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Single-cell transcriptome and crosstalk analysis
reveals immune alterations and key pathways
in the bone marrow of knee OA patients

Paramita Chatterjee,1,2 Hazel Y. Stevens,1,2 Linda E. Kippner,1,2 Annie C. Bowles-Welch,1,2 Hicham Drissi,3

Kenneth Mautner,3 Carolyn Yeago,2 Greg Gibson,4,* and Krishnendu Roy1,5,6,7,8,*
SUMMARY

Knee osteoarthritis (OA) is a significant medical and economic burden. To understand systemic immune
effects, we performed deep exploration of bone marrow aspirate concentrates (BMACs) from knee-OA
patients via single-cell RNA sequencing and proteomic analyses from a randomized clinical trial (MILES:
NCT03818737). We found significant cellular and immune alterations in the bone marrow, specifically in
MSCs, T cells and NK cells, along with changes in intra-tissue cellular crosstalk during OA progression. Un-
like previous studies focusing on injury sites or peripheral blood, our probe into the bone marrow—an
inflammation and immune regulation hub—highlights remote organ impact of OA, identifying cell types
and pathways for potential therapeutic targeting. Our findings highlight increased cellular senescence
and inflammatory pathways, revealing key upstream genes, transcription factors, and ligands. Addition-
ally, we identified significant enrichment in key biological pathways like PI3-AKT-mTOR signaling and IFN
responses, showing their potentially crucial role in OA onset and progression.

INTRODUCTION

Osteoarthritis (OA) is the most prevalent type of arthritis primarily affecting the knees, hips, hands, and spine, and is marked by joint degen-

eration.1–5 As the greatest global cause of pain and disability, it impacts over 32.5 million American adults alone, leading to an estimated

yearly healthcare cost of $27 billion. Primary risk factors forOA are aging and obesity,6–8 which imply that excessive ‘‘wear and tear’’ and ampli-

fied biomechanical stress leads to joint degeneration. However, the relationship betweenOA and other health factors is complex and cannot

be solely explained byme5chanical pressure, e.g., the higher occurrence of OA in the non-weight-bearing joints of obese individuals. To date,

there are no licensed disease-modifying OA drugs, but non-surgical alternatives, such as orthobiologics, are attractive treatment candidates

currently being evaluated in clinical trials.9–12

Emerging research points to a persistent mild inflammatory condition in OA, resulting in a systemic release of pro-inflammatory sub-

stances like adipokines from fat tissue, which may play a larger role in obesity-related OA.11 Changes in cellular structure in distant or seem-

ingly unrelated bodily tissues caused byOAare being recognized as potential OA correlates. Twin studies further suggest that genetic factors

account for more than half of the risk variance, and possibly up to 70% for spinal OA, with some of these factors likely having a systemic ef-

fect.12 Bonemarrow aspirate concentrate (BMAC) is an autologous cell therapy typically harvested frommultiple sites in the iliac crest. BMAC

contains mesenchymal stromal cells (MSCs) that have been widely investigated for immunomodulatory and reparative effects.13 Typically,

bonemarrow aspirates contain very fewMSCs (0.001–0.01%14) compared to the other cell populations; thus, procurement techniques tomaxi-

mize the number of MSCs such as concentrating to produce BMAC are investigated as approaches to improve clinical outcomes.15 BMAC is

also an enriched source of lymphocytes (13%), eosinophils (2.2%), monocytes (1.3%), basophils (0.1%),16 platelets (8.7-fold increase), andMSCs

(0.03%) compared to bone marrow aspirate.17 Several cell-types whose abundance in circulation is correlated with OA pathology, for

example, plasma cells, which originated from the bone marrow. Thus, a better understanding of the pathogenesis and disease severity of

OA may be informed by deeper investigation into correlations between alterations identified in circulation and distal tissues, including

the bone marrow.
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The innate and adaptive immune systems play a key role in the inflammatory pathogenesis inOA. Evidence from the peripheral blood from

individuals with OA has shown altered CD4+/CD8+ T cell ratios18,19 and pro-inflammatory T cell polarization in early knee OA, promoting

helper T (Th) cell subsets, specifically Th1, Th9, and Th17.20 Similar pro-inflammatory polarization has been seen in macrophage populations,

and correspondingly, NF-kB inhibitors have been shown to be effective against the progression of macrophage-mediated OA.21 Intermedi-

ate and non-classical monocytes derived from OA patients had elevated CD16+ and activation markers HLA-DR and CCR2.22 In a retrospec-

tive study of knee OA, decreased neutrophil/monocyte ratio in the blood correlated with disease severity (KL grade), highlighting the active

recruitment of monocytes and macrophages to the synovium.23 Indeed, a microarray study of peripheral bloodmonocytes identified 791 up-

regulated and 440 downregulated differentially expressed genes (DEGs) in OA.24 Given the various cell types that reside in bone marrow,

some of which are concentrated in BMAC, we have examined features of BMAC that may correlate with disease severity of patients with

knee OA.

Understanding the bonemarrow’s role in OA can be significantly advanced by leveragingmodern single-cell technologies, which allow for

unprecedented insights into cellular behaviors and interactions within this complex tissue. Single cell RNAseq (scRNAseq) has become a valu-

able tool to investigate high dimensional gene expression analysis of cells. In this study, we examined BMAC from patients with OA in the

MILES (NCT03818737) trial which is one of the largest clinical trials investigating cell therapies for knee OA. We used scRNAseq to define

the cellular composition of BMAC and identify gene expression attributes that are likely to contribute to their mode of action in OA, partic-

ularly in easing joint pain, and compared them with publicly available NIH study of scRNAseq data from a cohort of non-OA donors.25 In this

study, we compare BMACobtained via different isolation protocols, specifically the EmCyte system and Ficoll density gradient centrifugation.

While these methods have inherent differences that could influence the cellular profiles observed, we have been careful to match phenotyp-

ically similar cell types acrossOA and non-OAdatasets to ensure that our findings focus on biological rather thanmethodological differences.

