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Abstract: Genome-wide association studies have successfully mapped thousands of loci associated
with complex traits. During the last decade, functional genomics approaches combining genotype
information with bulk RNA-sequencing data have identified genes regulated by GWAS loci through
expression quantitative trait locus (eQTL) analysis. Single-cell RNA-Sequencing (scRNA-Seq) tech-
nologies have created new exciting opportunities for spatiotemporal assessment of changes in gene
expression at the single-cell level in complex and inherited conditions. A growing number of studies
have demonstrated the power of scRNA-Seq in eQTL mapping across different cell types, develop-
mental stages and stimuli that could be obscured when using bulk RNA-Seq methods. In this review,
we outline the methodological principles, advantages, limitations and the future experimental and
analytical considerations of single-cell eQTL studies. We look forward to the explosion of single-cell
eQTL studies applied to large-scale population genetics to take us one step closer to understanding
the molecular mechanisms of disease.
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1. Introduction

The studies of expression quantitative trait loci (eQTLs) offer insight into the molecular
mechanisms of genetic variants that are associated with complex diseases. By definition,
eQTLs are divided into two types: cis- and trans-: cis-eQTLs are the genomic sequence
variants located within a distance cutoff (for example, 1Mb upstream or downstream)
of a target gene (the ‘eGene’) (a gene that has an associated eQTL) and correlate with
its expression. Any eQTLs lying outside this genomic window are thought to indirectly
regulate gene expression and are considered trans-eQTLs [1]. For eQTL mapping, high-
throughput RNA sequencing (RNA-seq) has largely replaced microarray techniques due to
better specificity and sensitivity as well as the capacity to detect novel transcripts, splice
junctions and allele-specific gene expression [2].

To date, nearly all eQTL studies have been conducted on bulk RNA samples, where
the RNA is collected from millions of lysed cells within a tissue or other biological sample.
In a ‘bulk RNA-Seq’ experiment, the gene expression thus represents an average expres-
sion across all cells in a sample. As a derivative of RNA sequencing, single-cell RNA
(scRNA) sequencing has emerged as technique for gene expression quantification in single
cells [3]. The benefits of scRNA-Seq lie in its capacity to profile cellular heterogeneity,
cell-type-specific gene expression and identify rare cell types. In this review, we discuss
the differences in the bulk and scRNA-Seq methods for eQTL analysis and summarize the
current literature in the field, highlighting the benefits and limitations of single-cell-based
approaches. We anticipate that single-cell eQTL analysis on a population scale will likely
become mainstream in the next few years.

eQTL analysis using scRNA-seq is a relatively new approach and only a dozen studies
are available [4–16]. These studies show diverse applications of scRNA-seq in identifi-
cation of the quantitative effects of genetic variants or loci using purified cell types [4,5],
induced pluripotent stem cells (iPSCs) [6,9,11,13] or whole organisms [10] and to study
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population ancestry and cell type specific response to an environmental stimulus such
as viral infection [12]. In the following sections, we review the published sc-studies for
of cis-eQTL analysis, and compare the results to bulk RNA-Seq based analysis (Figure 1;
Table 1). Altogether, these studies highlight the power of scRNA-Seq in determining cell
type specific effects that are not evident in bulk RNA-seq analyses.
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bulk RNA-Seq represents an average of all the cells in a tissue and cellular heterogeneity cannot be 
estimated. ScRNA-Seq also allows estimation of variability in gene expression across individual 
cells. (C) Violin plot of an example gene expression for a cis-eQTL. The variant is associated with 
significant allele specific gene expression in individual cell types (left panel) but are masked in bulk 
tissue analysis. The tissue and cell images were adapted from Servier Medical Art, licensed under a 
Creative Commons Attribution 3.0 Generic License. 

