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Cornuside I promoted osteogenic
differentiation of bone mesenchymal stem
cells through PI3K/Akt signaling pathway
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Abstract

Background: Osteoporosis is a common disease closely associated with aging. In this study, we aimed to
investigate the role of Cornuside I in promoting osteogenic differentiation of bone mesenchymal stem cells
(BMSCs) and the potential mechanism.

Methods: BMSCs were isolated and treated with different concentrations of Cornuside I (0, 10, 30, 60 μM). Cell
proliferation was analyzed by Cell Counting Kit-8 (CCK-8) assay. RNA sequencing was performed on the isolated
BMSCs with control and Cornuside I treatment. Differentially expressed genes were obtained by the R software.
Alkaline phosphatase (ALP) staining and Alizarin Red Staining (ARS) were performed to assess the osteogenic
capacity of the NEO. qRT-PCR and western blot were used to detect the expression of osteoblast markers.

Results: Cornuside I treatment significantly improved BMSC proliferation. The optimal dose of Cornuside I was 30
μM (P < 0.05). Cornuside I dose dependently increased the ALP activity and calcium deposition than control group
(P < 0.05). A total of 704 differentially expressed genes were identified between Cornuside I and normal BMSCs.
Cornuside I significantly increased the PI3K and Akt expression. Moreover, the promotion effects of Cornuside I on
osteogenic differentiation of BMSCs were partially blocked by PI3K/Akt inhibitor, LY294002.

Conclusion: Cornuside I plays a positive role in promoting osteogenic differentiation of BMSCs, which was related
with activation of PI3K/Akt signaling pathway.
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Background
Osteoporosis (OP) is a systemic metabolic bone disease
caused by decreased bone density and bone mass [1, 2].
OP can easily lead to fracture [3]. The estimated number
of people worldwide suffering from OP will exceed 20
million by 2030 [4, 5]. Over half of Americans 50 years
and older have osteoporosis or low bone mass [6, 7].

The etiology of OP is still unknown, and the pathogen-
esis remains unclear [8].
Bone formation is a developmental process involving

the differentiation of mesenchymal stem cells (MSCs)
into osteoblasts [9]. The decreased ability of osteogenic
potential of osteoblasts from MSCs is the major risk of
OP [10]. Thus, promoting osteogenic differentiation is
an important strategy to enhance bone mineral density
and slow the development of OP [11]. So far, teripara-
tide is one of the most effective agents to improve the
osteogenic promotion drugs in clinic [12]. Other clinical
drug treatments for osteoporosis mainly include bone
resorption inhibitors such as bisphosphonates and
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calcitonin [13]. The therapeutic effects of these two
drugs are still controversial [14]. Therefore, finding a
stronger ideal bone regeneration cytokine has become a
clinical hot issue that needs to be solved urgently.
Corni Fructus, attributed to the liver and kidney

meridians, has the effect of promoting blood circulation,
invigorating vital energy, and treating pain all over the
body [15–17]. Corni Fructus is one of the most frequently
prescribed herbs in traditional Chinese medicine formula
for treatment of osteoporosis in China [18]. Cornuside I,
as a main active ingredient of Corni Fructus, is an iridoid
glycoside extracted from Corni Fructus. Previous study
has identified that Cornuside I could be used for treat-
ment of OP [19]. However, the role and mechanism of
Cornuside I in promoting osteogenic differentiation of
BMSCs were still unknown. RNA-sequencing (RNA-Seq)
technology is a high-throughput sequencing technology
which has developed rapidly in recent years. RNA-Seq
could be used to identify the differentially expressed genes
between treatment and control groups, and thus was
applied to identify the mechanism of Cornuside I in
promoting osteogenic differentiation of BSMCs.
However, the mechanism through which Cornuside I

promoted osteogenic differentiation of BMSCs is unclear.
In this study, we firstly performed RNA sequencing to
identify the mechanism of Cornuside I in promoting
osteogenic differentiation of BMSCs. Then, we performed
a series of studies to identify the mechanism of Cornuside
I in promoting osteogenic differentiation of BMSCs.