Despite these precautions, the differences in isolation techniques may introduce subtle biases in cell subset recovery and viability, which

could affect the interpretation of our results. To enhance the reliability of our results, we ensured that the non-OA and OA samples were

collected usingmeticulous batch correction, and utilized a separateOAdataset of 56 patient samples from the same trial cohort for validation

of OA relevant results, confirming that identified pathways and signatures are biological signatures and not technical anomalies. We em-

ployed robust analytical pipelines to evaluate changes in cell population abundances, identify differentially expressed genes, and cell-cell

signaling mechanisms in OA versus non-OA BMAC. The validation of key findings in the replication dataset as well as steps taken to make

like-for-like comparisons of gene expression in the same cell types, highlights gene expression differences in the bone marrow environment,

offering unique insights into osteoarthritis pathology in patient bone marrow.
RESULTS

Utilizing samples collected during a randomized, double-blindedmulticenter clinical trial (MILES: NCT03818737), high dimensional transcrip-

tomic analysis and cellular phenotyping of BMAC at the single cell level from OA patients (n = 77) was performed. For discovery, 21 of these

OA samples were randomly chosen to be quantitatively compared to a similarly sized non-OA cohort (n = 20) extracted from a public data-

base.25We used the remaining 56 samples as a validation dataset for reproducibility of theOA relevant signatures found from the comparison

of non-OA and OA cohorts. The patient and generated data information is listed in the Table S1. Following the workflow schematized in Fig-

ure 1, we compared cell-type proportions and differential expression in bonemarrow aspirate concentrate (BMAC) cells from non-OAandOA

patients. Using scRNAseq data generated on the 10X Genomics Chromium platform followed by Illumina sequencing, we had 136,484 cells

available for analysis after quality control. Henceforth, we refer to the healthy as non-OA and diseased as OA throughout the article for the

convenience of the reader. After QC filtering to remove low quality cells and mitochondrial genes, and log normalization, the two datasets

were integrated using CCA (canonical correlation analysis) based on disease status and then cluster generation based on the transcriptomic

profile of the cells was performed to classify BMAC cell types (see STAR Methods for details).
Cell proportion and abundance of phenotypically similar cell types reveal increased abundance of NK cells, T cells, and

megakaryocytes in OA

We next identified phenotypically similar cell types from bothOA and non-OAdatasets, facilitating accurate comparison of their abundances

and proportions. After clustering, we identified 16major cell types that were then used to evaluate the heterogeneity of the BMAC as a whole

and, to determinewhich cell typesmay differ between theOAand non-OAgroups.We further investigated the robustness of our comparative

analysis by including an assessment of excluded erythrocytes in BMAC samples, which helped address potential discrepancies from differ-

ential cell exclusion during processing. Additionally, we analyzed both fresh and cryopreserved BMAC samples from the same donors, finding

minimal variation in gene expression, which supports the robustness of our findings (Figure S11). DEG analysis was performed using the Wil-

coxon rank-sum test with MAST to control for batch effects. The compiled analysis of all donor cells was annotated and then divided into two

to show the OA and non-OA cell clusters side by side (Figure 2A).

Analysis of cell proportions revealed that NK cells and megakaryocytes (MEGA) were significantly increased in the OA group (both

p < 0.001) relative to the non-OA group, while double-negative T cells (DNT, p < 0.01), as well as CD8 T cells, MSCs, and B cells also showed

this tendency. Conversely, there was depletion of CD14 and CD16 monocytes, progenitor dendritic cells, and plasma B cells (all p% 0.001).

These proportions are shown across all samples in Figure 2B, and by individual in Figure 2C, illustrating the heterogeneity within and between

OA and non-OA. Details of the statistical analysis are included in supplementary document Table S2.
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Figure 1. Graphical overview of single-cell omics analysis of patient OA and non-OA bone marrow

1–9 steps illustrating the experimental and analytical schematic process. The cryopreserved cells were processed to generate single cell RNA (scRNAseq) library

generation of OA patient bonemarrow samples. These samples were parallelly processed for mass cytometry and flow cytometry assessments. After sequencing

the scRNAseq libraries, the cell types were identified from cluster generation. DEG, cellular crosstalk, and pathway analyses were performed to correlate and

interpret the relevant biological findings.
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Mass cytometry analysis, summarized by representative viSNE projections in Figure 3A and Table S4, also revealed a significantly

reduced total T cell population (p < 0.001) in OA BMAC compared to non-OA BMAC. Transcriptomes of OA BMAC show a significant

decrease in CD4 T cells (p < 0.05) compared to non-OA BMAC, which is consistent with the marked reduction in CD4 T cells

measured by mass (p < 001) and flow (p < 0.05) cytometry compared to non-OA BMAC. A complementary reduction in CD8

T cell frequency in OA BMAC was measured by both mass (p < 0.01) and flow (p < 0.001) cytometry analyses, however, this was

not apparent in the scRNAseq analysis. Since CyToF and scRNAseq identify different cell types, pairwise comparison is not supported,
iScience 27, 110827, September 20, 2024 3
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Figure 2. Single-cell transcriptomics profiling of BMAC cells

(A) Cell type identification of OA and non-OA BMAC cells with SEURAT version 4 analytical pipeline. The UMAP shows the cell populations for both groups split

showing the cell type clusters. Both OA and nonOA groups have all the major cell types present.

(B) A stacked barplot shows the cell type cluster proportions comparing the diseased group (OA) and the non-diseased group (non-OA). The significant changes

in the cell proportions are shownwith the p value significance. The significance of p value is listed as ’**’ for less than or equal to 0.01 and ’***’ for less than or equal

to 0.001. Overall, we observe an increase of NK cells, megakaryocytes, double-negative T cells (DNT), CD8 T cells, MSCs, and progenitor B cells in theOA cohort.

(C) Donor-wise distribution on cell cluster proportion to highlight the cell type variabilities in BMAC donors.

(D) Dotplot shows the expression of the key markers to identify cell type for each cell type. Red is nonOA and Blue is OA. The size of the dots represents the

expression percentages.
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yet similar overall trends are documented in Figure 3B. These include directional shifts in non-classical (CD16+) monocytes, DNT,

and HSPC.

Variance analysis reveals greater impact of disease status than BMI on gene expression across cell types in osteoarthritis

Since inflammation or other physiological responses attributable to high body weight might contribute to cellular function, we analyzed the

variance components of gene expression attributable to BMI and disease status across different cell types (Figure S10). Since BMI measure-

ment was not available in the non-OA dataset, this comparison was restricted to the OA dataset, but nevertheless allows benchmarking

against the disease contrast. The variance partitioning results show that while BMI does contribute to variance in certain cell types such as

MSCs and mono CD14 cells, the magnitude of the effect is much smaller than that due to disease status across all cell types (Figure S10A)

and in most individual cell types, including CD8 T cells (Figure S10B), NK cells, and plasma B cells. The only exception, where BMI has a

more noticeable impact, was the MSCs, consistent with body weight indirectly modulating the transcriptome and likely function of this po-

tential mediator of therapeutic response (Figure S10C).