Figure 1. Comparison of single-cell sequencing and bulk RNA-Seq for eQTL analysis. (A) The
experimental workflow for single-cell and bulk RNA-Seq. (B) Single-cell RNA sequencing expression
profile includes cellular heterogeneity and expression variability of each cell separately, whereas
bulk RNA-Seq represents an average of all the cells in a tissue and cellular heterogeneity cannot
be estimated. ScRNA-Seq also allows estimation of variability in gene expression across individual
cells. (C) Violin plot of an example gene expression for a cis-eQTL. The variant is associated with
significant allele specific gene expression in individual cell types (left panel) but are masked in bulk
tissue analysis. The tissue and cell images were adapted from Servier Medical Art, licensed under a
Creative Commons Attribution 3.0 Generic License.
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Table 1. Summary of studies that utilized both scRNA-seq and bulk RNA-seq datasets for cis-eQTL analysis. The replication of the sc-data in bulk setting within
same study shows an overlap of identified signal from 41–79%, indicating power of detecting cell type specific signals within scRNA-seq that are missed in a
bulk setting.

Study Parameters
Randolph et al.,

2021 [12]
Cuomo et al.,

2021 [8]
Jerber et al.,

2021 [6]
Neavin et al.,

2021 [13]
Cuomo et al.,

2020 [9]
Sarkar et al.,

2019 [11]
van der Wijst et al.,

2018 [4]

scRNA-
Seq

Bulk
RNA-Seq

scRNA-
Seq

Bulk
RNA-Seq

scRNA-
Seq

Bulk
RNA-Seq scRNA-Seq scRNA-

Seq
Bulk

RNA-Seq
scRNA-

Seq
Bulk

RNA-Seq
scRNA-

Seq
Bulk-
like

Methods Sample type PBMCs PBMCs iPSCs iPSCs iPSCs iPSCs FB iPSCs iPSCs iPSCs iPSCs iPSCs PBMCs PBMCs
# of donors 90 90 174 87 215 48 79 31 125 108 53 53 45 45

# of cells or CL 255,731 - 174 (CL) - 1,027,401 182 (CL) 64,018 19,967 36,044 - 5447 - 25,291 25,291
cell types 8 - 1 - 12 - 6 4 3 - - - 6 6

Association
statistics LM LM LMM * LMM * LMM LMM LM LM LMM LMM ZINB ZINB SC SC

MAF >0.05 >0.05 >0.1 >0.1 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.05 >0.1 >0.1
FDR eQTLs <0.1 <0.1 <0.1 <0.1 <0.05 <0.05 <0.1 <0.1 <0.1 <0.1 <0.1 <0.1 <0.05 <0.05

FDR
SNP-eGene

pair
<0.1 <0.1 <0.05 <0.1 <0.05 <0.05 <0.1 <0.1 - - <0.1 ‡‡ <0.1 ‡‡ <0.05 <0.05

cis-distance
(kb) 100 100 100 100 250 250 100 100 250 250 100 100 100 100

Results cis-eQTLs - - - - 15,493 - 45,503 810 4442 - 240 1136 379 331
eGenes 2234 - 1835 2590 4828 - 2887 86 4470 2908 - - 287 249

Replication ‡‡‡ - 48% ‡ (a) 10–20% (b) 41% (a) 70% (a) 79% (a) 60% (a)

Abbreviations: CL—cell line; FB—fibroblasts; kb—kilobases; LM—linear model; LMM—linear mixed model; PBMCs—peripheral blood mononuclear cells; SC—Spearman correlation;
ZINB—zero-inflated negative binomial distribution; #—number. * Results in mean aggregation setting and LMM outperformed other settings and are therefore used here for comparison.
‡ The replication rate raised to 74% in larger all bulk cohort (n = 526), number of eGene identified in this dataset was 2448. ‡‡ Benjamini–Hochberg procedure. ‡‡‡ Percentage of
scRNA-seq eQTLs or eGenes identified in a bulk RNA-seq data (a) or bulk eQTLs or eGenes in sc-data (b).
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2. Literature Review
2.1. scRNA-Seq in cis-eQTL Analysis of PBMCs

