Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

Doori Park ${ }^{1}$, Dongin Kim ${ }^{2}$, Green Jang ${ }^{2}$, Jongsung Lim ${ }^{2}$, Yun-Ji Shin ${ }^{3}$, Jina Kim ${ }^{3}$, Mi-Seong Seo ${ }^{3}$, Su-Hyun Park ${ }^{4}$, Ju-Kon Kim ${ }^{4}$, Tae-Ho Kwon ${ }^{3 *}$, Ik-Young Choi ${ }^{1 \text { 1** }}$
${ }^{1}$ Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea,
${ }^{2}$ National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea,
${ }^{3}$ Natural Bio-Materials Inc., Wanju 55322, Korea, ${ }^{4}$ Crop Biotech Institute, Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea

Abstract

Molecular characterization technology in genetically modified organisms, in addition to how transgenic biotechnologies are developed now require full transparency to assess the risk to living modified and non-modified organisms. Next generation sequencing (NGS) methodology is suggested as an effective means in genome characterization and detection of transgenic insertion locations. In the present study, we applied NGS to insert transgenic loci, specifically the epidermal growth factor (EGF) in genetically modified rice cells. A total of 29.3 Gb ($\sim 72 \times$ coverage) was sequenced with a 2×150 bp paired end method by Illumina HiSeq2500, which was consecutively mapped to the rice genome and T-vector sequence. The compatible pairs of reads were successfully mapped to 10 loci on the rice chromosome and vector sequences were validated to the insertion location by polymerase chain reaction (PCR) amplification. The EGF transgenic site was confirmed only on chromosome 4 by PCR. Results of this study demonstrated the success of NGS data to characterize the rice genome. Bioinformatics analyses must be developed in association with NGS data to identify highly accurate transgenic sites.

Keywords: genetically modified organisms, next generation sequencing (NGS) T-DNA, rice, risk assessment

Introduction

Genetic engineering technology is widely used in the agricultural and plant biotechnology fields, ranging from the food and feed industries to bio-pharmaceuticals and cosmetics [1,2]. The history of genetically modified (GM) technology began with the discovery of plasmid DNA, where the plasmid could be transferred from one cell to another genome [3]. Scientists subsequently applied the basic plasmid vector system principle and developed recombinant DNA technology to create genetically engineered organisms. Today, GM techniques have been applied to various research fields, including crop sciences, drug manufacturing, and animal husbandry.

The development of transgenic biotechnologies over the last 20 years has led to safety concerns regarding genetically modified organisms (GMOs), particularly in food crops and new pharmaceuticals, which are the most controversial issues. Safety concerns regarding GMOs have resulted in research, debates, and ongoing public unease. Therefore, the European Union (EU) and National Institutes of Health (NIH) in the United States proposed an authorization process in commercial GMO use; however, public apprehension for transgenic techniques remains uncertain and controversial [4-8].

Generally, molecular characterization and identification of GMOs are performed using Southern blots and polymerase chain reaction (PCR) based detection followed by conventional sequencing methods [7]. However, these appro-

[^0]Copyright © 2015 by the Korea Genome Organization
© It is identical to the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/4.0/).
aches are limited to evaluate whether the host genome has unintended sequence substitutions and indels [9]. Moreover, if sufficient genomic information is not available for the chosen comparative model species, it is difficult to detect the correct transgenic insert site location or sequence contamination of vector DNA [9, 10].

Recent publications of GMO molecular characterizations reported the use of next generation sequencing (NGS) approaches as an effective means to detect the precise transgenic insert location [9, 11, 12]. High-throughput DNA sequencing technologies and bioinformatics can be coupled with NGS to offer new possibilities in drawing genetic maps with feasible costs. For these reasons, researchers have tested new approaches in the molecular characterization of GMOs using NGS technologies [9, 10, 12].

Here, we examined transgenic insertion sites using paired-end whole genome re-sequencing data following Yang et al. with modifications [9]. Human epidermal growth factor (EGF) was inserted into GM rice cells, which could produce EGF safety without endotoxin derived from bacteria and was used as material for this study. Deep sequencing was performed with the Illumina Hiseq2500 platforms (Illumina Inc., San Diego, CA, USA). In this pilot study, we demonstrated the potential of NGS for examination of transgenic insertion loci and discuss some technical bottlenecks of this new method.

Methods

GM rice samples

The GM rice event PJKS131-2 was transformed with the EGF inserted pJKS131 vector, produced by Natural BioMaterials Inc. (Jeonju, Korea). Taxonomically, the event PJKS131-2 was derived from Oryza sativa L. cv. Dongjin. The T-vector was transformed with rice callus as described by Chan et al. [13]. Transgenic rice calli were incubated with
$50 \mathrm{mg} / \mathrm{L}$ of hygromycin B antibiotic (A.G. Scientific Inc., San Diego, CA, USA) for selection. The GM rice callus samples were subjected to NGS and further validated by PCR amplification.

DNA extraction and whole genome shotgun library and sequencing

The calli of GM rice event PJKS131-2 were collected and stored at $-80^{\circ} \mathrm{C}$. Total genomic DNA was extracted using the CTAB method in liquid nitrogen. Genomic DNA quality was evaluated by 0.5% agarose gel electrophoresis. Following the quality check, genomic DNA was sheared with average 500 bp fragment sizes. Truseq DNA PCR free Library Preparation Kit (Illumina Inc.) was used to construct the DNA library according to the manufacturer's protocol. The quality of constructed DNA libraries was confirmed by the LabChip GX system (PerkinElmer, Waltham, MA, USA). DNA libraries were sequenced with 150-bp paired-end sequencing using Illumina Hiseq 2500.

Transgenic insertion analysis

Initially, paired-end reads were filtered out by phred scores <20 and duplicate sequences were removed. After filtration, DNA fragments were consecutively mapped against the rice reference genome (phytozome v9 [14]) and T-vector sequence (Supplementary Fig. 1). The transgene insertion types were classified by adaptation and modification of the analytical strategies reported in Yang et al. [9]. Fig. 1 shows the workflow applied in this method. Initially, all NGS reads were individually mapped to the rice reference genome and transgenic vector (types A and C in Yang et al. [9]). Subsequently, these NGS reads were eliminated to conduct the following analyses. NGS reads not classified as above were classified into the following two classes: one side of the NGS read matched the reference genome, (1) the other one matched to vector (type B in Yang et al. [9]); or (2) one

Fig. 1. Summary of the work-flow. PCR, polymerase chain reaction.

Table 1. Whole genome sequencing summary

Event	No. of reads	Total read length (bp)	Q30 (\%)	GC ratio (\%)
PJKS131-2	$194,965,440$	$29,359,127,691(72 \times)$	71.56	41.58

Fig. 2. Schematic drawing of the transgenic vector genome. Red line represent the region of mapped reads. MCS, multiple cloning site; RB, right border; LB, left border.
side of the NGS read exhibited both elements from the rice reference and transgenic vector (types D and E in Yang et al. [9]).