Cell communication analysis and crosstalk activity reveal enriched ligand-receptor pairs related to bone modulation and

degeneration pathways in OA

We next used cell crosstalk analysis to determine which cell types are likely to drive differences between OA and non-OA datasets. Ribbons

linking cell types in the plots in Figure 4A indicate inferred inter-cellular communication on the basis of the expression of receptors and li-

gands in the respective cell types. Comparison of OA and non-OA revealed several cell types with increased probable crosstalk, notably

involving MSC, which may be signaling to 6 other cell types in non-OA but nine other cell types in OA. This result was replicated in the vali-

dation dataset. On the other hand, progenitor B cell interactions were not observed in theOA datasets. The top enriched ligand receptors for

both OA and non-OA cohorts are highlighted with wordcloud visualization in Figure 4B. We also observed 18 ligand-receptor pathway en-

richments that were exclusive to the OA cohort (blue text on the Y axis) and just 3 exclusive pathways significantly enriched (red text on the Y

axis) in non-OA (Figure 4C). The list of enriched ligand-receptors is provided in the supplementary (Table S3).

From the differential crosstalk analysis,26 we further identified the top ligand-receptor pairs whichmay be engaged inOA-BMAC intercellular

signaling and warrant further investigation. Notably, the laminins, LAMC1, LAMA4, LAMB1, as well as growth factor receptors FN1, BMP5, and

SEMA4D are among the top enriched ligand receptors in OA (Figures 4B and 4C). These three laminins have been shown to influence hyper-

trophic chondrocyte clustering inOAdevelopment.27Also, the fibronectin 1 protein encodedby FN1has been found to stimulate theproduction

ofmatrix metalloproteinases (MMPs) in cartilage which can contribute to the degradation of cartilage inOA.28 Similar ligand receptor pairs were

enriched in the validation OA dataset, strengthening our analytical findings related to observed correlates of OA pathogenesis.

Interestingly, SEMA4D emerged as one of the ligands showing high activity inMSCs inOA (Figure 5A). Two previous studies have reported

the expression of SEMA4D in RANKL-activated osteoclasts but not in osteoblasts.29,30 Along with SEMA4Dwe also found that the cytokine IL-

16 is highly enriched in OA, in both the training and validation datasets (Figure 5A). It plays a role in the inflammatory response by recruiting

and activating immune cells through activation of MMP genes.31,32

Given the enriched ligand-receptor information, we then used Nichenet to further investigate the possible target genes for these selected

ligand-receptor pathways33 and subsequently DEGs for the downstream pathway analysis (Figure S1). Differential cell abundances were also

confirmed using the Nichenet tool (Figure S2). From Overall communication analysis, we found that ligands and their target genes partici-

pating in the RANK/RANKL/OPG,34 cGAS-STING, and cellular senescence pathways are highly expressed in the OA dataset. It is possible

that the catabolism observed in human OA cartilage, which is mediated by MSCs obtained from patients with OA, could be attributed to

TGF-b lateral signaling activating BMP.35,36 MSCs appear to communicate most extensively with NK cells, naive T cells, and HSPCs. We

also found that there are several ligand-receptor enrichments present only in OA along with the ligands significantly more highly enriched

in OA, as summarized for IL16 and SEMA4 and MHC (HLA) in Figures 5A and 5B. A large portion of these ligands including the MHC-I

also showed interactions with the MSC populations (Figure 5A).

Differential gene expression in BMAC cell types indicate highest number of differentially expressed genes in the OA MSC

population

We next contrasted the gene expression in BMAC cell types from both groups, delving deeper into the cell types showing increased commu-

nication within the osteoarthritis (OA) group. Using further subset analysis, we intended to identify and understand the biologically pertinent
iScience 27, 110827, September 20, 2024 5



Figure 3. Mass cytometry cell type identifications and abundance analysis of the OA BMAC samples

(A) Representative mass cytometry profile of the OA donors with the cell type annotated.

(B) The bar plots show cell-type abundances correlation in scRNAseq and mass cytometry side by side for both OA and nonOA cohorts. The error bars on each

data point represent the standard error of the mean (SEM) for the cell type frequencies across biological replicates. The SEM provides an estimate of the

variability in cell type abundances within each sample group.
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characteristics associated with OA. We identify the population as MSC which has CD90 (THY1), CD73 (NT5E), and CD105 (ENG) positive

expression while they lack CD45 (PTPRC), and CD34 expression (Figure S12). These are the MSC markers as per ISCT guidelines (Dominici,

2006 #198).

Interestingly, the greatest number of differentially expressed genes was observed in theMSC population (2082 genes) (Figure 6A). Expres-

sion of key signalingmolecules inMSC is summarized in Figure 6B, including four genes,CDKN1A,CYR61, IL10RB, and IL7, whose expression

is highly elevated in the non-OA group andminimally detected in the OA group (Figure 6B).CDKN1A deficiency is related to susceptibility to

enhanced inflammation in OA,37 which pushes the immune system toward the induced NF-kB pathway. CYR61 regulates cell adhesion and

migration and is required to maintain the properties of bone marrow MSCs.38 The decrease of CYR61 in OA suggests that retention of pro-

liferation and growth factor responsiveness is altered in this group. One study found RA pathogenesis promoted via the IL17 pathway39 but

this remains to be investigated with respect to OA pathogenesis. Our data suggest that CYR61 downregulation poses a vital role in chronic

inflammation in OA pathogenesis and can be a potential therapeutic target.

Analysis of the T cell subsets revealed that CD8 T cells and naive T cells were highly activated in the OA compared to the non-OA group.

Pseudotime analysis suggests that T cells differentiate at an earlier time point than B cells in OA, whereas T cells were the final trajectory point

in non-OA samples (Figures S3A and S3B). This analysis suggests that there may be early recruitment of T cells in OA. Additionally, IL17RA

expression was particularly high in the OA compared to non-OA in various T cell subsets (Figure S4), which is notable since previous studies

have shown that IL17RA contributes to OA pathophysiology.40

Multiple other cell types display interesting differential gene expression. NK cells, which had increased abundance in the OA group and

communicated directly with MSCs, were subdivided into 16 sub-clusters implicating different states of NK activation between OA and non-

OA (Figure S5). Classes of differentially expressedgenes that are likely engagedbyMSCpolarization and licensing include a Toll-like receptor

cascade, cellular senescence, and osteoclast differentiation pathways, also implicating TLR4 in OA cartilage degradation. Megakaryocytes
6 iScience 27, 110827, September 20, 2024



Figure 4. Detailed cellular crosstalk analysis in BMAC samples

(A) Cellular interaction profiling using CellChat.