The proof of concept for cell-type-specific identification of eQTLs was already shown
in 2013, in a study based on 1440 cells from 15 HapMap lymphoblastoid cell lines that
measured the expression of 92 genes using highly parallel qPCR [17]. However, the first
genome-wide studies using droplet-based scRNA-Seq methods came out in 2018 and made
use of the peripheral blood mononuclear cells (PBMCs) that, due to their ease of extraction,
have served as a model for the first single-cell sequencing studies. To this end, Kang et al.
profiled eQTLs from 78,000 PBMCs from 23 donors that represented eight major immune
cell populations [16]. In total, they found 32 cis-eQTLs of which 22 were cell-type specific.
A comparison with cell-type-specific expression from previous bulk CD14+ monocytes,
CD4+ T cells and lymphoblastoid cell lines revealed a stronger SNP-gene association within
similar cell types than across different cell types, e.g., despite ubiquitous expression of CD52
in leukocytes, its associated cis-eQTL was identified only in monocytes. The same year,
another study by van der Wijst et al. performed cell-type-specific eQTLs identification using
scRNA-seq of 25,000 peripheral blood mononuclear cells (PBMCs) from 45 Dutch donors
in Lifelines Deep cohort (Table 1) [4,18]. The authors aggregated similar cells from each
donor into a broader classification of six categories: CD4+ T cells, CD8+ T cells, NK cells,
monocytes, B cells and DCs [4]. They compared the sc-cis-eQTL profiles with two previous
bulk studies, namely RNA-Seq (n = 2116) [19] and DeepSAGE (n = 94) [20], and found
1% to 8% overlap, respectively. The low overlap could reflect the difference in the cellular
composition of samples, i.e., PBMCs vs. whole blood and low 3′ sequencing depth achieved
in the bulk RNA-Seq studies. They discovered 379 cis-eQTLs (287 genes), of which 331
(249 genes) were significant in the bulk-like analysis of PBMC eQTLs (average expression
of all cells per gene) and 48 cis-eQTLs (38 genes) that were only detected in specific cell
types. Interestingly, a larger fraction (78%) of the bulk-like eQTLs were associated with
the same SNP in whole blood RNA-seq eQTL dataset, compared to only 60% of the cell-
type-dependent eQTLs. This suggested that cell-type-specific signals are diluted in a bulk
RNA-seq dataset. For example, due to the low expression of TSPAN13 in abundant CD4+

T cells, the cis-eQTL rs2272245 was not identified in the bulk RNA-seq dataset [19] and
was only found in scRNA-seq analysis. This shows that bulk RNA-seq based cis-eQTL
analysis loses power in identification of cell-type-specific loci affecting lowly expressed
genes (Figure 2). This study also highlighted another advantage of the scRNA-Seq is
to determine co-expression networks on an individual donor basis. They demonstrated
that true gene correlations were more evident in their 45 samples than in large-scale bulk
RNA-Seq datasets of thousands of individuals. The cell-type-specific scRNA-seq data can
thus also be used to identify SNPs altering co-expression relationships, i.e., co-expression
QTLs, and to interrogate the directionality and context specificity of networks [4,21].

Recently, scRNA-seq was also used to identify the effects of genetic ancestry on
susceptibility to viral infection among individuals of European and African descent [12].
The authors used PBMCs from 90 donors that were either non-infected or infected with
influenza A virus (IAV). In total, scRNA-seq data from 255,731 single cells were generated
and eight distinct immune cell types were categorized into five clusters CD4+ T cells, CD8+

T cells, B cells, natural killer (NK) cells, and monocytes (Table 1). cis-eQTLs were mapped
across all cell types and treatments, and 2234 eGenes had at least one eQTL within 100 kb
distance. Importantly, 45% variants were shared across all cell types and conditions, 13–24%
of the eGenes were detected in only one condition and only 29 genes were only detectable
after IAV infection. Moreover, over >50% of the population differences were explained by
differences in the frequency of cis-regulatory variants. Together, these single cell results
provided the first evidence that most of the ancestry effects on the immune response to
environmental stimulus, in this case viral infection, could be cell-type specific.
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cusZoom suite on http://locuszoom.org/ (accessed on 3 February 2022). 
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Figure 2. Cell-type-specific locus zoom plot for rs2272245 using summary statistics from [4]. Arrows
indicate the SNP rs2272245, a cis-eQTL significantly effecting TSPAN13 expression in CD4+ T cells
only (p = 2.21 × 10−6). The number of cells per cell type are as follows: bulk-like PBMCs 25,291; CD4+

T cells 13,961; CD8+ T cells 4350; monocytes 2630, where classical monocytes 2175 and non-classical
monocytes 455; B-cells 835; natural killer cell 2908; dendritic cells 379. Plots were drawn using
LocusZoom suite on http://locuszoom.org/ (accessed on 3 February 2022).

