the Penn Treebank
dataset, (e) ResNet-32 evaluated on the CIFAR-10 dataset, and (f) BERT-base evaluated on the MNLI dataset. Although this device exhibits better
performance under naive programming strategies (compare orange curves in part (d) against Fig. 4d), the best-possible inference performance achievable
with this device is worse than the device used for Fig. 4. Average inference performance and plus-minus one standard deviation are denoted by lines and
shaded regions, respectively. g-i the corresponding optimised programming strategies for each network are similar to those in Fig. 4, with only subtle
changes. Simulation results are compiled from twenty-five independent inference accuracy simulations over time for various training and weight
programming strategies. The optimal MSP/LSP significance factor F was determined to be two in each scenario.

accuracies that are equivalent (or near equivalent) to 32-bit
floating-point trained DNNG.

All weight programming in this work was performed on the
entirety of the DNN weight distribution. Weight programming
optimisation could, however, be performed individually for each
crossbar array within the network. Similarly, drift compensation
can be readily performed column-wise in hardware, implying that
weight programming optimisation could potentially be performed
uniquely for each array-column within the analogue memory.
While this would likely lead to additional accuracy improve-
ments, this would not be feasible without considerable numerical
acceleration of the presented technique, in order to run what will
likely become hundreds of thousands of independent weight
programming optimisation simulations in parallel.

It is important to emphasise that the weight programming
optimisation presented is not dependent on any unique hardware
information and is not a form of calibration. Instead, weight
programming optimisation represents a one-time computational

10

cost that should be performed for each unique DNN and
unique set of underlying analogue memory device characteristics.
The optimised weight programming strategy can then be used to
program all instances of that DNN into devices that exhibit
those particular device characteristics. Finally, one can imagine
more complex weight programming optimisation frameworks
that incorporate additional considerations such as minimisation
of energy consumption by the analogue memory. In these
cases, our approach could be adapted to include programming
strategies that not only drive DNNs towards high inference
accuracy, but also consider the implications of different weight
implementations on the energy-efficiency of DNNs during
inference.

Methods

PCM characterisation. The analogue memory characteristics reported in this work
stem from mushroom-type phase-change memory (PCM) devices comprised of
doped germanium-antimony-tellurium (GST)?8. PCM devices are initially
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conditioned using 10° full RESET pulses, which melt and rapidly quench the PCM
material into an amorphous (i.e., minimum conductance) state. This is achieved using
100 ns pulse durations with amplitudes of 4.5V. A full SET (i.e., maximum con-
ductance) pulse has a voltage amplitude of approximately 2V, a pulse duration of 1 ys,
and a pulse trailing edge of 1 us. The programming of the full SET state and inter-
mediate analogue states is achieved through careful optimisation of SET and RESET
pulses, which includes exploring various combinations of SET pulse voltages, dura-
tions, and trailing edges. Errors in programming various conductance states lead to
the conductance-dependent programming error models reported in this work.
Conductance drift was measured over a period of 1000 seconds using twenty points
per decade. Drift coefficients are obtained by fitting conductance versus time using a
power-law dependence. The mean and standard deviation in drift coefficients were
extracted for various conductance values to produce the conductance-dependent drift
characteristics reported in this work. Read noise was characterised by performing
1000 sequential current measurements using one second time spacing. Read noise is
then extracted after subtracting drift from the conductance versus time data. This was
performed for a range of conductance values to produce conductance-dependent read
noise characteristics. In all measurements, PCM conductances are measured by
applying a fixed read voltage of 0.2 V and measuring the resulting current.

Hardware-aware training. It has been shown that hardware-aware training in
software is crucial for improving accuracy for analogue inference!%242539 We
follow the spirit of these earlier studies by incorporating a variety of hardware-
specific non-idealities during the forward propagation phase of hardware-aware
training. In detail, for hardware-aware training, we add weight noise of similar
strength and characteristics of the programming noise to each weight matrix
during training. Since a new instance of this weight noise is added each mini-batch,
it acts as a regularizer during stochastic gradient descent (SGD) and improves noise
robustness after convergence. Additionally, we clip and quantise (8-bit) input
activations to mimic pulse-width modulators (PWMs), clip and quantise (10-bit)
output activations to mimic analog-to-digital converters (ADCs), and add output
noise (Gaussian with a standard deviation on the order of an LSB). Other factors
such as ADC nonlinearities are not considered in this work, but can be readily
incorporated. We also add cycle-to-cycle (updated each VMM) read noise and
modify the output activations to mimic the effects of IR-drop within the crossbar
array. Conductance drift is not included because its time-dependence is not readily
incorporated into the loss function during training. Similarly, the use of multiple
conductances per weight is not included because optimal weight splitting, which
also exhibits time-dependence, cannot readily be incorporated into the back-
propagation algorithm and loss function during training. All models are trained in
normalised weight units by imposing a clipped weight range on the interval (-1, 1)
during the hardware-aware training. Our weight programming framework can
then be used to optimally convert these abstract trained weights into analogue
hardware weights.