This panel visualizes the top 20 cellular interactions identified within the OA cohort, across both training and validation datasets. The analysis highlights dynamic

communication networks, predominantly featuring interactions between mesenchymal stem cells (MSCs) and other critical immune cells such as NK cells, T cells,
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Figure 4. Continued

and hematopoietic stem and progenitor cells (HSPCs). The graphical representation delineates the complexity of intercellular communications, underlining the

enriched signaling pathways that potentially influence therapeutic outcomes.

(B) The word cloud illustrates the relative prominence of ligand-receptor pairs in the OA and non-OA groups, emphasizing the differential expression of key

molecules. Notable ligands such as LAMA4, LAMB1, BMP5, LAMC1, PTPRM, and SEMA4A are exclusively enriched in the OA cohort, suggesting a unique

molecular signature that may be pivotal in OA pathogenesis and progression.

(C) Comparative analysis of enriched ligand pathways: presented as a bar plot, this panel quantifies and compares the enriched ligand-receptor pathways

between OA and non-OA groups. Color-coded for intuitive interpretation (OA in Blue, non-OA in Red), the plot provides a visual summary of the pathway

distribution, highlighting the presence of multiple ligand-receptor interactions unique to the OA group. This differential pathway activity could inform

targeted therapeutic strategies.
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were significantly increased in the OA group, with high expression of PF4 (encoding the cytokine platelet factor 4) and multiple genes asso-

ciated with TLR activation and arthritis pathways (Figure S6). Mature B cells showed differentially expressed genes involved in oxidative stress,

TLR regulation, and response to lipopolysaccharides (Figure S7). These pathways are associated with synovial inflammation, cartilage degra-

dation, and matrix synthesis. DNT cells showed increased expression of LGALS3 and genes involved in cartilage degradation, chondrocyte

homeostasis, and cellular senescence (Figure S8). Finally, monocytes exhibited gene expression changes indicative of cellular senescence.

CD16+monocytes, which were observed to be decreased in OA overall, had upregulated gene expression related to apoptosis, chemokines,

focal adhesion, metabolic pathways, and osteoclast differentiation. TheOA cohort showed elevated gene expression for transcription factors

involved in maturation and activation.
OA-relevant signaling pathways identified through gene set enrichment and pathway analysis highlight changes in

autophagy, inflammation, and senescence

In an attempt to elucidate the central pathways implicated in osteoarthritis pathogenesis and prognosis, we conducted a comprehensive

gene ontology analysis employing the gene set enrichment analysis (GSEA) tool along with the Molecular Signatures Database (MSIGDB)

hallmark gene sets. This analysis revealed several key pathways, including P53, PI3/AKT/MTOR signaling, oxidative phosphorylation, TGF-

Beta signaling, IL2-STAT5 signaling, and interferon alpha and gamma responses, that showed substantial enrichment in OA (Figure 7A).

Involvement of the unfolded protein response pathway is notable since endoplasmic reticulum stress may be a feature of osteoarthritic chon-

drocytes (Figure S9). Activation of this pathway implicates inflammation and apoptosis, potentially instigating cartilage degeneration.

Further investigations suggest that these identifiedpathways are crucial for the regulation of autophagy and cellular senescence, which are

fundamental facets of the immune response associatedwithOA. Importantly, autophagy is the inherent process of eliminating senescent cells

to maintaining tissue homeostasis. Disruption of autophagy was observed to instigate inflammation driven by senescent cells in OA.41 More-

over, we found that autophagy significantly contributes to the regenerative abilities of MSC, and therefore, its inhibition could negatively

affect these cell properties. MSCs possibly playing a key role in stimulating further recruitment of immune cells, thereby exacerbating inflam-

matory pathways, cellular senescence, and inflammation. Contrastingly, such a characteristic pro-inflammatory signature of MSCs was not

observed in the non-OA cohort.

Additionally, overview of the GSEA analysis showed substantial enrichment of the p53, PI3/AKT/mTOR, IL6/JAK/STAT, mTORC, and inter-

feron signaling pathways in OA.39,42–45 Similarly, perturbation pathway scoring with the r package Progeny46 contrasting the OA and non-OA

overall datasets identified estrogen, TGFB, hypoxia, and P53 pathways. We also found that theWNT pathway is very much downregulated in

OA compared to non-OA datasets, and a similar signature was observed in the validation OA dataset as well (Figure 7B).
DISCUSSION

This study presents a comprehensive view of the systemic knee-osteoarthritis (OA) pathology at the cellular level, utilizing single-cell transcrip-

tomics to compare OA and healthy bone marrow. Previous studies related to omics landscape in OA has focused on OA relevant tissues like

blood, plasma, urine, local joint cartilage, and synovium.47 Our methodological approach underlines the value of single-cell genomics in the

field of rheumatology, providing a deeper understanding of the cellular diversity and functional states in OA.

In this study, we observed altered expression profiles and communication signatures in key cell types includingNK cells,MSCs,monocytes,

B cells, and T cells. Notably, MSCs exhibited a distinctly different signature in OA data. This difference suggests the presence of immuno-

modulatory changes within the patient’s bone marrow cells. It is plausible that these alterations could be the driving force behind the inflam-

matory signatures observed in knee-OA.One caveat to this study is that our control non-OA dataset is curated from aNIH public data source.

To mitigate this limitation, we have taken four steps. First, we ensured that the BMAC isolation method was performed following a similar

protocol with our OA datasets. Second, batch correction on the groups and conditions was performed, and preliminary data integration

method comparison evaluated to find the most suitable and reproducible pipeline. This process revealed that even though our OA samples

were collected from five different sites, the difference between theOA and non-OA conditions wasmuch greater than among the sites. Third,

we included a larger separate OA dataset of 56 patients as a validation dataset from our sameOA cohort to replicate the key findings. Lastly,

we observed that all of the identified pathways and signatures are biologically relevant and plausibly associated with knee-OA disease, an

unlikely outcome for purely technical sources of error. These steps increase confidence that the study findings represent a true investigation

of the perturbations that characterize bone marrow of osteoarthritis patients.
8 iScience 27, 110827, September 20, 2024
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Figure 5. Analysis of key pathways and gene expressions enriched in OA Using BMAC from OA patients

(A) This panel illustrates the ligand-receptor activity specifically associated with mesenchymal stem cells (MSCs) under the OA condition, utilizing Nichenet

analysis to pinpoint critical interactions. It shows a detailed comparison across non-OA, OA training, and OA validation datasets, highlighting several key

ligand-receptor pairs. Notable among these are antigen-presenting receptors and SEMA4D, which are consistently enriched in both OA datasets, indicating

their potential role in the molecular mechanisms underpinning OA.