2.2. scRNA-Seq in Identifying cis-eQTL as Spatiotemporal Regulatory Elements in iPSCs

Cellular function is under the control of genetic variants; however, evaluating the
effects of these variants in primary cells and in development is challenging. Human iPSC
technology provides a useful strategy for estimating these effects during differentiation
and to study the molecular mechanisms of diseases in the relevant human cell types. To
this end, scRNA-seq technology has been recently explored for the evaluation of cell-type-
specific effects of genetic variation during early human development and differentiation
(Table 1) [6,9,11,13]. In an elegant study by Cuomo et al., the authors derived 126 iPSC
cell lines from 125 donors in HipSci project [22], harvested the cells immediately before

http://locuszoom.org/
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differentiation (iPSCs), and at mesendoderm and definitive endoderm stages of differentia-
tion (Table 1) [9]. These cells were sorted and sequenced using Smart-seq2 [23] to generate
a final dataset comprising of 36,044 cells with 11,231 genes expressed and 4546 variable
genes identified at 10% FDR. cis-eQTL analysis of the iPSCs, mesendoderm and definitive
endoderm stages identified eQTL for 1833, 1702 and 1342 genes, respectively, among the
~10,000 expressed genes, of which over 30% were specific to a single stage. Moreover,
349 eQTL variants identified during differentiation stages were novel and not previously
identified in bulk RNA-Seq from iPSCs or GTEx (Genotype-Tissue Expression) tissues [24].
Furthermore, they demonstrated that expression and eQTL dynamics result in different
patterns of allelic expression and illustrated that cis regulatory sequence variation can
modulate the timing of expression changes in response to differentiation. For example,
VAT1L expression was found repressed during differentiation but repression of the dif-
ferent alleles follows a different timing. This study also took advantage of the resolution
provided by single-cell data for co-expression network detection, allowing genotype by
environment (GxE) interaction analysis for selected gene-expression modules associated
with cell cycle and metabolism. They found that 668 eQTLs were associated with at least
one environmental factor, of which 55% had no evidence for a role in differentiation. The
authors concluded that although a comparison of eQTL analysis using scRNA-seq with
bulk RNA-seq data showed that bulk RNA-seq is more powerful in eQTL identification
(n = 961, p < 5× 10−8), scRNA-Seq proved superior in detailed characterization of eQTLs in
a spatiotemporal context, i.e., in recognizing the role of 872 dynamic eQTLs during various
stages of differentiation cell cycle or environment-induced cell states.

The use of the same HipSci resource [22] was recently extended to study the differenti-
ation of 215 iPSC lines to midbrain neural fate by mapping eQTLs at three developmental
stages: progenitor-like, young neurons, and more mature neurons [6]. scRNA-seq profiles
were generated from over 1 million cells generating 26 clusters of 12 distinct cell types.
cis-eQTLs were mapped for aggregated expression from each donor in main cellular popu-
lations identifying a total of 4828 eGenes (Table 1). An overlap of eQTL signals identified
in this study with GTEx brain tissue revealed 50% concordance, a brain-specific eQTL
replication rate of 10−20%, and demonstrated that, as the tissue matures, the number of
shared eQTLs among these datasets increases. Overall, 2366 novel and unique eQTLs were
identified in this study. Finally, a colocalization analysis between 25 GWAS traits consisting
of neurodegenerative disorders, or conditions related to behavior and intelligence sug-
gested that cell-type-specific colocalization analysis could be more powerful than bulk
RNA-seq-based colocalization. Altogether this study demonstrated that the identification
of cell type specific eQTLs at distinct time points in development allows the discovery of
novel regulatory relationships.