Material and methods
BMSC isolation and identification
Human bone marrow mesenchymal stem cells were gen-
erated as described previously with minor modifications.
In brief, the bone marrow was diluted by adding an
equal volume of DMEM containing 10% fetal bovine
serum (FBS). Bone marrow was then immediately centri-
fuged at 100×g for 10 min at room temperature. Then, cells
were repeatedly blown and beaten the cell mass with a
pipette to disperse the mass as much as possible. Cells were
then cultured in a 37°C, 5% CO2 incubator and changed
every 48 h subsequently. The identification of BMSCs was
conducted by evaluating their adipogenic, osteogenic, and
chondrogenic differentiation potential. In brief, BMSCs
were cultured into the adipogenic, osteogenic, and chon-
drogenic medium (Cyagen, Guangzhou, China) to identify
the tri-lineage differentiation capacity. Adipogenic, osteo-
genic, and chondrogenic differentiation potential were
stained with Oil-Red-O staining, ARS, and Alcian blue
staining respectively.

CCK-8 assay
BMSCs (5×103 cells/well) were cultured overnight, and
then treated as follows: control, Cornuside I (10, 30, and

60 μM). Subsequently, CCK-8 reagents (10 μl; Beyotime,
Shanghai, China) were added to BMSCs for 2 h. The ab-
sorbency of the samples was measured with a microplate
reader (Bio-Rad, Richmond, CA, USA) at a wavelength
of 450 nm.

RNA sequencing
RNA was reversed transcribed into cDNA and then la-
beling. Chip hybridization was performed using an Affy-
metrix (Thermo Fisher Scientific, Inc.) expression profile
chip and GeneChip Hybridization Wash and Stain kit.
The results were scanned with an Agilent microarray
scanner and read with the Feature Extraction software
10.7.

Bioinformatic analysis
Differentially expressed gene (DEG) analysis was per-
formed with the R software, using package Bioconductor
package, edgeR. |logFC | >1 and P value < 0.05 were set
as the threshold for screening the DEGs. The volcano
plot and heatmap analysis of regulated genes were
generated by using the R software, version 3.3.2. Gene
ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis was
done using DAVID bioinformatics resource portal. Gene
Ontology consisted of biological process (BP), molecular
function (MF), and cellular component (CC). Protein–
protein interaction analysis was performed via Search
Tool for the Retrieval of Interacting Genes tool (http://
string-db.org/). The Cytoscape plug-in Molecular Com-
plex Detection (MCODE, http://apps.cytoscape.org/
apps/mcode) was employed to analyze modules.

ALP and ARS
Osteogenic differentiation capacity was identified by al-
kaline phosphatase (ALP) staining using an ALP staining
kit according to the manufacturer’s protocol. In brief,
BMSCs in control and different treatment groups were
fixed by 4% paraformaldehyde. Then, ALP staining solu-
tion (Millipore, UK) was added. BMSCs were then
washed three times.
ARS was performed according to the manufacturer’s

protocol. In brief, BMSCs were fixed by 4% paraformal-
dehyde and then washed with PBS for three times. Then,
BMSCs were added 0.1% ARS solution (Solarbio, Beijing,
China) to identify the osteogenic differentiation capacity
of BMSCs. To analyze ARS activity, the ARS in stained
cells was destained with 10% cetylpyridinium chloride
(CPC) monohydrate solution (Sigma) for 30 min with
shaking. The sections were observed under an optical
microscope with a coupled digital camera (DM750,
Leica, Wetzlar, DE, Germany).
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Real-time polymerase chain reaction (RT-PCR)
The TRIzol method (Invitrogen, Carlsbad, CA, USA)
was adopted to extract the total cellular RNA, which was
reversely transcribed into cDNA using an RT reagent kit
(Takara, Japan). The reaction system was prepared with
pre-denaturation at 94°C for 30 s, denaturation at 94°C
for 5 s, annealing at 60°C for 15 s, and extension at 72°C
for 10 s, and 45 cycles were amplified. Results were
quantified using the comparative threshold method. The
quantitative copy number of the target gene = 2−ΔΔCt.
The copy number of the target gene was calculated for
each specimen. All the fluorescence data were converted
into relative quantification, and GAPDH was the internal
contrast of RUNX2, OCN, and Osterix. The primers
were designed and synthesized by Guangzhou Ribo
Technology Co., Ltd.