Experimental validation of transgenic inserts

Each of the 13 combination primer sets was designed congruent with the transgenic insertion region orientation. PCR was conducted using DNA polymerase (Solgent Co., Daejeon, Korea) following the manufacturer's instructions. The reaction was performed under the following conditions: a pre-denaturation step at $95^{\circ} \mathrm{C}$ for 5 min ; denaturation at $95^{\circ} \mathrm{C}$ for $60 \mathrm{~s} ; 30$ amplification cycles, including annealing at $60^{\circ} \mathrm{C}$ for 45 s , and elongation at $72^{\circ} \mathrm{C}$ for 120 s ; and a final elongation at $72^{\circ} \mathrm{C}$ for 5 min .

Results

Whole genome re-sequencing and mapping to discover the transgenic position

The transgenic GM rice site, PJKS131-2, was detected by performing whole genome re-sequencing using callus tissue. Genomic DNA libraries were constructed with an average 500 bp and both ends were read with 150 bp paired-end sequencing methods. A total length of raw sequencing reads were 29.3 Gb (~ 194.9 million reads), which showed $\sim 72 \times$ coverage in the total read length (Table 1). Following quality control processing, reads with average phred scores ≥ 30 were estimated at $\sim 71.5 \%$ (Table 1).

The types of mapped reads were classified by alignment of all NGS reads to the rice reference genome and transgenic vector sequences. Fig. 2 shows construction of the pJKS131 transgenic vector. Reads were aligned on the cloning vector positions $8,500 \mathrm{bp}$ to $10,500 \mathrm{bp}$, similar to transgenic insert locations. Detailed mapping strategies were described in the Methods. The transgene insertion site was identified by classifying reads where one end matched the host genome

Fig. 3. Polymerase chain reaction validation of transgenic site.
and the other end matched the vector sequences (i.e., types B, D, and E) mapped back to the rice chromosome and known vector sequences. Eleven pairs of reads were identified on rice chromosome including chromosome 4. The total mapped reads described above were compatible with the transgenic vector backbone sequences.

PCR validation of mapping prediction

Thirteen PCR primers designed based on mapping direction validated the mapping results of 10 transgenic insert candidates. PCR results confirmed the target EGF sequence was successfully inserted on rice chromosome 4 (Figs. 3 and 4). The remaining reads were concluded to be artifacts, because all matches were not detected with PCR.

Discussion

Recent developments in NGS methods and accompanying bioinformatics tools have paved the way for ongoing genomics research widely used in the agricultural biotechnology field. Consequently, several studies reported new

GAAGTACTCGCCGATAGTGGAAACCGACGCCCCAGCACTCGTCCGAGGGCAAAGAAATAGAGTAGATGCCGACCGGGATCTGTCG ATCGACAAGCTCGAGTTTCTCCATAATAATGTGTGAGTAGTTCCCAGATAAGGGAATTAGGGTTCCTATAGGGTTTCGCTCATGTGT TGAGCATATAAGAAACCCTTAGTATGTGATGCAAGTAAACAATTATGGATTCTACTTATGTTTCTTTTCCTTTTTCTGACTTGGGTTGCAGG TATGAGAAGAGGCATTCCAACATTCCGGCTCACGTCTCCCCATGCTTCCGTGTCAAGGAAGGTGACCATGTCATCATTGGCCAGTGCAGGT AAAACTTAACTCCCATACCTTAGTTTTTGACTCCTTAGAATCATCTTAAATAACAGAGGTGCTATTAGTTCAAACATTATCAGTTCACCCAGC TAGTACTATGAGATTTGGTTGCTGAAGTACAATTTCTGCATTTTCAACAGGCCGCTGTCGAAAACTGTGAGGTTCAACGTCCTGAAGGTCAT CCCAGCTGGATCCACCGGCGGCAGCGGCGGCAAGAAGGCCTTCACCG

Fig. 4. Transgenic position of epidermal growth factor (EGF) locus on the rice chromosome 4 and polymerase chain reaction (PCR) test to identify T-DNA junction sequence. (A) The ECF is inserted on the position $31,104,341$ of the chromosome 4. (B) The bold with underline is T-DNA sequence of the vector $2,026-2,223$ bp and the next bases is rice transgenic locus chromosome 4 (3110734131107690) in the fragment amplified by PCR test primer1 (5' TACCTGCATGCTGCGGTGAAG 3^{\prime}) and primer2 (5'AGGGCTGTGTAGAAGTACTCGC 3^{\prime}).
approaches in GM crop safety assessment using NGS platforms [10-12]. In our study, we investigated EGF inserted GM rice events using NGS technology and bioinformatics to test the potential uses of this new approach in molecular assessment of transgenic organisms.

Results were successful in differentiating NGS read types using in silico analyses from GM rice, PJKS131-2 and hypothetically, the outcome was acceptable in terms of read classification. However, as a validation step, we experienced unexpected problems. Consistent with mapping and aligning data, we considered all possible transgenic insertion directions on the rice chromosomes and designed PCR primers based on loci information. Among the primers, except for locus specific primers on chromosome 4, results showed all matches were mismatches, which was caused by computational errors derived from analogous sequences between the rice genome and the transgenic vector. Therefore, we concluded it is essential to develop more accurate algorithms based on the transformation vector.

In addition, it is important to note our experimental sample was collected from rice callus tissues, with Agrobacterium co-incubation and a plant cell suspension culture system. Transgenic plant cell suspension culture system exhibits several advantages, including a low microorganism risk and chemical contamination, simple cell culture methods, economical facilities, and stable productivity. However, it is difficult to obtain pure genomic DNA of the host plant without plasmid DNA mixing using the plant cell culture method. We eliminated NGS raw reads mapped only against vector DNA (type C), however if raw reads contained too many vector backbone sequences, problems in further
bioinformatics analyses would still occur. Further studies are required with appropriate controls of GM plants in cell culture environments.

In the present study, we completed a proof-of-concept experiment to examine the molecular characterization of a recombinant-protein produced GM rice event using NGS methods. New approaches have recently been reported to assess the development and release of GM crops, however these techniques are not popularized in the field of GM risk assessment. However, previous studies in other disciplines have successfully established NGS, but for practical reasons, it has not been easy to apply this new method for testing GMOs. NGS strategies largely depend on sample quality, amount of data, and subsequent bioinformatics analyses. Therefore, it is critical proper guidelines to discovery transgenic site by NGS data matched and PCR test in the GMOs established and required.

Supplementary material

Supplementary data including one figure can be found with this article online at http://www.genominfo.org/src/ sm/gni-13-81-s001.pdf.

Acknowledgments

We thank members of bioinformatics team of National Instrumentation Center for Environmental management in Seoul National University. This work was supported by Next-Generation BioGreen21 program (PJ01131301), Rural Development Administration of the Korean government.