scRNA-Seq has also been used to study the role of variance eQTLs (vQTL) in human de-
velopment and disease using 7585 iPSCs derived from 54 Yoruba individuals (Table 1) [11].
This generated a dataset with expression profile of 9957 genes from 5597 cells of 53 partici-
pants. Altogether, 235 single cells eQTLs were identified of which 79% replicated in bulk
data and 80% of bulk eQTLs replicated in single-cell data. Still, down sampling of the bulk
RNA-Seq to the same number recovered over one thousand more eQTLs suggesting that
increased experimental noise of the scRNA-Seq leads to lower power of discovery. They
also identified five vQTLs that could alter the variance of expression independently of the
expression mean but explain less phenotypic variance than eQTLs. This again is likely
caused by the experimental noise and highlighted the need for larger sample sizes to study
variant effects on the dispersion that tend to be smaller than effects on the mean.

A reverse approach to iPSC differentiation recently evaluated the allelic effects of iPSC
reprogramming from fibroblasts on single-cell gene expression [13]. Here, human skin
fibroblasts were reprogrammed to iPSCs from 79 donors (Table 1). In total 83,985 cells were
sequenced using 3′-scRNA-seq including 19,967 iPSCs. Based on the activity of regulating
transcription factors, they were able to classify fibroblasts into six types (SIX5+, HOXC6+,
ATF1+, TEAD2+, KLF10+ and RXRB+) and iPSCs into four types (HIC2+, ATF2+, BRF2+
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and CEBPG+). In addition, single-cell cis-eQTLs were mapped in six fibroblast cell lines
as well as four iPSC lines that were derived from the same participants. Collectively, they
identified 46,103 eQTLs in 2985 genes representing 45,503 eQTLs for 2887 genes found in
fibroblast cell types and 810 cis-eQTLs for 86 genes in iPSC derived cell types. Importantly,
the majority of eGenes were predominantly cell type specific and only identified in only
one fibroblast type (77.6% of fibroblast eGenes) or one iPSC type (97.2% of iPSC eGenes).
Furthermore, the majority of the 283 eGenes that were significant in multiple cell types
including the 14 eGenes that overlapped between fibroblasts and reprogrammed iPSCs,
were found to be regulated by different genetic loci. A comparison with bulk RNA profile
from GTEx cultured fibroblasts [25] showed only 41.1% overlap with the scRNA-seq profile
from fibroblasts in this study, but the allelic effects shared the same direction of effect. In
line with this, the GTEx cultured fibroblasts exhibited a positive correlation between allelic
effect size and the number of cell types for which eGenes were identified. This indicated
that cell-type-specific elements are not entirely revealed from bulk RNA-seq data because
bulk gene expression profile presents mean expression across all cell types in biological
sample under study. Altogether, these data supported a highly cell-type-specific impact of
eQTLs in cellular reprogramming and pluripotency.