Western blot
The cells were washed by cold PBS 3 times; then, 150
μL RIPA lysate (Beyotime Biotechnology, Shanghai,
China) was added. The cells were lysed in ice water by
ultrasound, and the protein content was determined by
the Bradford method. An equal amount of proteins was
taken from each group for 10% SDS-PAGE, and the pro-
teins on the gel were transferred to PVDF membranes
(Millipore, Bedford, MA, USA). The membranes were
blocked at 4°C for 1 h and then incubated at 4°C over-
night with the following primary antibodies: anti-
RUNX2 antibody (1:500; Abcam, USA), anti-Osterix

antibody (1:1000; Abcam, USA), anti-OCN antibody (1:
500; Abcam, USA), anti-PI3K antibody (1:1000; Abcam,
USA), anti-Akt antibody (1:300; Abcam, USA), anti-p-
PI3K antibody (1:500; Abcam, USA), anti-p-Akt antibody
(1:100; Abcam, USA), and anti-GAPDH antibody (1:
1000; Abcam, USA). After being cleaned twice with
TBST, the membranes were incubated at room
temperature for 1 h with fluorescein-labeled goat anti-
rabbit IgG (ab205718, 1:2000). The membrane was visu-
alized with an ECL detection kit (Millipore, Bedford,
MA, USA) using a chemiluminescence imaging system
(Millipore).

Statistical analysis
Data are presented as the mean ± standard deviation. In
addition, comparisons between two groups were ana-
lyzed by the unpaired Student’s t-test. One-way analysis
of variance and Tukey’s post hoc tests were used for
comparisons between ≥3 groups. P<0.05 was considered
to indicate a statistically significant difference.

Results
Identification of BMSCs
BMSCs are long and spindle shaped in appearance
(Fig. 1A). The BMSCs were directly induced to form
osteoblasts (Fig. 1B), chondrocytes (Fig. 1C), and
adipocytes (Fig. 1D) in osteogenic, chondrogenic, and
adipogenic induction medium.

Fig. 1 Identification of the BMSCs
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Identified differentially expressed miRNAs between OA
and normal samples
To analyze the differentially expressed mRNAs between
normal and Cornuside I-treated BMSCs, RNA sequen-
cing profile was subjected to bioinformatic analysis.
Firstly, gene expression data were normalized using
quantile normalization followed by inverse normal trans-
formation. After normalization, the expression values
were identical and could be used for further study
(Fig. 2A). A total of 704 differentially expressed genes
were identified between Cornuside I and normal BMSCs.
Volcano plot and heatmap of the differentially expressed
mRNAs can be seen in Fig. 2B and C respectively.

GO and KEGG pathway analysis of the differentially
expressed genes
The BP of the differentially expressed genes was as fol-
lows (Fig. 3A): cell division, mitotic nuclear division, sis-
ter chromatid cohesion, DNA replication, chromosome

segregation, G1/S transition of mitotic cell cycle, mitotic
metaphase plate congression, DNA replication initiation,
regulation of transcription involved in G1/S transition of
mitotic cell cycle, and mitotic sister chromatid segrega-
tion. The MF of the differentially expressed genes was as
follows (Fig. 3B): midbody, condensed chromosome
kinetochore, chromosome, centromeric region, spindle,
spindle pole, cytosol, kinetochore, extracellular space,
kinesin complex, and spindle midzone. The CC of the
differentially expressed genes was as follows (Fig. 3C):
protein binding, microtubule binding, microtubule
motor activity, ATP binding, ATP-dependent micro-
tubule motor activity, plus-end-directed, identical pro-
tein binding, heparin binding, protein homodimerization
activity, extracellular matrix binding, and insulin-like
growth factor II binding. The KEGG pathway of the
differentially expressed genes was as follows (Fig. 3D):
PI3K-Akt signaling pathway, DNA replication, p53
signaling pathway, purine metabolism, pyrimidine