References

1. Sabalza M, Christou P, Capell T. Recombinant plant-derived pharmaceutical proteins: current technical and economic bottlenecks. Biotechnol Lett 2014;36:2367-2379.
2. Schürch C, Blum P, Zülli F. Potential of plant cells in culture for cosmetic application. Phytochem Rev 2008;7:599-605.
3. Cohen SN, Chang AC, Boyer HW, Helling RB. Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci U S A 1973;70:3240-3244.
4. European Parliament. Commission Implementing Regulation (EC) No 1829/2003 of the European Parliament and of the Council of 22 September 2003 on genetically modified food and feed. European Union Legislation. OJ L 268, 1-23. 2003.
5. European Parliament. REGULATION (EC) No 1830/2003 OF THE EUROPEAN PARLIAMENT AND OF THE COUNCIL of 22 September 2003 concerning the traceability and labelling of genetically modified organisms and the traceability of food and feed products produced from genetically modified organisms and amending Directive 2001/18/EC. European Union Legislation. OJ L 268, 24-28. 2003.
6. European Parliament. Commission Implementing Regulation (EU) No 503/2013 of 3 April 2013 on applications for authorisation of genetically modified food and feed in accordance with Regulation (EC) No 1829/2003 of the European Parliament and of the Council and amending Commission Regulations (EC) No 641/2004 and (EC) No 1981/2006. European Union Legislation. OJ L 157, 1-48. 2013.
7. Food and Agricultural Organization of the United Nations (FAO). Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. Rep. No.

CAC/GL 45-2003. Rome: FAO, 2003.
8. Food and Agricultural Organization of the United Nations (FAO). Guideline for the conduct of food safety assessment of foods derived from recombinant-DNA plants. Rep. No. CAC/GL. 68-2008. Rome: FAO, 2003.
9. Yang L, Wang C, Holst-Jensen A, Morisset D, Lin Y, Zhang D. Characterization of GM events by insert knowledge adapted re-sequencing approaches. Sci Rep 2013;3:2839.
10. Pauwels K, De Keersmaecker SC, De Schrijver A, du Jardin P, Roosens NH, Herman P. Next-generation sequencing as a tool for the molecular characterisation and risk assessment of genetically modified plants: added value or not? Trends Food Sci Technol 2015;45:319-326.
11. Kovalic D, Garnaat C, Guo L, Yan Y, Groat J, Silvanovich A, et al. The use of next generation sequencing and junction sequence analysis bioinformatics to achieve molecular characterization of crops improved through modern biotechnology. Plant Genome 2012;5:149-163.
12. Wahler D, Schauser L, Bendiek J, Grohmann L. Next-generation sequencing as a tool for detailed molecular characterisation of genomic insertions and flanking regions in genetically modified plants: a pilot study using a rice event unauthorised in the EU. Food Anal Methods 2013;6:1718-1727.
13. Chan MT, Chang HH, Ho SL, Tong WF, Yu SM. Agrobacte-rium-mediated production of transgenic rice plants expressing a chimeric alpha-amylase promoter/beta-glucuronidase gene. Plant Mol Biol 1993;22:491-506.
14. Goodstein DM, Shu S, Howson R, Neupane R, Hayes RD, Fazo J, et al. Phytozome: a comparative platform for green plant genomics. Nucleic Acids Res 2012;40:D1178-D1186.

SUPPLEMENTARY INFORMATION

Efficiency to Discovery Transgenic Loci in GM Rice Using Next Generation Sequencing Whole Genome Re-sequencing

Doori Park ${ }^{1}$, Dongin Kim ${ }^{2}$, Green Jang ${ }^{2}$, Jongsung Lim ${ }^{2}$, Yun-Ji Shin ${ }^{3}$, Jina Kim ${ }^{3}$, Mi-Seong Seo ${ }^{3}$, Su-Hyun Park ${ }^{4}$, Ju-Kon Kim ${ }^{4}$, Tae-Ho Kwon ${ }^{3 *}$, Ik-Young Choi ${ }^{1 * *}$
${ }^{1}$ Institute of Green Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea, ${ }^{2}$ National Instrumentation Center for Environmental Management, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea, ${ }^{3}$ Natural Bio-Materials Inc., Wanju 55322, Korea,
${ }^{4}$ Crop Biotech Institute, Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea

```
* pJKS131 vector sequence
1060-2085 : HPTII
2376-2401 : LB T-DNA
8634-8661 : RB T-DNA
8907-9938 : RAmy3D promoter
9945-9965 : Hwang`s 5`UTR
9966-10040 : RAmy3D signal peptide
10041-10204 : EGF mature peptide
10211-10519 : RAmy3D 3`UTR
```

10	20	30	40	50	60
GTAATCATGG	TCATAGCTGT	TTCCTGTGTG	AAATTGTTAT	CCGCTCACAA	TTCCACACAA
70	80	90	100	110	120
CATACGAGCC	GGAAGCATAA	AGTGTAAAGC	CTGGGGTGCC	TAATGAGTGA	GCTAACTCAC

$130 \begin{array}{llllll}140 & 150 & 160 & 170 & 180\end{array}$ ATTAATTGCG TTGCGCTCAC TGCCCGCTTT CCAGTCGGGA AACCTGTCGT GCCAGCTGCA

190	200	210	220	230

$250 \quad 260 \quad 270 \quad 280 \quad 290 \quad 300$ AACATGGTGG AGCACGACAC TCTCGTCTAC TCCAAGAATA TCAAAGATAC AGTCTCAGAA
$\begin{array}{llllll}310 & 320 & 330 & 340 & 350 & 360\end{array}$ GACCAAAGGG CTATTGAGAC TTTTCAACAA AGGGTAATAT CGGGAAACCT CCTCGGATTC

370	380	390	400	410	420
CATTGCCCAG	CTATCTGTCA	CTTCATCAAA	AGGACAGTAG	AAAAGGAAGG	TGGCACCTAC

$430440450 \quad 460 \quad 470 \quad 480$ AAATGCCATC ATTGCGATAA AGGAAAGGCT ATCGTTCAAG ATGCCTCTGC CGACAGTGGT
$490 \quad 500 \quad 510 \quad 520 \quad 530 \quad 540$ CCCAAAGATG GACCCCCACC CACGAGGAGC ATCGTGGAAA AAGAAGACGT TCCAACCACG
$550 \quad 560 \quad 570 \quad 580 \quad 590 \quad 600$ TCTTCAAAGC AAGTGGATTG ATGTGATAAC ATGGTGGAGC ACGACACTCT CGTCTACTCC
$610620 \quad 630 \quad 640 \quad 650 \quad 660$ AAGAATATCA AAGATACAGT CTCAGAAGAC CAAAGGGCTA TTGAGACTTT TCAACAAAGG
$\begin{array}{llllll}670 & 680 & 690 & 700 & 710 & 720\end{array}$
GTAATATCGG GAAACCTCCT CGGATTCCAT TGCCCAGCTA TCTGTCACTT CATCAAAAGG
$\begin{array}{llllll}730 & 740 & 750 & 760 & 770 & 780\end{array}$
ACAGTAGAAA AGGAAGGTGG CACCTACAAA TGCCATCATT GCGATAAAGG AAAGGCTATC
$\begin{array}{llllll}790 & 800 & 810 & 820 & 830 & 840\end{array}$ GTTCAAGATG CCTCTGCCGA CAGTGGTCCC AAAGATGGAC CCCCACCCAC GAGGAGCATC