(B) The bar plots in this panel depict the intensity and distribution of IL16 and SEMA4 ligand pathways, revealing significant communication patterns within the

MSCs across different study groups. This comparative analysis underscores the heightened activity in both theOA training and validation datasets relative to non-

OA controls. The graphical representation provides insights into the differential expression and potential functional implications of these pathways in OA

pathophysiology.
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Previous studies have primarily focused on the injury site or peripheral blood mononuclear cells.48 Since our study uniquely investigates

cells from the bonemarrow, which is a systemic reservoir of inflammation and immune regulation,49 in a high-resolution and detailedmanner,

it highlights novel aspects of the systemic response to OA. Consistent with the OA literature, our data reveal increased cellular senescence

and inflammatory pathways in OA, but we also identified dominant cell types andmaster pathways likely involved in the intercellular crosstalk

in OA. These include key upstream genes that could serve as potential therapeutic targets for modulation or inhibition. With the growing

interest in BMAC as a cell therapy for OA, our findings also suggest critical quality attributes (CQAs) for BMAC. The full therapeutic potential

and implications of this approach warrant further exploration.

The observed T cell depletion in OA prompts several hypotheses, including senescence, exhaustion, or depletion. Future studies are

encouraged to examine specific gene markers that define these states in our dataset, potentially leading to novel therapeutic targets.

From previous studies50 senescent T cells communicate with non-lymphoid cells in pro-inflammatory conditions, and this can lead to tissue

damage. Primary markers for senescence in CD8 T cells are CD57 (B3GAT1) and KLRG1 and loss of CD28 markers. Our analyses find high

expression of the B3GAT1 and KLRG1 genes and loss of CD28 in OA cell groups, consistent with the inference of cellular senescence in

the inflammatory conditions of theOA bonemarrow. A combination of in vitro and in vivo experimentation has shown51 that Th17 cells induce

senescence in fibroblasts and skew naive T cells toward Th17 or Th1 depending on the presence of TGFb. By blocking IL17 activity, joint

degradation was reduced and the marker CDKN1A was downregulated. In our study, we see a very high expression of CDKN1A in OA

compared to the healthy non-OA group, consistently suggesting that IL17 and upstream mTORC1 pathway-associated markers can be

used as signatures forOA.37 Previous study-based flow cytometry on blood fromosteoarthritis patients has also found T cell and B cell subsets

involved in the pathogenicity of OA.5

Our study utilized cell crosstalk analysis to pinpoint which cell types might drive differences between the OA and non-OA datasets. We

observed notable increases in probable crosstalk involving mesenchymal stem cells (MSCs), which signal to a greater number of other cell

types in the bone marrow in OA than in non-OA. This differential crosstalk highlights the potential role of MSCs in modulating the bone envi-

ronment in OA, particularly through the activation of pathways related to bonemodulation and degeneration. Although previously senescent

MSCs has been reported in subchondral and chondrocyte studies,52 our study provides novel insight into the outgoing signaling ligand re-

ceptors which are involved in this crosstalk.

Key ligand-receptor pairs identified, such as laminins (LAMC1, LAMA4, LAMB1), fibronectin 1 (FN1), and SEMA4D, underscore the involve-

ment of these molecules in OA pathophysiology. Laminins, for example, have been linked to hypertrophic chondrocyte clustering in OA

development, suggesting amechanismbywhich these extracellularmatrix components could influence chondrocyte behavior and contribute

to disease progression. FN1’s role in stimulating matrix metalloproteinases hints at its involvement in the degradation processes character-

istic of OA. SEMA4D’s heightened activity in OA-specific MSCs points toward its role in immune modulation and bone remodeling, further

supported by its expression in osteoclasts but not osteoblasts.

The differential expression and enriched activity of these ligand-receptor pairs, replicated in our validation dataset, lend strong sup-

port to our analytical findings and suggest that these molecules are not merely bystanders but active participants in OA pathogenesis.

This is further supported by the analysis of target genes for these ligand-receptor pathways, revealing involvement in critical pathways

such as RANK/RANKL/OPG, cGAS-STING, and cellular senescence, all of which are pivotal in OA’s inflammatory and degenerative

processes.

Significant enrichment in several biological pathways in knee osteoarthritis was detected using gene set enrichment analysis (GSEA).

Pathways such as PI3-AKT-mTOR signaling, IFN-gamma response, IFN-alpha response, unfolded protein response, TGFB signaling, IL2-

STAT5 signaling, IL6-JAK-STAT3 signaling, and mTORC1 signaling, could potentially underpin key molecular mechanisms contributing

to the onset and progression of osteoarthritis. The PI3-AKT-mTOR signaling pathway plays a crucial role in cell survival, proliferation,

and differentiation. In the context of knee osteoarthritis, dysregulated PI3-AKT-mTOR signaling could influence chondrocyte survival

and cartilage matrix synthesis, thereby contributing to disease pathogenesis.53 Interferon (IFN) responses, both IFN-gamma and IFN-

alpha, are also enriched in our analysis. These pathways mediate immune responses and have been implicated in inflammatory diseases.