Fig. 2 Differentially expressed genes between control and Cornuside I-treated BMSCs. A Expression data before normalization and after
normalization. B Volcano plot of the differentially expressed genes between control and Cornuside I-treated BMSCs, red dots represent
upregulated genes, green dots represent downregulated genes, and black dots represent non-differentially expressed genes. C Heatmap of the
differentially expressed genes between control and Cornuside I-treated BMSCs. Red represents the upregulated genes, and green represents the
downregulated genes
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metabolism, oocyte meiosis, HTLV-I infection, viral
myocarditis, steroid biosynthesis, and progesterone-
mediated oocyte maturation.

Protein-protein interaction of the differentially expressed
genes
Figure 4 A presents the protein-protein interaction
network, which included 359 nodes and 1358 edges.
Further, three functional subnet modules (MCODE
model 1, MCODE model 2, and MCODE model 3) were
selected from the PPI network (Fig. 4B).

Cornuside I promoted osteogenic differentiation of
BMSCs
To identify the role of Cornuside I in promoting osteo-
genic differentiation of BMSCs. To evaluate the effects
of Cornuside I on the osteogenic responses of BMSCs
in vitro, ALP and ARS were performed.
ALP and ARS results also showed that the Cornuside I

(30 mM) group had higher ALP activity and calcium de-
position than the control group and other dose of Cor-
nuside I groups (Fig. 5A). Gene expression of osteogenic
differentiation markers RUNX2, OSX, and CON was de-
tected by qRT-PCR and western blot assays. Osteogenic
differentiation markers RUNX2, OSX, and CON were

significantly increased in Cornuside I (30 mM) group
than other groups (P<0.05, Fig. 5B). Western blot ana-
lysis was in agreement with the quantitative real-time
PCR (qRT-PCR) results, showing that the protein ex-
pression of RUNX2, OSX, and CON was upregulated in
the Cornuside I (30 mM) group (Fig. 5C).

Cornuside I activated the PI3K/AKT signaling pathway
during osteogenic differentiation of BMSCs
To identify the mechanism of Cornuside I in promoting
osteogenic differentiation of BMSCs, we firstly revealed
the PI3K and Akt gene expressions in control and
Cornuside I-treated BMSC groups. We found that PI3K
and Akt expression were significantly upregulated in
Cornuside I-treated BMSC group (P<0.05). Western blot
analysis was in agreement with the quantitative real-time
PCR (qRT-PCR) results, showing that the protein ex-
pression of p-PI3K and p-Akt was significantly upregu-
lated in the Cornuside I (30 mM) group (Fig. 5C).

LY294002 partially blocked the promotion effects of
Cornuside I on osteogenic differentiation of BMSCs
ALP and ARS results also showed that the Cornuside I
(30 mM) group had higher ALP activity and calcium
deposition than the control group and other dose of

Fig. 3 Gene ontology and KEGG pathway analysis of the differentially expressed genes. A Biological process of the differentially expressed genes
between control and Cornuside I-treated BMSCs. B Cellular component of the differentially expressed genes between control and Cornuside I-
treated BMSCs. C Molecular function of the differentially expressed genes between control and Cornuside I-treated BMSCs. D KEGG pathway
analysis of the differentially expressed genes between control and Cornuside I-treated BMSCs
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Cornuside I groups (Fig. 6A). However, the promotion
effects of Cornuside I on osteogenic differentiation of
BMSCs were partially blocked by LY294002 (Fig. 6A).
PCR results found that Cornuside I significantly in-
creased the PI3K and Akt expression, while LY294002
significantly downregulated the PI3K and Akt expression
(Fig. 6B). Western blot analysis was in agreement with
the quantitative real-time PCR (qRT-PCR) results, which
suggested that LY294002 significantly downregulated the
RUNX2, OSX, and CON expression (Fig. 6C).