850	860	870	880	890	900

$910 \quad 920 \quad 930 \quad 940 \quad 950 \quad 960$ ACTGACGTAA GGGATGACGC ACAATCCCAC TATCCTTCGC AAGACCTTCC TCTATATAAG
$\begin{array}{llllll}970 & 980 & 990 & 1000 & 1010 & 1020\end{array}$
GAAGTTCATT TCATTTGGAG AGGACACGCT GAAATCACCA GTCTCTCTCT ACAAATCTAT
$10301040 \quad 1050 \quad 1060 \quad 1070 \quad 1080$ CTCTCTCGAG CTTTCGCAGA TCCCGGGGGG CAATGAGATA TGAAAAAGCC TGAACTCACC
$10901100 \quad 1110 \quad 1120 \quad 1130 \quad 1140$ GCGACGTCTG TCGAGAAGTT TCTGATCGAA AAGTTCGACA GCGTCTCCGA CCTGATGCAG
$11501160 \quad 1170 \quad 1180 \quad 1190 \quad 1200$ CTCTCGGAGG GCGAAGAATC TCGTGCTTTC AGCTTCGATG TAGGAGGGCG TGGATATGTC
$\begin{array}{llllll}1210 & 1220 & 1230 & 1240 & 1250 & 1260\end{array}$ CTGCGGGTAA ATAGCTGCGC CGATGGTTTC TACAAAGATC GTTATGTTTA TCGGCACTTT
$\begin{array}{llllll}1270 & 1280 & 1290 & 1300 & 1310 & 1320\end{array}$ GCATCGGCCG CGCTCCCGAT TCCGGAAGTG CTTGACATTG GGGAGTTTAG CGAGAGCCTG
$13301340 \quad 1350 \quad 1360 \quad 1370 \quad 1380$ ACCTATTGCA TCTCCCGCCG TGCACAGGGT GTCACGTTGC AAGACCTGCC TGAAACCGAA
$1390 \quad 1400 \quad 1410 \quad 1420 \quad 1430 \quad 1440$ CTGCCCGCTG TTCTACAACC GGTCGCGGAG GCTATGGATG CGATCGCTGC GGCCGATCTT
$\begin{array}{llllll}1450 & 1460 & 1470 & 1480 & 1490 & 1500\end{array}$ AGCCAGACGA GCGGGTTCGG CCCATTCGGA CCGCAAGGAA TCGGTCAATA CACTACATGG
$\begin{array}{llllll}1510 & 1520 & 1530 & 1540 & 1550 & 1560\end{array}$ CGTGATTTCA TATGCGCGAT TGCTGATCCC CATGTGTATC ACTGGCAAAC TGTGATGGAC
$\begin{array}{llllll}1570 & 1580 & 1590 & 1600 & 1610 & 1620\end{array}$
GACACCGTCA GTGCGTCCGT CGCGCAGGCT CTCGATGAGC TGATGCTTTG GGCCGAGGAC
$\begin{array}{llllll}1630 & 1640 & 1650 & 1660 & 1670 & 1680\end{array}$
TGCCCCGAAG TCCGGCACCT CGTGCACGCG GATTTCGGCT CCAACAATGT CCTGACGGAC
$\begin{array}{llllll}1690 & 1700 & 1710 & 1720 & 1730 & 1740\end{array}$
AATGGCCGCA TAACAGCGGT CATTGACTGG AGCGAGGCGA TGTTCGGGGA TTCCCAATAC
$\begin{array}{llllll}1750 & 1760 & 1770 & 1780 & 1790 & 1800\end{array}$
GAGGTCGCCA ACATCTTCTT CTGGAGGCCG TGGTTGGCTT GTATGGAGCA GCAGACGCGC

1810	1820	1830	1840	1850	1860

$18701880 \quad 1890 \quad 1900 \quad 1910 \quad 1920$ CGCATTGGTC TTGACCAACT CTATCAGAGC TTGGTTGACG GCAATTTCGA TGATGCAGCT
$19301940 \begin{array}{llllll}1940 & 1950 & 1960 & 1970 & 1980\end{array}$ TGGGCGCAGG GTCGATGCGA CGCAATCGTC CGATCCGGAG CCGGGACTGT CGGGCGTACA
$199020002010 \quad 2020 \quad 2030 \quad 2040$ CAAATCGCCC GCAGAAGCGC GGCCGTCTGG ACCGATGGCT GTGTAGAAGT ACTCGCCGAT

20502060207020902100 AGTGGAAACC GACGCCCCAG CACTCGTCCG AGGGCAAAGA AATAGAGTAG ATGCCGACCG
$\begin{array}{lllll}2110 & 2120 & 2130 & 2140 & 2150\end{array}$ GATCTGTCGA TCGACAAGCT CGAGTTTCTC CATAATAATG TGTGAGTAGT TCCCAGATAA
$2170 \quad 2180 \quad 2190 \quad 2200 \quad 2210 \quad 2220$ GGGAATTAGG GTTCCTATAG GGTTTCGCTC ATGTGTTGAG CATATAAGAA ACCCTTAGTA
$2230 \quad 2240 \quad 2250 \quad 2260 \quad 2270 \quad 2280$
TGTATTTGTA TTTGTAAAAT ACTTCTATCA ATAAAATTTC TAATTCCTAA AACCAAAATC
$2290 \quad 2300 \quad 2310 \quad 2320 \quad 2330 \quad 2340$ CAGTACTAAA ATCCAGATCC CCCGAATTAA TTCGGCGTTA ATTCAGTACA TTAAAAACGT
$2350 \quad 2360 \quad 2370 \quad 2380 \quad 2390 \quad 2400$ CCGCAATGTG TTATTAAGTT GTCTAAGCGT CAATTTGTTT ACACCACAAT ATATCCTGCC
$\begin{array}{lllll}2410 & 2420 & 2430 & 2440 & 2450\end{array}$ ACCAGCCAGC CAACAGCTCC CCGACCGGCA GCTCGGCACA AAATCACCAC TCGATACAGG
$2470 \quad 2480 \quad 2490 \quad 2500 \quad 2510 \quad 2520$
CAGCCCATCA GTCCGGGACG GCGTCAGCGG GAGAGCCGTT GTAAGGCGGC AGACTTTGCT
$2530 \quad 2540 \quad 2550 \quad 2560 \quad 2570 \quad 2580$
CATGTTACCG ATGCTATTCG GAAGAACGGC AACTAAGCTG CCGGGTTTGA AACACGGATG
$2590 \quad 2600 \quad 2610 \quad 2620 \quad 2630 \quad 2640$ ATCTCGCGGA GGGTAGCATG TTGATTGTAA CGATGACAGA GCGTTGCTGC CTGTGATCAC
$2650 \quad 2660 \quad 2670 \quad 2680 \quad 2690 \quad 2700$
CGCGGTTTCA AAATCGGCTC CGTCGATACT ATGTTATACG CCAACTTTGA AAACAACTTT

2710	2720	2730	2740	2750

2770	2780	2790	2800	2810	2820
GTCTTGTTAT	AATTAGCTTC	TTGGGGTATC	TTTAAATACT	GTAGAAAAGA	GGAAGGAAAT
2830	2840				
		2850	2860	2870	2880
AATAAATGGC	TAAAATGAGA	ATATCACCGG	AATTGAAAAA	ACTGATCGAA	AAATACCGCT