2.3. scRNA-Seq in Determining Whole Organism Genetic Architecture

scRNA-seq has made it possible to sequence many cells simultaneously, analyze cell-
type-specific genetic architecture and compare it among different cell types to evaluate
how genes regulate the fate of a cell into a particular type. Keeping this as a goal, Ben-
David et al. [10], piloted a study that showed scRNA-seq could be successfully applied
to whole organism in C. elegans. They cultured C. elegans to second larval stage L2 in
F4 generation, dissociated 192,000 F4 worms and isolated the cells and processed using
the 10× Genomics scRNA-seq platform. Two parental strains of worms were cultured,
processed, and sequenced separately and differentially expressed genes from their eQTL
analysis were evaluated in individual cell types and in all cells combined as well as in global
manner. A global dataset was used to identify cell types in parental scRNA-seq dataset. In
total, they identified 1718 cis-eQTLs in 1294 genes across different cell types. A cis-eQTL
comparison with parental scRNA-seq dataset revealed 870 genes that were differentially
expressed; 23% of these had a cis-eQTL in the same tissue and 95% of cis-eQTLs had same
direction of effect as parental. An overlap with a previously published bulk RNA-seq [26]
dataset from 200 recombinant and inbred lines from parental strains showed that from
981 identified cis-eQTLs, 335 were shared between two studies and had correlated effect
sizes (Spearman’s ρ = 0.64, p < 2.2 × 10−16); 50% of the eGenes detected in multiple cell
types were also identified in bulk and 28% of the eQTLs were detected in a single cell type.
Finally, a cell type specific analysis of C. elegans nervous system reveled 12,647 neurons
in 81 distinct clusters. 163 cis-eQTLs and 132 eGenes were identified where 88% were
cell-type specific. In a pan-neuronal cis-eQTL analysis, 36 of 69 (52%) eQTLs had opposing
direction to cell-type-specific eQTLs, confirming a subtype-specific effect. For example,
nlp-21 had significantly opposing effects in RIC interneurons and ring interneuron/motor
neurons, but no significant effect was found in the pan-neuronal dataset. In conclusion, this
study provided direct evidence that the sc-eQTL mapping improves the power to detect
cell-type-specific effects but also effects that are specific to subtypes of cells. Although
this study was the first one to utilize scRNA-seq in whole-organism eQTL mapping, its
applicability in more complex higher organisms could be limited.

2.4. Challenges of scRNA-Seq Based eQTL Mapping

The first pioneering studies outlined above have clearly demonstrated the advantage
of scRNA-Seq in identifying cell-type- and cell-state-specific eQTLs. Still, many of these
studies demonstrated limited power for eQTL mapping due to lower sample numbers
that are largely imposed by the high cost of scRNA-Seq experiments (Table 2). This lim-
itation has been addressed in two ways. First, we have witnessed a growing array of
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methods for statistical deconvolution of the bulk RNA-Seq data (Figure 3) that allows
estimation of cell-type proportions based on prior information from purified cell sub-
population (e.g., scRNA-Seq or FACS quantification of the cell proportions). Different
deconvolution methods are now available, as exemplified by DeconRNAseq [27], CIBER-
SORT [28], CIBERSORTx [29], MuSiC [30], DSA [31], and MMAD [32], these with other
available methods have been recently compared and discussed [33,34]. These tools are
proving highly useful in reanalysis of both existing and new bulk RNA-Seq datasets to
identify and interpret the role of cell type specific eQTLs in complex diseases. Secondly,
the optimized design of scRNA-seq experiments can also substantially reduce the costs
of population scale cell-type-specific eQTL mapping. Using PBMCs from 120 individuals,
Mandric et al. modeled the impact of the number of reads, number of individuals, number
of cells, level of sample multiplexing, and cell-type classification accuracy on the power of
cis-eQTL studies. The authors concluded that statistical power of cell-type-specific eQTL
mapping can be maximized by increasing the sample size (~100) and the number of cells
per sample while performing low-coverage sequencing of 10,000 reads per cell [14]. They
further provided a calculator which can guide the selection of sample size and the number
of cells per individual for cell-type-specific eQTL detection with the available budget. Still,
the caveat of this approach is the risk of losing information from rare cell types due to
low and non-uniform coverage. The best way would be to run power calculations using
R or R-based packages [14,35,36]. Current single-cell eQTL power calculations assume a
standard linear model, and power for eQTL discovery in specific cell types can be improved
by incorporating allele-specific mapped reads [37]. Additionally, experimental variation, as
witnessed in iPSC research, will introduce noise that would require much larger sample
numbers [11]. Nevertheless, highlighting such experimental considerations will help re-
searchers plan their eQTL mapping experiments in a cost- and time-effective manner in
the future.

Table 2. Example costs of RNA-Seq library prep and sequencing per sample, based on published
service price estimates at a university core facility *.

Method Library Prep
Cost/Sample

Sequencing
Cost/Sample

No. of Reads
(Millions)

Bulk RNA-seq (poly-A) $260 $125 40
scRNA-Seq (10× Genomics Chromium) $1610 $1750 450

* https://functionalgenomicscore.ucsf.edu/getting-started (accessed on 16 December 2021).

