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Abstract

Background: Biological interpretation of gene/protein lists resulting from -omics experiments can be a complex
task. A common approach consists of reviewing Gene Ontology (GO) annotations for entries in such lists and
searching for enrichment patterns. Unfortunately, there is a gap between machine-readable output of GO software
and its human-interpretable form. This gap can be bridged by allowing users to simultaneously visualize and
interact with term-term and gene-term relationships.

Results: We created the open-source GOnet web-application (available at http://tools.dice-database.org/GOnet/),
which takes a list of gene or protein entries from human or mouse data and performs GO term annotation analysis
(mapping of provided entries to GO subsets) or GO term enrichment analysis (scanning for GO categories overrepresented
in the input list). The application is capable of producing parsable data formats and importantly, interactive
visualizations of the GO analysis results. The interactive results allow exploration of genes and GO terms as a graph that
depicts the natural hierarchy of the terms and retains relationships between terms and genes/proteins. As a result,
GOnet provides insight into the functional interconnection of the submitted entries.

Conclusions: The application can be used for GO analysis of any biological data sources resulting in gene/protein lists.
It can be helpful for experimentalists as well as computational biologists working on biological interpretation of -omics
data resulting in such lists.
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Background
The output of genome-wide studies is typically a list of
genes (or their protein products) exhibiting a shared
pattern. For example, these can be genes that are
differentially expressed in groups of donors with and
without a disease or a list of proteins identified by
mass-spectrometry in a certain fraction of a biological
sample. Making scientific sense out of such data is a com-
plicated task requiring biological knowledge of the in-
volved genes/proteins and their functions. As published
data expands it becomes increasingly difficult to stay up to
date with the constantly expanding knowledge and com-
putational methods. Database resources become an im-
portant facility to make this knowledge accessible. The
Gene Ontology (GO, http://geneontology.org/, [1]) is one
such pioneering project, which maintains a controlled

hierarchical vocabulary of terms along with logical defini-
tions to describe molecular functions, biological processes,
and cellular components. This controlled vocabulary is
utilized by several model organism databases to capture
experimental (and computational) findings on the role
specific genes play. This knowledge can be applied to a
given list of genes (also referred to as a gene-set) to ex-
plore the GO terms annotating the genes and to split
them into functional groups (‘annotation’ analysis). This
approach is implemented, for example, in DAVID tool [2].
Another common step is to focus only on terms signifi-
cantly over-represented in a list of entries submitted by a
user (‘enrichment’ analysis). This approach is a particular
case of GSEA (gene set enrichment analysis) applied to
Gene Ontology annotations. Such analysis can be carried
out from the GO project website [3], using other web ap-
plications (e.g. GOrilla [4], NaviGO [5], DAVID [2],
AmiGO [6]) or if a programmatic approach is needed one
can use available modules for Python (e.g. GOATools [7],
goenrich [8]) and R (e.g. GOstats [9], topGO [10])
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programming languages. The popularity of such ap-
proaches is highlighted by the fact that the initial GOC
publication [11] is cited by over 22′000 papers (according
to Google Scholar as of October, 2018).
However, the output of current GO analysis web appli-

cations (like AmiGO or DAVID) does not fully convey
the hierarchical structure of the terms. Tools like
GOrilla and NaviGO allow visualization of GO terms’
hierarchy but they in turn lose the relation of GO terms
to the genes or proteins being analyzed. Addressing both
visualization of term hierarchy and gene-term relations
was the main motivation for creating the open source
web-application, GOnet (https://github.com/mikpom/
gonet). It is achieved by generating a fully interactive
graph with gene and term nodes. The graph supports
different layouts making it possible to extend analyses
based on graph topology.
Occasionally, a researcher might need to go through

the functions of each investigated gene products to get
more granular information. For such per-entry analysis
the researcher might need to retrieve information from
various public resources. GOnet complies with this ap-
proach and provides convenient links to external data-
bases (UniProt [12], Ensembl [13], DICE-DB [14],
Genecards [15]) in the resulting view. In addition, ex-
pression data from external sources can be used to col-
orize gene nodes and provide further insight into the
signature investigated. Overall these features make
GOnet an important tool to facilitate biological inter-
pretation of -omics data for experimental and computa-
tional biologists.