$2890 \quad 2900 \quad 2910 \quad 2920 \quad 2930 \quad 2940$
GCGTAAAAGA TACGGAAGGA ATGTCTCCTG CTAAGGTATA TAAGCTGGTG GGAGAAAATG

29502960297029903000 AAAACCTATA TTTAAAAATG ACGGACAGCC GGTATAAAGG GACCACCTAT GATGTGGAAC
$301030203030 \quad 3040 \quad 3050 \quad 3060$ GGGAAAAGGA CATGATGCTA TGGCTGGAAG GAAAGCTGCC TGTTCCAAAG GTCCTGCACT
$\begin{array}{llllll}3070 & 3080 & 3090 & 3100 & 3110 & 3120\end{array}$ TTGAACGGCA TGATGGCTGG AGCAATCTGC TCATGAGTGA GGCCGATGGC GTCCTTTGCT
$\begin{array}{llllll}3130 & 3140 & 3150 & 3160 & 3170 & 3180\end{array}$ CGGAAGAGTA TGAAGATGAA CAAAGCCCTG AAAAGATTAT CGAGCTGTAT GCGGAGTGCA
$319032003210 \quad 3220 \quad 3230 \quad 3240$ TCAGGCTCTT TCACTCCATC GACATATCGG ATTGTCCCTA TACGAATAGC TTAGACAGCC
$3250326032703280 \quad 3290 \quad 3300$ GCTTAGCCGA ATTGGATTAC TTACTGAATA ACGATCTGGC CGATGTGGAT TGCGAAAACT
$3310333203330 \quad 3340 \quad 3350 \quad 3360$ GGGAAGAAGA CACTCCATTT AAAGATCCGC GCGAGCTGTA TGATTTTTTA AAGACGGAAA

3370	3380	3390	3400	3410	3420

$343034403450 \quad 3460 \quad 3470 \quad 3480$ AAGATGGCAA AGTAAGTGGC TTTATTGATC TTGGGAGAAG CGGCAGGGCG GACAAGTGGT
$\begin{array}{llllll}3490 & 3500 & 3510 & 3520 & 3530 & 3540\end{array}$
ATGACATTGC CTTCTGCGTC CGGTCGATCA GGGAGGATAT CGGGGAAGAA CAGTATGTCG

3550356035703580
AGCTATTTTT TGACTTACTG GGGATCAAGC CTGATTGGGA GAAAATAAAA TATTATATTT
$361036203630 \quad 3640 \quad 3650 \quad 3660$
TACTGGATGA ATTGTTTTAG TACCTAGAAT GCATGACCAA AATCCCTTAA CGTGAGTTTT
$\begin{array}{llllll}3670 & 3680 & 3690 & 3700 & 3710 & 3720\end{array}$
CGTTCCACTG AGCGTCAGAC CCCGTAGAAA AGATCAAAGG ATCTTCTTGA GATCCTTTTT
$\begin{array}{llllll}3730 & 3740 & 3750 & 3760 & 3770 & 3780\end{array}$ TTCTGCGCGT AATCTGCTGC TTGCAAACAA AAAAACCACC GCTACCAGCG GTGGTTTGTT $\begin{array}{llllll}3790 & 3800 & 3810 & 3820 & 3830 & 3840\end{array}$ TGCCGGATCA AGAGCTACCA ACTCTTTTTC CGAAGGTAAC TGGCTTCAGC AGAGCGCAGA $\begin{array}{llllll}3850 & 3860 & 3870 & 3880 & 3890 & 3900\end{array}$ TACCAAATAC TGTCCTTCTA GTGTAGCCGT AGTTAGGCCA CCACTTCAAG AACTCTGTAG 3910392039303950 CACCGCCTAC ATACCTCGCT CTGCTAATCC TGTTACCAGT GGCTGCTGCC AGTGGCGATA
$39703980 \quad 3990 \quad 4000 \quad 4010 \quad 4020$ AGTCGTGTCT TACCGGGTTG GACTCAAGAC GATAGTTACC GGATAAGGCG CAGCGGTCGG 40304040405040604070 GCTGAACGGG GGGTTCGTGC ACACAGCCCA GCTTGGAGCG AACGACCTAC ACCGAACTGA $4090 \quad 4100 \quad 4110 \quad 4120 \quad 4130 \quad 4140$ GATACCTACA GCGTGAGCTA TGAGAAAGCG CCACGCTTCC CGAAGGGAGA AAGGCGGACA $\begin{array}{llllll}4150 & 4160 & 4170 & 4180 & 4190 & 4200\end{array}$ GGTATCCGGT AAGCGGCAGG GTCGGAACAG GAGAGCGCAC GAGGGAGCTT CCAGGGGGAA $4210 \quad 4220 \quad 4230 \quad 4240 \quad 4250 \quad 4260$ ACGCCTGGTA TCTTTATAGT CCTGTCGGGT TTCGCCACCT CTGACTTGAG CGTCGATTTT $42704280 \quad 4290 \quad 4300 \quad 4310 \quad 4320$ TGTGATGCTC GTCAGGGGGG CGGAGCCTAT GGAAAAACGC CAGCAACGCG GCCTTTTTAC $43304340 \quad 4350 \quad 4360 \quad 4370 \quad 4380$ GGTTCCTGGC CTTTTGCTGG CCTTTTGCTC ACATGTTCTT TCCTGCGTTA TCCCCTGATT $4390 \quad 4400 \quad 4410 \quad 4420 \quad 4430 \quad 4440$ CTGTGGATAA CCGTATTACC GCCTTTGAGT GAGCTGATAC CGCTCGCCGC AGCCGAACGA $4450 \quad 4460 \quad 4470 \quad 4480 \quad 4490 \quad 4500$ CCGAGCGCAG CGAGTCAGTG AGCGAGGAAG CGGAAGAGCG CCTGATGCGG TATTTTCTCC
$4510 \quad 4520 \quad 4530 \quad 4540 \quad 4550 \quad 4560$ TTACGCATCT GTGCGGTATT TCACACCGCA TATGGTGCAC TCTCAGTACA ATCTGCTCTG $4570 \quad 4580 \quad 4590 \quad 4600 \quad 4610 \quad 4620$ ATGCCGCATA GTTAAGCCAG TATACACTCC GCTATCGCTA CGTGACTGGG TCATGGCTGC
$46304640 \quad 4650 \quad 4660 \quad 4670 \quad 4680$ GCCCCGACAC CCGCCAACAC CCGCTGACGC GCCCTGACGG GCTTGTCTGC TCCCGGCATC
$4690 \quad 4700 \quad 4710 \quad 4720 \quad 4730 \quad 4740$ CGCTTACAGA CAAGCTGTGA CCGTCTCCGG GAGCTGCATG TGTCAGAGGT TTTCACCGTC
$\begin{array}{llllll}4750 & 4760 & 4770 & 4780 & 4790 & 4800\end{array}$ ATCACCGAAA CGCGCGAGGC AGGGTGCCTT GATGTGGGCG CCGGCGGTCG AGTGGCGACG
$4810 \quad 4820 \quad 4830 \quad 4840 \quad 4850 \quad 4860$ GCGCGGCTTG TCCGCGCCCT GGTAGATTGC CTGGCCGTAG GCCAGCCATT TTTGAGCGGC
$4870 \quad 4880 \quad 4890 \quad 4900 \quad 4910 \quad 4920$ CAGCGGCCGC GATAGGCCGA CGCGAAGCGG CGGGGCGTAG GGAGCGCAGC GACCGAAGGG
$49304940 \quad 4950 \quad 4960 \quad 4970 \quad 4980$ TAGGCGCTTT TTGCAGCTCT TCGGCTGTGC GCTGGCCAGA CAGTTATGCA CAGGCCAGGC
$499050005010 \quad 5020 \quad 5030 \quad 5040$ GGGTTTTAAG AGTTTTAATA AGTTTTAAAG AGTTTTAGGC GGAAAAATCG CCTTTTTTCT
$5050 \quad 5060 \quad 5070 \quad 5080 \quad 5090 \quad 5100$ CTTTTATATC AGTCACTTAC ATGTGTGACC GGTTCCCAAT GTACGGCTTT GGGTTCCCAA $\begin{array}{llllll}5110 & 5120 & 5130 & 5140 & 5150 & 5160\end{array}$ TGTACGGGTT CCGGTTCCCA ATGTACGGCT TTGGGTTCCC AATGTACGTG CTATCCACAG
$5170 \quad 5180 \quad 5190 \quad 5200 \quad 5210 \quad 5220$ GAAAGAGACC TTTTCGACCT TTTTCCCCTG CTAGGGCAAT TTGCCCTAGC ATCTGCTCCG
$523052405250 \quad 5260 \quad 5270 \quad 5280$ TACATTAGGA ACCGGCGGAT GCTTCGCCCT CGATCAGGTT GCGGTAGCGC ATGACTAGGA $5290 \quad 5300 \quad 5310 \quad 5320 \quad 5330 \quad 5340$ TCGGGCCAGC CTGCCCCGCC TCCTCCTTCA AATCGTACTC CGGCAGGTCA TTTGACCCGA $5350 \quad 5360 \quad 5370 \quad 5380 \quad 5390 \quad 5400$ TCAGCTTGCG CACGGTGAAA CAGAACTTCT TGAACTCTCC GGCGCTGCCA CTGCGTTCGT $\begin{array}{llllll}5410 & 5420 & 5430 & 5440 & 5450 & 5460\end{array}$ AGATCGTCTT GAACAACCAT CTGGCTTCTG CCTTGCCTGC GGCGCGGCGT GCCAGGCGGT