The input and output dynamical ranges of the crossbar are fixed during
hardware-aware training to the intervals (—1,1) and (—10, 10), respectively. We
also train one additional input scale (for each crossbar) and output scales and
offsets (for each column of the crossbar array) to improve the mapping of
activation inputs and outputs to crossbar array inputs and outputs. We scan a
variety of hyper-parameters during training to arrive at hardware-aware DNNs
with accuracies that are equivalent (or near equivalent) to their conventionally
trained 32-bit floating-point counterparts. We find the most important hyper-
parameter sweeps are the learning rate and strength of the weight noise (further
details provided in the Supplementary Information). All hardware-aware training
starts from conventionally trained DNNs obtained using standard SGD methods
and 32-bit floating-point precision. Inference simulations are evaluated on the test
datasets at various time steps and include weight programming errors and
conductance drift while retaining the non-idealities of the forward pass previously
mentioned such cycle-to-cycle read noise, output noise, and quantisation (and
clipping) effects induced by PWMs and ADCs.

Delayed verification. This work assumes that the analogue memory devices within
crossbar arrays are programmed in a row-wise iterative fashion using a delayed
verification strategy. Because analogue memory devices can exhibit some degree of
conductance instability after the application of a programming pulse, it makes
sense to maximise the time between successive programming pulses to allow the
analogue memory devices as much time as possible to stabilise. We therefore cycle
through the rows of the crossbar array many times while applying only one pro-
gramming pulse per row (where appropriate), as opposed to programming an
entire row to completion before moving onto the next row. This results in

G(t) = Gy(t/t,)"", where t, = 20 seconds. We have previously employed this
weight programming time-scale as an effective compromise between conductance
stability and programming speed for the programming of millions of weights*(.

Differential weight evolution. We employ the Scipy implementation of differ-
ential evolution for its ability to effectively search large non-convex and stochastic
candidate spaces. Other gradient descent-based optimisers including standalone
or combinations of simulated annealing (i.e., basin-hopping) with local gradient
descent-based methods were found to be ineffective at finding advantageous

weight programming strategies. We fine tune a number of parameters to work
well across DNN types and varying analogue memory device models. We use a
population size of 100 initialised with Latin hypercube sampling. Optimisation is
parallelised using the maximum available CPUs (e.g., ‘workers’) per compute
node, which is sixteen in our case. A recombination parameter of 0.6 is used
along with dithering parameters of (0.0, 0.2), which change the mutation constant
on a generation by generation basis. The termination criterion is a relative tol-
erance (e.g., ‘tol’) of 0.05, meaning that the population has converged on a
solution with minimal variation. The absolute tolerance (e.g., ‘atol’) was set

to 0.0. We allow for a small errors around weight hyperplanes using a parameter
AG, which provides added flexibility to slightly ‘over-program’ or ‘under-pro-
gram’ weights in anticipation of non-uniform drift rates to potentially minimise
the error metric more effectively. This confinement around the weight
hyperplane is defined by W — AW <F(G" —G™) +g" — g~ <W + AW, where
AW = 2(F 4 1)AG. Details regarding the hypercube denormalisation to capture
inter-dependent conductance constraints are included in the Supplementary
Information due to space limitations.

Data availability

The training and test datasets used for this study are publicly available4-3¢. The raw data
that support the findings of this study can be made available by the corresponding
authors upon request after IBM management approval.

Code availability

The weight programming optimisation code that supports the findings of this study is
available from the corresponding author after IBM management approval on a case-by-
case basis. The code for our hardware-aware training and inference simulator cannot be
publicly released without IBM management approval and is restricted for export by the
US Export Administration Regulations under Export Control Classification Number
3A001.a.9. For similar analogue memory-based DNN implementations and training, we
refer the readers to our open source Apache License 2.0 IBM Analog Hardware
Acceleration Kit at https://github.com/IBM/aihwkit?®.
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