Implementation
User’s workflow
In a basic workflow, the GOnet application receives a list
of gene symbols, protein symbols, or protein IDs (UniProt
IDs) as an input, and outputs a graph (an example given
in Fig. 1). There are various input parameters which will
affect the actual structure of the graph visualized and its
appearance. The first main user choice is which GO terms
the genes are annotated against:

1. GO terms statistically significantly over-represented
in the gene list submitted.

2. A predefined subset (also known as ‘GO slim’), or a
user-supplied list of terms.

In the first case the analysis will be referred to as an
‘enrichment’ analysis, in the second as an ‘annotation’
analysis.

Input parameters

1) Gene list. A mandatory input parameter containing
the genes/proteins of interest. Currently human and
mouse data is supported. An example of a human
gene list might look like this:

Fig. 1 Sample network output generated by GOnet application. Gene differentially expressed in CD4 Bulk Memory T cells in Latent TB patients
compared to healthy controls were used as an example [22]
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The gene list can also be accompanied with a
contrast value. For example,

This contrast value can be any decimal number,
such as the log-fold change of gene expression be-
tween two conditions. This is merely a
visualization enhancement. If the value is supplied
it can be used later to differentially color specific
genes in the graph (note different colors of gene
nodes in Fig. 1), and visually indicate up- or
down-regulation of specific genes and gene
clusters.
The application can process common gene
symbols (like in the example above), UniProt IDs,
and MGI Accession IDs (mouse only). The
former type of ID (gene symbols), although is the
most human friendly, can unfortunately be
ambiguous. For example, AIM1 can mean ‘absent
in melanoma’ (also called CRYBG1) or ‘Aurora
and Ipl1-like midbody-associated protein’ (also
known as AURKB). Due to this ambiguity
UniProt IDs or MGI accession IDs (for mouse)
are preferred.

2) GO namespace. Can be any of ‘biological process’,
‘molecular function’ or ‘cellular component’.
Keeping analysis of the three domains separate
simplifies the output graph.

3) Analysis type. Can take value of ‘enrichment’ or
‘annotation’.

4) Background (‘enrichment’ analysis only). A
baseline set of genes which the signature is analyzed
against. As a background a user can indicate to use
a) all annotated genes, b) submit a custom gene list
or c) select one of the predefined backgrounds. If
the first option is selected the signature will be
analyzed versus all genes for which GO annotation
information is available. This can serve as a simple
default, but the results may not be specific enough.
For example, it makes sense to exclude genes not
expressed in analyzed cells. A user can upload a list
of genes/proteins (same ID types as for the submitted
signature are accepted) or select a predefined
background. Using the ‘predefined background’ option
allows the user to analyze the signature against genes
expressed above a value of 1 TPM in one of the cell/
tissue types according to expression data available in
GOnet (see ‘Technical details of implementation’
section for available expression datasets).

5) q-value threshold (‘enrichment’ analysis only).
Only GO terms rejected while controlling False
Discovery Rate at the value of this parameter will
be displayed. To denoise/simplify graph lower
parameter values should be considered. Available
choices are: 0.05 (also commonly denoted as *), 0.01
(**), 0.001 (***) and 0.0001 (****).

6) GO subset (‘annotation’ analysis only). A subset of
Gene Ontology to annotate input entries against.
The application will reconstruct the relationship of
the input genes to GO terms specified by this
parameter. For example, ‘GO slim generic’ can be
selected. This is a subset of general GO categories
maintained by GOC which may be suitable for the
majority of studies. Alternatively, users can select
the ‘custom’ option and submit a list of GO terms.