| 5470 | 5480 | 5490 | 5500 | 5510 | 5520 |
| :--- | ---: | ---: | ---: | ---: | ---: | 5530555055505050 CCGGGTTCTT GCCTTCTGTG ATCTCGCGGT ACATCCAATC AGCTAGCTCG ATCTCGATGT

$5590 \quad 5600 \quad 5610 \quad 5620 \quad 5630 \quad 5640$ ACTCCGGCCG CCCGGTTTCG CTCTTTACGA TCTTGTAGCG GCTAATCAAG GCTTCACCCT
$5650 \quad 5660 \quad 5670 \quad 5680 \quad 5690 \quad 5700$ CGGATACCGT CACCAGGCGG CCGTTCTTGG CCTTCTTCGT ACGCTGCATG GCAACGTGCG
$5710 \quad 5720 \quad 5730 \quad 5740 \quad 5750 \quad 5760$ TGGTGTTTAA CCGAATGCAG GTTTCTACCA GGTCGTCTTT CTGCTTTCCG CCATCGGCTC
$5770 \quad 5780 \quad 5790 \quad 5800 \quad 5810 \quad 5820$ GCCGGCAGAA CTTGAGTACG TCCGCAACGT GTGGACGGAA CACGCGGCCG GGCTTGTCTC
$583058405850 \quad 5860 \quad 5870 \quad 5880$ CCTTCCCTTC CCGGTATCGG TTCATGGATT CGGTTAGATG GGAAACCGCC ATCAGTACCA
$5890 \quad 5900 \quad 5910 \quad 5920 \quad 5930 \quad 5940$ GGTCGTAATC CCACACACTG GCCATGCCGG CCGGCCCTGC GGAAACCTCT ACGTGCCCGT
$595059605970 \quad 5990 \quad 6000$ CTGGAAGCTC GTAGCGGATC ACCTCGCCAG CTCGTCGGTC ACGCTTCGAC AGACGGAAAA
$6010602060306050 \quad 6060$ CGGCCACGTC CATGATGCTG CGACTATCGC GGGTGCCCAC GTCATAGAGC ATCGGAACGA
$60706080 \quad 6090 \quad 6100 \quad 6110 \quad 6120$ AAAAATCTGG TTGCTCGTCG CCCTTGGGCG GCTTCCTAAT CGACGGCGCA CCGGCTGCCG
$6130 \quad 6140 \quad 6150 \quad 6160 \quad 6170 \quad 6180$ GCGGTTGCCG GGATTCTTTG CGGATTCGAT CAGCGGCCGC TTGCCACGAT TCACCGGGGC
$619062006210 \quad 6220 \quad 6230 \quad 6240$ GTGCTTCTGC CTCGATGCGT TGCCGCTGGG CGGCCTGCGC GGCCTTCAAC TTCTCCACCA

6250626062706290 GGTCATCACC CAGCGCCGCG CCGATTTGTA CCGGGCCGGA TGGTTTGCGA CCGTCACGCC
$6310632063306340 \quad 6350$ GATTCCTCGG GCTTGGGGGT TCCAGTGCCA TTGCAGGGCC GGCAGACAAC CCAGCCGCTT $637063806390 \quad 6400 \quad 6410 \quad 6420$ ACGCCTGGCC AACCGCCCGT TCCTCCACAC ATGGGGCATT CCACGGCGTC GGTGCCTGGT
$6430644064506460 \quad 6470 \quad 6480$ TGTTCTTGAT TTTCCATGCC GCCTCCTTTA GCCGCTAAAA TTCATCTACT CATTTATTCA
$6490650065106520 \quad 6530 \quad 6540$ TTTGCTCATT TACTCTGGTA GCTGCGCGAT GTATTCAGAT AGCAGCTCGG TAATGGTCTT
$6550656065706590 \quad 6600$ GCCTTGGCGT ACCGCGTACA TCTTCAGCTT GGTGTGATCC TCCGCCGGCA ACTGAAAGTT $\begin{array}{rrrrrr}6610 & 6620 & 6630 & 6640 & 6650 & 6660 \\ \text { GACCCGCTTC } & \text { ATGGCTGGCG } & \text { TGTCTGCCAG } & \text { GCTGGCCAAC } & \text { GTTGCAGCCT } & \text { TGCTGCTGCG }\end{array}$
$6670668067006710 \quad 6720$ TGCGCTCGGA CGGCCGGCAC TTAGCGTGTT TGTGCTTTTG CTCATTTTCT CTTTACCTCA 673067670670760670 TTAACTCAAA TGAGTTTTGA TTTAATTTCA GCGGCCAGCG CCTGGACCTC GCGGGCAGCG
$679068006810 \quad 6820 \quad 6830 \quad 6840$ TCGCCCTCGG GTTCTGATTC AAGAACGGTT GTGCCGGCGG CGGCAGTGCC TGGGTAGCTC
$6850686068706890 \quad 6900$ ACGCGCTGCG TGATACGGGA CTCAAGAATG GGCAGCTCGT ACCCGGCCAG CGCCTCGGCA