Discussion
This study aimed to explore the role and mechanism of
Cornuside I in promoting osteogenic differentiation of
BMSCs. We performed RNA sequencing to compare
gene expression patterns between Cornuside I and con-
trol BMSCs. Bioinformatic analysis revealed that Cornu-
side I mainly affects the PI3K/Akt signaling pathway.
We finally summarized that Cornuside I promotes the

osteogenic differentiation of BMSCs via activation of
PI3K/AKT signaling pathway.
V. officinalis is a traditional Chinese Medicine for

nourishing the liver and kidney. Previous studies have
identified that V. officinalis could affect the function of
osteoblasts and osteoclasts and finally increase the bone
mineral density. Cornus officinalis possess potential anti-
allergic, anti-inflammatory, and antioxidant activities [20].
PI3K/AKT signaling pathway is crucial in cell prolifera-
tion, differentiation, and adaptation [21, 22]. Previous
study found that PTEN/PI3K/Akt/HIF-1α pathway signifi-
cantly enhanced bone regeneration in critical size defects
[23]. Previous study also suggest that PI3K-AKT-mTOR
signal pathway is an important regulator of the osteo-
genic/dentinogenic differentiation of stem cells [24].
Therefore, PI3K/AKT signaling pathway is crucial for

bone formation and bone regeneration. In this study, we
firstly performed RNA sequencing to identify the differ-
entially expressed genes in Cornuside I-treated BMSCs.

Fig. 4 Protein-protein interaction of the differentially expressed genes. A Protein-protein interaction of the differentially expressed genes. B
Module 1, MCODE score=9.238; module 2, MCODE score=8.526; and module 3, MCODE score=7.524
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A total of 704 differentially expressed genes were identi-
fied between Cornuside I and normal BMSCs. These dif-
ferentially expressed genes are mainly enriched in cell
division and mainly participated into the PI3K/Akt sig-
naling pathway. Therefore, we further performed ALP

and ARS staining to identify the role of Cornuside I in
promoting osteogenic differentiation of BMSCs. Many
functions of the PI3K/Akt signaling pathway are mainly
accomplished by p-Akt phosphorylating. We measured
the p-PI3K and p-Akt expression in control and

Fig. 5 Cornuside I significantly enhanced osteogenic differentiation of BMSCs. A ALP staining and ARS staining of the control and Cornuside I-
treated BMSCs. B Relative RUNX2, OSX, and Osterix mRNA expression in control and Cornuside I-treated BMSCs. C Relative RUNX2, OSX, and
Osterix protein expression in control and Cornuside I-treated BMSCs. D Relative PI3K, Akt, p-PI3K, and p-Akt protein expression in control and
Cornuside I-treated BMSCs
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Fig. 6 (See legend on next page.)
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Cornuside I-treated BMSCs. Cornuside I significantly in-
creased the p-PI3K and p-Akt expression than control
group, which suggested that Cornuside I activated the
PI3K/Akt signaling pathway. To further identify the
mechanism of Cornuside I in promoting osteogenic dif-
ferentiation of BMSCs. We administrated PI3K/Akt
pathway inhibitor, LY294002 to further illustrate the
Cornuside I on osteogenic differentiation of BMSCs.
The promotion effects of Cornuside I could be partially
blocked by LY294002. These results suggested that Cor-
nuside I significantly increased the osteogenic differenti-
ation of BMSCs through PI3K/Akt signaling pathway.

Conclusion
In summary, this is the first study exploring the role and
mechanism of Cornuside I in promoting osteogenic
differentiation of BMSCs using RNA sequencing. We fi-
nally found that Cornuside I promotes the osteogenic
differentiation of BMSCs via activation of PI3K/AKT sig-
naling pathway.
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