7) Output type. Results of the default ‘Interactive
Graph’ output type is depicted in Fig. 1 and exhibits
the main advantage of the GOnet application. If the
interactive output is not required then ‘CSV’ option
can be selected and the output will be a regular
machine-readable text file. In this scenario the
application does not reconstruct the graph saving
computational time. As an intermediate solution
‘TXT’ output option can be selected. This is a
human-readable text file which attempts to retain
hierarchical relationship between GO terms in a
textual representation.

Capabilities of the graphical output
The output graph is interactive (rendered within Cytos-
cape.js framework [16]) and allows researcher to
re-arrange genes and GO term annotations so that they
optimally represent the interpretation of the discovered
functional classification pattern. There are several fea-
tures available in the side panel which can assist in
graph re-arrangement. Usage experience will be different
depending on the number of nodes in a graph (genes
nodes as well as the GO term nodes) and their connect-
ivity. If output has a lot of gene nodes, they can be hid-
den to explore GO terms only. Alternatively, if output
contains too many GO term nodes (like in some cases of
enrichment analysis) then varying p-value thresholds can
be applied to narrow down to the most significantly
enriched categories.
Depending on the nodes being visualized various lay-

outs can be applied.

1. COSE (Compound Spring Embedder) layout.
This layout imitates node repulsion. It is convenient
for small graphs containing not many genes
(150 or less). This layout is depicted in Fig. 1.
Layout implementation is bundled with Cytoscape.js
library.

Pomaznoy et al. BMC Bioinformatics          (2018) 19:470 Page 3 of 8



2. Hierarchical layout. This layout displays nodes in
their hierarchy. Less specific GO terms are placed
at the top of the graph while more specific GO
terms are placed at the bottom. Genes (if visualized)
are positioned at the lowest level of graph hierarchy.
This layout is especially useful for large graphs
containing many GO terms. Layout is implemented
using cytoscape-dagre JS package.

3. Euler layout. Another force-directed (physics
simulation) layout which is similar to COSE layout
but runs faster and is more suitable for large graphs.
Layout is implemented using cytoscape-euler JS
package.

Data export
Depending on downstream manipulations the user can
choose one of the available data export options:

� Text formats
� Data as comma-separated file. This is the main

machine-readable output format containing the
terms, their p-values of enrichment (if applicable),
and corresponding genes.

� Data as text file. This format attempts to retain
hierarchy of the enriched terms and can be
viewed in any text editor.

� ID mapping. This option allows the user to
download a text file with resulting conversion of
user input to external database IDs: UniProt,
Ensembl, MGI (if applicable).

� Images
� Image of visible area can be exported in PNG or

JPG formats.
� JSON

� Graph can be downloaded in .cyjs format. CYJS
files ca be viewed in the desktop Cytoscape
application [17].

Contextual menu and node data
The main advantages of GOnet become apparent when
a moderate (< 150) number of genes or proteins is sub-
mitted to the application. Such concise signatures can be
analyzed on a per-entry level. For this purpose, all ele-
ments in the graph are clickable and invoke contextual
data fields in the side panel showing related information.
If the clicked element is a GO term node then the infor-
mation listed includes the term ID (with link to GO
database), p-value of enrichment (if applicable), and all
the entries submitted which are annotated with this
term. If a gene node is clicked then the side panel pro-
vides links to UniProt, Ensembl, DICE-DB, Genecards,
and MGI (for mouse genes) databases and all GO anno-
tations of a gene. If an edge connecting a gene and GO
term is clicked, the corresponding GO references are

listed. If an edge connecting two GO term is clicked, the
relation type is shown (currently ‘is_a’ and ‘part_of ’ rela-
tion types are supported).
Right clicking on a node invokes a contextual menu

which allows the user to select immediate or all succes-
sors/predecessors of the node. This highlights all genes/
terms downstream of a certain category that the re-
searcher wishes to narrow down to and explore separately.