6910	6920	6930	6940	6950	6960

$6970 \quad 6980 \quad 6990 \quad 7000 \quad 7010 \quad 7020$ CTTCCATCCG TGACCTCAAT GCGCTGCTTA ACCAGCTCCA CCAGGTCGGC GGTGGCCCAT $\begin{array}{llllll}7030 & 7040 & 7050 & 7060 & 7070 & 7080\end{array}$ ATGTCGTAAG GGCTTGGCTG CACCGGAATC AGCACGAAGT CGGCTGCCTT GATCGCGGAC
$\begin{array}{llllll}7090 & 7100 & 7110 & 7120 & 7130 & 7140\end{array}$ ACAGCCAAGT CCGCCGCCTG GGGCGCTCCG TCGATCACTA CGAAGTCGCG CCGGCCGATG $\begin{array}{llllll}7150 & 7160 & 7170 & 7180 & 7190 & 7200\end{array}$ GCCTTCACGT CGCGGTCAAT CGTCGGGCGG TCGATGCCGA CAACGGTTAG CGGTTGATCT

| 7210 | 7220 | 7230 | 7240 | 7250 | 7260 |
| :--- | :--- | :--- | :--- | :--- | :--- | TCCCGCACGG CCGCCCAATC GCGGGCACTG CCCTGGGGAT CGGAATCGAC TAACAGAACA $\begin{array}{llllll}7270 & 7280 & 7290 & 7300 & 7310 & 7320\end{array}$ TCGGCCCCGG CGAGTTGCAG GGCGCGGGCT AGATGGGTTG CGATGGTCGT CTTGCCTGAC $\begin{array}{llllll}7330 & 7340 & 7350 & 7360 & 7370 & 7380\end{array}$ CCGCCTTTCT GGTTAAGTAC AGCGATAACC TTCATGCGTT CCCCTTGCGT ATTTGTTTAT $\begin{array}{llllll}7390 & 7400 & 7410 & 7420 & 7430 & 7440\end{array}$ TTACTCATCG CATCATATAC GCAGCGACCG CATGACGCAA GCTGTTTTAC TCAAATACAC $\begin{array}{llllll}7450 & 7460 & 7470 & 7480 & 7490 & 7500\end{array}$ ATCACCTTTT TAGACGGCGG CGCTCGGTTT CTTCAGCGGC CAAGCTGGCC GGCCAGGCCG

$\begin{array}{llllll}7510 & 7520 & 7530 & 7540 & 7550 & 7560\end{array}$ CCAGCTTGGC ATCAGACAAA CCGGCCAGGA TTTCATGCAG CCGCACGGTT GAGACGTGCG $\begin{array}{llllll}7570 & 7580 & 7590 & 7600 & 7610 & 7620\end{array}$ CGGGCGGCTC GAACACGTAC CCGGCCGCGA TCATCTCCGC CTCGATCTCT TCGGTAATGA
$\begin{array}{llllll}7630 & 7640 & 7650 & 7660 & 7670 & 7680\end{array}$ AAAACGGTTC GTCCTGGCCG TCCTGGTGCG GTTTCATGCT TGTTCCTCTT GGCGTTCATT
$\begin{array}{llllll}7690 & 7700 & 7710 & 7720 & 7730 & 7740\end{array}$ CTCGGCGGCC GCCAGGGCGT CGGCCTCGGT CAATGCGTCC TCACGGAAGG CACCGCGCCG
$\begin{array}{llllll}7750 & 7760 & 7770 & 7780 & 7790 & 7800\end{array}$ CCTGGCCTCG GTGGGCGTCA CTTCCTCGCT GCGCTCAAGT GCGCGGTACA GGGTCGAGCG
$\begin{array}{llllll}7810 & 7820 & 7830 & 7840 & 7850 & 7860\end{array}$ ATGCACGCCA AGCAGTGCAG CCGCCTCTTT CACGGTGCGG CCTTCCTGGT CGATCAGCTC
$\begin{array}{llllll}7870 & 7880 & 7890 & 7900 & 7910 & 7920\end{array}$ GCGGGCGTGC GCGATCTGTG CCGGGGTGAG GGTAGGGCGG GGGCCAAACT TCACGCCTCG
$\begin{array}{llllll}7930 & 7940 & 7950 & 7960 & 7970 & 7980\end{array}$ GGCCTTGGCG GCCTCGCGCC CGCTCCGGGT GCGGTCGATG ATTAGGGAAC GCTCGAACTC
$\begin{array}{llllll}7990 & 8000 & 8010 & 8020 & 8030 & 8040\end{array}$ GGCAATGCCG GCGAACACGG TCAACACCAT GCGGCCGGCC GGCGTGGTGG TGTCGGCCCA
$805088060 \quad 8070 \quad 8080 \quad 8090 \quad 8100$ CGGCTCTGCC AGGCTACGCA GGCCCGCGCC GGCCTCCTGG ATGCGCTCGG CAATGTCCAG
$811081208130 \quad 8140 \quad 8150 \quad 8160$ TAGGTCGCGG GTGCTGCGGG CCAGGCGGTC TAGCCTGGTC ACTGTCACAA CGTCGCCAGG

8170	8180	8190	8200	8210	8220

$8230 \quad 8240 \quad 8250 \quad 8260 \quad 8270 \quad 8280$ CTCGGAAAAC AGCTTGGTGC AGCCGGCCGC GTGCAGTTCG GCCCGTTGGT TGGTCAAGTC
$82908300 \quad 8310 \quad 8320 \quad 8330 \quad 8340$ CTGGTCGTCG GTGCTGACGC GGGCATAGCC CAGCAGGCCA GCGGCGGCGC TCTTGTTCAT
$835083360 \quad 8370 \quad 8380 \quad 8390 \quad 8400$ GGCGTAATGT CTCCGGTTCT AGTCGCAAGT ATTCTACTTT ATGCGACTAA AACACGCGAC
$8410 \quad 8420 \quad 8430 \quad 8440 \quad 8450 \quad 8460$
AAGAAAACGC CAGGAAAAGG GCAGGGCGGC AGCCTGTCGC GTAACTTAGG ACTTGTGCGA

8470	8480	8490	8500	8510	8520
CATGTCGTTT TCAGAAGACG GCTGCACTGA ACGTCAGAAG CCGACTGCAC TATAGCAGCG					
8530	8540	8550	8560	8570	8580
GAGGGGTTGG ATCAAAGTAC TTTGATCCCG AGGGGAACCC TGTGGTTGGC ATGCACATAC					
8590	8600	8610	8620	8630	8640
AAATGGACGA ACGGATAAAC CTTTTCACGC CCTTTTAAAT ATCCGTTATT CTAATAAACG					
8650	8660	8670	8680	8690	8700
CTCTTTTCTC TTAGGTTTAC CCGCCAATAT ATCCTGTCAA ACACTGATAG TTTAAACTGA					
8710	8720	8730	8740	8750	8760

| 8770 | 8780 | 8790 | 8800 | 8810 | 8820 |
| :--- | :--- | :--- | :--- | :--- | :--- | CGCAACTGTT GGGAAGGGCG ATCGGTGCGG GCCTCTTCGC TATTACGCCA GCTGGCGAAA