Another limitation of the scRNA-Seq studies comes from the library configuration.
Most of the studies thus far have used the 10× Genomics Chromium platform that se-
quences the 3′- or 5′-end of mRNA and does not allow the identification of splicing QTLs for
isoform detection or deep intronic QTLs. These issues can be addressed by the full-length
sequencing approaches such as SMART-seq [15] which, however, comes with a higher cost
per cells. High technical noise arising from ribosomal or mitochondrial contamination is
another challenge in scRNA-seq data. So far, this caveat has been managed by removing se-
quencing reads that map to >15–25% mitochondrial reads and >50% ribosomal reads [9,13].
However, in situations where nuclear genome expression is under study, nuclei isolated
from purified cells can be used. This was shown in a framework for colocalizing human
eQTL with 21 complex traits by Eraslan et al. [5]. Similar methods could prove powerful in
cis-eQTL analysis and understanding patterns of human disease and development.

High technical noise in scRNA-seq data is still a challenge. It arises due to a difference
in sequencing platform, sequencing depth, amplification bias, RNA capture efficiency and
dropout events. Current noise reduction methods for scRNA-seq data include correcting
for batch effect and normalization of the sequencing data. A recent study comprehensively
analyzed 28 noise-reducing methods and tools in 55 scenarios comprising of real and
simulated datasets and proposed a guideline to select suitable procedures [38]. The study
concluded that not a single method can be selected as generalized approach for all scRNA-

https://functionalgenomicscore.ucsf.edu/getting-started
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seq experiments, selection of an appropriate method needs caution and depends on the
study design. For example, the default setting of the mostly commonly used data analysis
package Seurat [39] uses a canonical correction analysis model that could cause erroneous
mixing in a situation of severe cell composition imbalance. In this case, reciprocal PCA
model is recommended. Similarly, linear models are also sensitive to cell population
imbalances, and their performance is improved by using cell groups as covariate as in
scMerge [38,40]. By unmasking the true biological signals of interest, such methods are
expected to also improve the detection of significant cis-eQTL associations in the future.
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Figure 3. Graphical illustration of the deconvolution of mixed samples. Bulk transcriptomics data
for an allele of a given gene are a sum of expression of cell types 1, 2, 3 and 4. After computa-
tional deconvolution, cell types are separated, and gene expression of each cell type is estimated
considering cell-type proportions from a reference dataset (e.g., scRNA-Seq). The tissue and cell
images were adapted from Servier Medical Art, licensed under a Creative Commons Attribution 3.0
Generic License.

Finally, only a limited number of studies have reported scRNA-seq for eQTL analysis
in human disease and development [9,11] indicating a gap in cell-type-specific knowledge
about genomic architecture in this context. This also shows an urgent need for large-scale
sc studies that is another challenge and can be addressed in consortium-based studies [41].

3. Conclusions

As discussed above, scRNA sequencing has created immense opportunities for map-
ping eQTLs across different cell types, developmental stages and stimuli that could be
obscured when using bulk RNA-Seq methods. By decreasing the measurement noise that
is introduced due to heterogeneity of cells in bulk RNA profiling, identification of eQTLs
associated with rare cell types and specific cell states, including developmental stages,
stimulus responsive states and cell cycle phases, can be achieved. In addition to the ability
to distinguish the cell-type-specific transcriptome features, scRNA-seq studies have shown
great potential for identification of gene regulatory networks and gene–gene interactions
and co-regulated genetic features [4]. Moreover, with scRNA data, modeling personal or
patient-specific gene networks should be feasible [41]. An unexplored area in scRNA-seq
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application is organelle-specific expression profiling, which is useful in forensics and phy-
logenetics. With the decrease in the costs of scRNA-seq based analyses, resources with
cell-specific expression profile atlases are becoming reality [42]; however, much larger
datasets are still needed for such reference panels. Indeed, consortium based sc studies [41]
will increase the power of identification of cell-type-specific eQTLs and genetic variants
that affect gene regulatory networks in health and disease manifold. In addition to these
clinical implications, studies are needed to optimize technical implications such as bringing
wet lab and computational costs down and optimizing methods for statistical analyses.
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