As osteoarthritis has an inflammatory component, particularly in synovial inflammation, it is plausible that these pathways could play a role

in the disease process. The unfolded protein response pathway is involved in endoplasmic reticulum stress response, a process shown to

be increased in osteoarthritic chondrocytes. Its activation may lead to inflammation and apoptosis, driving cartilage degeneration. TGFB

signaling plays a complex role in cartilage homeostasis and osteoarthritis. On one hand, TGFB is crucial for maintaining cartilage integrity;

while on the other hand, dysregulated TGFB signaling can drive osteoarthritis progression by promoting abnormal chondrocyte differen-

tiation and extracellular matrix degradation. The IL2-STAT5 signaling pathway has a critical role in T cell proliferation and differentiation,54
10 iScience 27, 110827, September 20, 2024



Figure 6. Comprehensive analysis of differential gene expression in OA

(A) This panel highlights the results of differential expression analysis between OA and non-OA groups, specifically within mesenchymal stem cells (MSCs). It

showcases a bar graph depicting the relative number of differentially expressed genes (DEGs), where MSCs exhibit the highest disparity in gene expression,

underscoring their pivotal role in OA pathophysiology.
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Figure 6. Continued

(B) This section delves into the specific genes within MSCs that are altered in OA compared to non-OA conditions. The analysis identifies key genes implicated in

the pathogenesis of OA, offering insights into the molecular alterations that may drive disease progression. This visualization aids in understanding the gene-

level changes and their potential impact on therapeutic targeting.

(C) Focusing on toll-like receptors, this panel presents a clear visualization of their differential expression levels in the OA dataset relative to non-OA. The

significant upregulation of these receptors in OA suggests their crucial involvement in inflammatory responses and innate immunity within the OA context,

potentially contributing to disease mechanisms and symptoms.
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which are pivotal in immune response regulation. Although traditionally considered a non-inflammatory condition, recent studies indicate

the involvement of immune pathways in osteoarthritis, suggesting a potential role for IL2-STAT555 signaling. The IL6-JAK-STAT3 signaling

pathway mediates various cellular processes,42 including inflammation. IL6 is known to be upregulated in osteoarthritis, leading to

increased inflammation and cartilage degradation. Therefore, this pathway likely contributes to the progression of knee osteoarthritis.

Lastly, the mTORC1 signaling pathway, an integral part of the larger mTOR pathway, is vital in regulating cell growth and metabolism.

Dysregulation of this pathway may affect chondrocyte homeostasis and thus, contribute to osteoarthritis pathogenesis.43

Another notable highlight of our bioinformatic analysis is the apparently exaggerated role of MSC in inflammation, which as discussed by

Grandi et al.,56 has potential implications forMSC-based therapies inOA. Fromearlier studies, it is known that high levels of TGF-b upregulate

the RUNX2 and SMAD pathways, ultimately leading to bone degeneration.57 Also shown in Figure 5B, the top differentially expressed genes

in the OA MSCs are RUNX2, RACK1, TEAD1, CRH, BMPR2, HGF, MMP14, ROCK1, THBS1, FGFR1, TGFBR3, and MMP2. These genes are

involved in the induction of osteoarthritis,58,59 stimulation of inflammation,60 cartilage homeostasis,61 cartilage loss, and bone resorption

pathways.38,39,42,43,58,60,62–68 We also find IL7 is highly expressed in non-OA compared to OA overall and specifically in MSCs. A recent study

showed that IL7 plays a vital role in CAR-T cell efficiency,10 and it is also important for diabetic wound healing.69 A possibility is that modified

MSCs promote wound healing. With this functional in vitro evidence, IL7 can be a novel candidate to modulate the MSCs in OA toward more

regenerative and repair pathways.69,70 We also see that MSCs in OA have very high expression of BMP pathways which are crucial for bone

development. Amouse study71 showed that BMP5 silencing inhibits chondrocyte senescence and apoptosis as well as osteoarthritis progres-

sion. BMP5 regulates chondrocyte senescence via the p38/ERK signaling pathway and BMP silencing in chondrocytes reduces senescence-

associated secretory phenotypes in the knee joint. BMPR1A expression also regulates the ability of MSCs to bring about adipogenesis.72

Therefore, BMP5 and associated genes in the signaling pathways may also be a potential target to explore.

Our findings, coupled with the enriched pathways observed, suggest a multifacetedmechanism of OA involving altered cell signaling and

intercellular communication, primarilymediated byMSCs and their interactionwith other immune cells likeNK cells, HSPCs, and T cells. These

interactions likely contribute to the inflammatory milieu and the subsequent tissue degradation seen in OA and may be modified by obesity

given the effect of BMI status on the MSC transcriptome.

In conclusion, the specificity of these changes to OA, along with their validation across datasets and their biological plausibility,

strengthens the hypothesis that targeting these pathways could offer new therapeutic avenues for OA treatment. Future studies should focus

on delineating these interactions further and exploring their therapeutic potential in clinical settings.

Our research specifically addresses the global impact of osteoarthritis (OA) by highlighting cellular andmolecular changes in bonemarrow

samples fromOA patients. This highlights not only the well-understood local effects of OA on subchondral bone marrow, synovium, synovial
Figure 7. Pathway enrichment analysis

(A). GSEA pathways enriched in OA from the 20-sample cohort. Positive NES in red and negative NES in blue. The X axis shows the enriched pathways in OA

dataset and Y axis shows the cell types. The heatmap color intensity signifies the NES scores for each pathway and celltypes in OA.

(B) GSEA pathways enriched inOA from the 56-sample validation cohort. Positive NES in red and negative NES in blue. The X axis shows the enriched pathways in

OA dataset and Y axis shows the cell types. The heatmap color intensity signifies the NES scores for each pathway and cell types in OA.
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fluid, and cartilage, but also underscores the unresolved issues in more distant tissues such as blood and iliac crest bone marrow. Thus, our

findings offer novel and valuable insights into the broader systemic effects of OA.

Limitations of the study

In this study, we compared BMAC obtained through different isolation protocols, specifically the EmCyte system and Ficoll density gradient

centrifugation. While these methods inherently differ, potentially influencing the observed cellular profiles, we carefully matched phenotyp-

ically similar cell types across osteoarthritis (OA) and non-OA datasets to ensure our findings emphasize biological rather than methodolog-

ical differences. Despite these precautions, the isolation technique disparities might introduce subtle biases in cell subset recovery and

viability, potentially affecting our cell type abundance result interpretations.