8830	8840	8850	8860	8870
GGGGGATGTG	CTGCAAGGCG	ATTAAGTTGG	GTAACGCCAG	GGTTTTCCCA

$8890 \quad 8900 \quad 8910 \quad 8920 \quad 8930 \quad 8940$ TGTAAAACGA CGGCCAGTGC CAAGCTTGCA TGCGATCTTC AACCACCTGT GCTAGCTACT 8950898089808900 CCACTGCTCC ATAGGCAATC ATCAATCAGT AATCCGTTCT GAAAAGAAGA TATAGGTGTG $9010902090309050 \quad 9060$ CGCAATCAGG AACGTTCTAG TTCGTGCTAG AAATCAGCAG CTCCTAAGTT AGCATCTCGA $9070 \quad 9080 \quad 9090 \quad 9100 \quad 9110 \quad 9120$ tGAACTTAAA TGCTCGCTGC GGGCGTCCGG CGGAGATGAA GTTTGTGATA AACTTGGTCA

9130	9140	9150	9160	9170	9180
TGACATTCAT	ATATGTGCCT	GGTGTACGGA	GTAGTTCATC	AGCAAACATA	CACCTACTTC

$9190 \quad 9200 \quad 9210 \quad 9220 \quad 9230 \quad 9240$

TACCTTATCC ATTTGGATTG CTCATGGCGG CTTTGATATG GAATTTGTAA TGAACTTGGT 9250926092809290 TATGACTTAT GACATACTGA TACTCGTAAC ATTCATAGAT ACTGACATAA ATTCATCAAC $9310 \quad 9320 \quad 9330 \quad 9340 \quad 9350 \quad 9360$ TACAATAGAT GAGATGGCTA GTCTTAGTAG AACAGTAGTC TCTCTTTCCG GCTTGCTCCA $9370 \quad 9380 \quad 9390 \quad 9400 \quad 9410 \quad 9420$ TTGGCTGATG ACGATGAACA ACTCGGACTC ATTGATTCCA GCATTATCTG ATTCTCGCAT
$9430 \quad 9440 \quad 9450 \quad 9460 \quad 9470 \quad 9480$ TTCGAGGTCC GGATTAGGGT CTCACCGAGA TGTGGATAGA ATTGCCATGT CAGGAATTGA

9490	9500	9510	9520	9530	9540
AGGAGGACGA	GCCATATGTG	CATATACATG	ACGGGAGATC	AAGCGGCCAG	TCAAGAGGCT

$9550 \quad 9560 \quad 9570 \quad 9580 \quad 9590 \quad 9600$ AACTGCAACC CTATTATATA CGATCAGCCT GCTAGAACAC GTAGCACTGT CTTTTTTGTC
$9610 \quad 9620 \quad 9630 \quad 9640 \quad 9650 \quad 9660$ tGAACTCTGA AGATGAAAGG TTCAGAGAAA TGGCTCGCCT TATCCAAGCC GGCGATGGAT
$9670 \quad 9680 \quad 9690 \quad 9700 \quad 9710 \quad 9720$ GGAGGAGGAG GTAGCCGGCG CCCGCCTCAG GCAGTCGTCG CGATCACGCC GCCGCATCCC
$\begin{array}{llllll}9730 & 9740 & 9750 & 9760 & 9770 & 9780\end{array}$ GTCGCCTTGG AGACCGGGCC CCGACGCGGC CGACGCGGCG CCTACGTGGC CATGCTTTAT
$9790 \quad 9800 \quad 9810 \quad 9820 \quad 9830 \quad 9840$ TGCCTTATCC ATATCCACGC CATTTATTGT GGTCGTCTCT CCTGATCATT CTCATTCCCC
$9850 \quad 9860 \quad 9870 \quad 9880 \quad 9890 \quad 9900$ TGCCACGGTG ACCGTGCCCC CGGTGTTCTA TATATGCCCC CCGACGTCGA GGTCATTCGC
$9910 \quad 9920 \quad 9930 \quad 9940 \quad 9950$
CACGAACACA TCGATCATCC ATCATCTACA AGAGATCGTC TAGAATTATT ACATCAAAAC
$9970 \quad 9980 \quad 9990 \quad 10000 \quad 10010 \quad 10020$ AAAAGATGAA GAATACCAGC TCGTTGTGTT TGCTTCTCCT CGTGGTGCTT TGCTCACTAA
$1003010040 \quad 10050 \quad 10060 \quad 10070 \quad 10080$ CATGCAATTC GGGACAAGCA AATTCCGATT CCGAGTGTCC GCTCAGCCAC GACGGATACT
$\begin{array}{llllll}10090 & 10100 & 10110 & 10120 & 10130 & 10140\end{array}$ GCCTCCATGA TGGGGTCTGC ATGTACATTG AGGCCCTGGA CAAGTACGCG TGTAACTGCG
$\begin{array}{llllll}10150 & 10160 & 10170 & 10180 & 10190 & 10200\end{array}$ TGGTTGGCTA TATCGGCGAA AGGTGCCAGT ATCGGGACTT GAAGTGGTGG GAGCTTCGCT
$\begin{array}{llllll}10210 & 10220 & 10230 & 10240 & 10250 & 10260\end{array}$
GATAGGTACC GAGCTCGGGC TCAAGCCCTA AACTGAACGG GATAGTCATG CTCAAACCAG
$10270102801029010300 \quad 10310 \quad 10320$
TTTCTACACG GCAAGAATTT ACTGATTCTT ATACTTTTGC AGTCAATTAA ATTATGGTTT
$1033010340 \quad 10350 \quad 10360 \quad 10370 \quad 10380$
TTATATATGT AATTTTGTAT CCGATTGTAG CGTTCGAATA AGTAGGCAGG CTCTCTAGCC

10390	10400	10410	10420	10430	10440
TCTAGGTTAA TTGCGGGGCA TATGTAGCTT GCCAGTTAAT TGTGTTTGTA TCACGCAGTT					
10450	10460	10470	10480	10490	10500
TGTAACCGTT GGTGCAATAT ATAATGTCAG GTTCAGGATG CAGTAAAAAA TCATACTGCA					
10510	10520	10530	10540	10550	10560
CCGATCAGTG AGTTTTTATG AATTC.					

Supplementary Fig. 1. pJKS131 vector sequence to transfer the EGF to the rice genome.

[^0]: Received July 25, 2015; Revised August 24, 2015; Accepted August 24, 2015
 *Corresponding author: Tel: +82-63-223-4555, Fax: +82-63-223-4550, E-mail: thkwon@jbnu.ac.kr
 **Corresponding author: Tel: +82-33-339-5657, Fax: +82-33-339-5753, E-mail: choii@snu.ac.kr