To address this limitation, the validation of key findings was performed in the validation and replication dataset, coupled with steps taken

to ensure like-for-like comparisons of gene expression in the same cell types. This highlights gene expression differences within the bone

marrow environment. These differences offer unique insights into osteoarthritis pathology in patient bone marrow.
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Antibodies

Anti-Human CD3 (UCHT1)-170Er Fluidigm Corporation Cat#3170001B

Anti-Human CD45 (HI30)-89Y Fluidigm Corporation Cat#3089003B

Anti-Human CD11c (Bu15)-147Sm Fluidigm Corporation Cat#3147008B

Anti-Human CD34 (581)-166Er Fluidigm Corporation Cat#3166012B

Anti-Human CD146 (P1H12)-155Gd Fluidigm Corporation Cat#3155006B

Anti-Human CD56 (NCAM16.2)-176Yb Fluidigm Corporation Cat#3176008B

Anti-Human CD31 (WM59)-144ND Fluidigm Corporation Cat#3144023B

Anti-Human CD25 (2A3)-149Sm Fluidigm Corporation Cat#3149010B

Anti-Human CD4 (RPA-T4)-145ND Fluidigm Corporation Cat#3145001B

Anti-Human CD8 (RPA-T8)-146ND Fluidigm Corporation Cat#3146001B

Anti-Human CD19 (HIB19)-142ND Fluidigm Corporation Cat#3142001B

Anti-Human CD14 (M5E2)-175Lu Fluidigm Corporation Cat#3175015B

Anti-Human CD16 (3G8)-148ND Fluidigm Corporation Cat#3148004B

Anti-Human HLA- DR (L243)-173Yb Fluidigm Corporation Cat#3173005B

Anti-Human CD11b/Mac-1 (ICRF44)-209Bi Fluidigm Corporation Cat#3209003B

Anti-Human CD123/IL-3R (6H6)-151Eu Fluidigm Corporation Cat#3151001B

Anti-Human CD105/Endoglin (43A3)- 163Dy Fluidigm Corporation Cat#3163005B

Anti-Human CD73 (AD2)-168Er Fluidigm Corporation Cat#3168015B

Anti-Human CD127/IL-7Ra (A019D5)-165Ho Fluidigm Corporation Cat#3165008B

Anti-Human CD197/CCR7 (G043H7)-159Tb Fluidigm Corporation Cat#3159003A

Anti-Human CD163 (GHI/61)-154Sm Fluidigm Corporation Cat#3154007B

Anti-Human CD68 (Y1/82A)-171Yb Fluidigm Corporation Cat#3171011B

Anti-Human CD33 (WM53)-169Tm Fluidigm Corporation Cat#3169010B

Anti-Human CD15/SSEA-1 (W6D3)-164Dy Fluidigm Corporation Cat#3164001B

Anti-Human CD45RA (HI100)-153Eu Fluidigm Corporation Cat#3153001B

Anti-Human CD38 (HIT2)-167Er Fluidigm Corporation Cat#3167001B

Biological samples

Human Cells cryopreserved or freshly acquired Multi-center clinics N/A

Chemicals, peptides, and recombinant proteins

Maxpar� Cell Acquisition Solution Fluidigm Corporation Cat#201241

Cell-ID� Cisplatin Fluidigm Corporation Cat#201064

Chromium Next GEM Single Cell 30

Kit v3.1, 16 rxns

10x Genomics Cat#1000268

Deposited data

Raw and analyzed data This paper GEO: GSE274018

SRA: PRJNA1144164

Human reference genome NCBI build 38,

GRCh38

Genome Reference Consortium http://www.ncbi.nlm.nih.gov/projects/

genome/assembly/grc/human/

Non-OA Data Oetjen et al.25 GEO: GSE120221, GSE120446

Experimental models: Organisms/strains

H. sapiens OA patients from multiple clinical sites N/A

(Continued on next page)

iScience 27, 110827, September 20, 2024 17

http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/
http://www.ncbi.nlm.nih.gov/projects/genome/assembly/grc/human/


Continued

REAGENT or RESOURCE SOURCE IDENTIFIER

Software and algorithms

BCL2FASTQ Illumina https://support.illumina.com/downloads/

bcl2fastq-conversion-software-v2-20.html

Cellranger V3 10x Genomics https://support.10xgenomics.com/single-cell-

gene-expression/software/pipelines/latest/

installation

Seurat V3 Satija Lab https://satijalab.org/seurat/

Propeller GitHub https://github.com/phipsonlab

CellChat cellchatdb http://www.cellchat.org/

Custom code This paper https://github.com/pchatterjee7/BMAC_OA_

nonOA
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EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

Ethical approvals

The MILES clinical trial (NCT03818737) was performed in accordance with guidelines and oversight from the Federal Drug Administration

(FDA) under IND# 18414 and with subsequent reference to IDE #17894. Study approval was obtained from the Western Institutional Review

Board (WIRB) and by Duke and Emory University’s IRB. Only human cells were used for this study.

The following informationwas supplied relating to ethical approvals: H19004 (GTIRB): Approved 03/12/2019. Based on theMulticenter trial

of stem cell therapy for osteoarthritis (MILES).WIRB Protocol #20183019 (Emory University, Duke University, Andrews Institute, Sanford Health

(Sioux Falls, Fargo).
Study design and subjects

The non-OA group is of healthy volunteers who were recruited for bonemarrow aspiration procedures. The cohort consisted of 10 males and

10 females with ages ranging from 24 to 84 years old and median age of 57 years. A second bone marrow aspiration was performed for 2

donors (Ck, Sk) (biological replicates) either 2 or 5 months after their first aspiration, respectively.25 Mononuclear cells were isolated from

bone marrow aspirates via Ficoll density gradient separation, then cryopreserved in 90% FBS/10% DMSO for storage in liquid nitrogen.

Each donor’s cryopreserved vials were utilized for assays as detailed in Table S1. For a subset of donors, a second bone marrow aspiration

was conducted (for donors Ck and Sk, 2 and 5 months after the initial procedure, respectively) to obtain biological replicates.

The patient data utilized in our study was derived from a large multi-tissue, multi-site clinical trial conducted across the United States. The

selection of diverse patients was governed by the trial’s design, which aimed to encapsulate a broad demographic and genetic representa-

tion of the population. While the diversity of the patients was determined by the trial’s structure, it nevertheless provided a comprehensive

cross-section suitable for observing generalized biological phenomena related to osteoarthritis (OA). Demographic information includes

ethnicity and race. Ethnicity is categorized as Hispanic or Latino, Not Hispanic or Latino, Not reported, and Unknown. For racial classification,

participants could identify as American Indian, African American/Black, Native Hawaiian/Pacific Islander, Asian, Caucasian/White, or Not re-

ported. These demographic details are critical for interpreting the study results within the context of genetic and cultural backgrounds.

The OA subject group consisted of male and female donors who had been diagnosed with OA and had a Kellgren-Lawrence (KL) scale

grade of II, III, or IV, and with no corticosteroid injection for 3 months prior to sample collection and no NSAID use for 6 days prior to sample

collection. Donor characteristics and generated data details for both cohorts are summarized in Supplemental Table S1. Samples from the

two groups were age and gender matched. To ensure consistency, non-OA samples were cryopreserved using 90% FBS +10% DMSO, while

OA samples were processed with Cryostor CS10 containing 10% DMSO.
METHOD DETAILS

Bone marrow aspirate collection and concentration

Bone marrow collected from the posterior superior iliac spine (PSIS) was concentrated by centrifugation (EmCyte GenesisCS Pure BMAC-

60 mL) and cryopreserved in Cryostor CS10 (StemCell Technologies) for storage in liquid nitrogen.

Bonemarrow aspirate (BMA) from theOA cohort was collected from the posterior superior iliac spine, concentrated by centrifugation (Em-

Cyte GenesisCS Pure BMAC-60 mL) and cryopreserved in Cryostor CS10 (StemCell Technologies) for storage in liquid nitrogen. All BMAC

samples were tested for endotoxin and sterility prior to cryopreservation. Assays were performed using matched cryopreserved vials from

each donor, collected from the same BMA sample.
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https://github.com/phipsonlab
http://www.cellchat.org/
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Single-cell RNAseq library preparation and sequencing

As an extremely heterogeneous mixture of cells containing diverse immune cell types, the BMAC samples are challenging to process. We

performed a pilot study with a few samples to optimize the freezing protocols where we could achieve the highest viability and observed

that all the cell types were conserved compared to fresh samples. Upon optimization of the protocol, all samples were cryopreserved in Cry-

ostor10 (Stem cell technologies, CS10) freezing media and were analyzed through droplet-based single-cell RNAseq (10x Genomics Chro-

mium 30 V3.1). All the cells were thawed for 2 min at 37C and washed and filtered before processing for barcode generation on the 10x Ge-

nomics Chromium platform. In case of viability lower than 70%, we used live cell enrichment (Dead cell removal kit, Miltenyi Biotech). The

amplified libraries were prepared with �5000 cells per sample target. The libraries were sequenced on the Illumina Novaseq6000 platform

with an S4 kit to achieve R 30,000 reads per cell.
Single-cell RNA data analysis

The libraries were sequenced on the Illumina sequencing platform, and raw reads were aligned to the human reference genome GRCh38

while cell barcodes were used to assign reads to single cells with CellRanger v3.1. Greater than 230,000 cells were captured and analyzed

from both datasets. The diseased datasets were processed with CellRanger software package version 3.1. Our threshold for each sample

was set to a minimum cell R3, minimum features R200, and mitochondrial count %40.

After filtering out cells with a low number of genes expressed, high mitochondria gene expressed and low UMIs, 136,484 cells were

analyzed in the final analysis. For the non-OA data analysis, we reanalyzed and annotated the published dataset from the raw matrices

with the same QC thresholds. The datasets from both diseased and healthy cohorts were initially analyzed with SEURAT version 3, now

supplemented with new options available in V4. After filtering, the samples were merged from each group to create OA and Non-OA

datasets.

Canonical Correlation Analysis (CCA) was conducted to identify shared sources of variation between conditions/groups, emphasizing

the 3000 most variant genes per sample. CCA helps approximate cell alignment based on shared variation. Anchors or mutual nearest

neighbors (MNNs) were identified across datasets to provide estimate of batch effect, as described by.73 Incorrectly identified anchors

were filtered by assessing the similarity of local neighborhood overlaps. Integration of datasets was achieved using these anchors, trans-

forming cell expression values based on a weighted average determined by cell similarity and anchor scores. Then this object was used as

an input for the integration across the conditions. RPCA was used for the large dataset where the datasets are aligned in the PCA space

using shared PCs.

Principal components (PCs) of the highly variable genes were computed and the first 30 PCs were included in cluster generation.

With a resolution setting of 0.5, 26 cell clusters were detected, and these were visualized in two-dimensional space using uniform mani-

fold approximation and projection (UMAP).74 Cell clusters were distinguished using the Louvain clustering algorithm implemented in

Seurat.

After clustering, upon identification of the major cell types to determine the heterogeneity of the BMAC as a whole and, to determine

which cell types may differ between the OA and non-OA groups, DEG analysis was performed using the Wilcoxon rank-sum test and MAST

to control for batch effects. Once the cell proportions were analyzed, further downstream analysis was performed. The propeller tool75 was

used to assess statistical analysis of the cell proportions. Cell communication analysis was performed using CellChat and Nichenet, soft-

ware applications that predict cellular signals and ligand-target enrichment using network analysis and pattern recognition ap-

proaches.26,33 The validation OA dataset of 56 samples was re-analyzed independently using the same QC criteria to have the method

reproducibility established. BMI variation analysis was performed on the OA dataset to confirm the effect of BMI on the disease

progression.
Flow cytometry

Cryopreserved BMAC samples were prepared and stained with fluorescently conjugated antibodies (Table S4). Samples were first treated

with a viability dye (Zombie UV) and incubated with antibody cocktails. Post-staining, samples were fixed using BD Cytofix Fixation Buffer

and stored at 4�C. Within three days, samples were processed on a BD LSRFortessa cell analyzer, with over 20,000 events recorded per repli-

cate. Data analysis was performed with FlowJo software, utilizing a standard gating strategy based on scatter, singlets, and viability. The flow

cytometry was performed on few of the OA BMAC samples to match the panel of nonOA data. We have later moved toward mass cytometry

on all our OA samples to acquire more high throughput data.
Mass cytometry

BMAC samples were readied for mass cytometric staining as per Fluidigm’s instructions. Samples were thawed, washed with serum-free me-

dia, and stained with Cell-ID Cisplatin. Staining was neutralized with Maxpar Cell Staining Buffer, followed by cell count and Fc Receptor

Blocking Solution incubation. Antibody cocktails were then added. After two washes, samples were fixed with a 1.6% formaldehyde solution,

incubated overnight at 4�C in intercalation solution with Cell-ID Intercalator-Ir, washed again, and processed on a Helios mass cytometer us-

ing CyTOF software.
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QUANTIFICATION AND STATISTICAL ANALYSIS

Results were analyzed using R v4 and v4.1. All the statistical details of experiments can be found in the STAR Methods section. *p < 0.05,

**p < 0.01, ***p < 0.001; ns, not significant.
ADDITIONAL RESOURCES

All data are generated from the clinical trial MILES: NCT03818737.
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