Technical details of implementation
The general outline of the steps being implemented by
the program is illustrated in Fig. 2. Graph construction
is carried out on the server side. The back-end is imple-
mented in Python with Django package as a web frame-
work [18]. The calculated graph with associated data is
serialized to JSON and transferred to the client side
where the front-end implements layout rendering and
node visualization. The Cytoscape JavaScript library [16]
is used for visualization.
The workflow is as follows:

1. Pre-analysis. Post submission input checks and
ID conversion are carried out at this step. Overall
strategy of ID conversion is the following: entries
submitted by the user are first converted to
species-specific primary IDs and then these primary
IDs are converted to other IDs. UniProt IDs and
MGI Accession IDs are used as primary IDs for
human and mouse data respectively. If the user
submits UniProt ID for human and MGI IDs for
mouse then no conversion to primary IDs is
attempted. At every ID mapping step, the
application tries to establish 1-to-1 mappings by
picking the most relevant and reliable ID possible.
For example, in the case of several UniProt IDs,
those belonging to SwissProt subset will be
preferred because this subset is constructed out
of the most reliable records [12]. In the case of
duplicated Ensembl IDs, those located on regular
chromosomes are prioritized over those located on
assembly patches and alternative loci. These
restrictions are aimed at providing the user with the
most concise and reliable information possible while
at the same time trying not to obscure biological
interpretation with vast numbers of (sometimes
redundant) cross-references. Final ID mappings
can be downloaded from the results page. Those
entries for which ID conversion has failed will still
be visible in the graph but corresponding GO
and/or expression information will be missing.

2. Compute enrichment. Computation of
enrichment p-values follows the algorithm in the
Python goenrich package [8]. For every GO term
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considered, the p-value in Fisher exact test is
computed. For every term, the null hypothesis
states that the number of genes in the input list
annotated with the GO term is not overrepresented
compared to the background. The contingency
table considered is:

Entries in background
and in input list

Entries in background
but not in input list

Total

Annotated
with GO term

x n-x n

Not
annotated
with GO term

N-x M-N-(n-x) M-n

Total N M-N M

Then the p-value is computed as a survival
function of hypergeometric distribution with
shape parameters (M, n, N) at point x. Next, all p-
values are subject to FDR control procedure [19].
Those GO categories for which FDR procedure

rejects the null hypothesis are carried over to the
next steps.

3. Construct the graph. At this step the application
constructs a NetworkX [12] Directed Graph with
submitted entries and GO terms. The graph
construction procedure is subject to the following
constraints:
� Two GO terms are connected with an edge if

they are directly connected in Gene Ontology
(by ‘is_a’ or ‘part_of ’ relationships). The edge is
directed from the more general term to the
more specific term.

� Genes are connected to the most specific GO
term possible. For example, in Fig. 1, histones
HIST1H1C, HIST1H1D, and HIST1H1E are
connected to ‘nucleosome positioning’ and not
to the more general category of ‘nucleosome
organization’. Edges are always directed from
GO term to gene.

Fig. 2 General workflow of GOnet application
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� Nodes not connected to anything are left as
orphan nodes.

Since two types of GO term relations are used
(‘is_a’ and ‘part_of ’) it introduces ‘redundancy’ in
the graph. Some of the edges can be removed so
that if a directed path between any pair of GO
term nodes exists in the original graph, then some
path between these terms will exist in a reduced
graph. Such a reduced graph is constructed using a
transitive reduction algorithm on the graph from
the previous step. Next, necessary data is added to
the graph elements.

4. Populate node data. At this step additional
information about graph elements is being stored as
node or edge attributes. This includes various IDs
(UniProt ID, Ensembl ID, MGI ID), expression data,
GO references, etc.

After this step the graph is converted to cyjs format (a
flavor of JSON specifically adapted for use in Cytoscape
applications) and transferred to the client for visualization.

5. Colorize nodes. Two different color maps are
applied to GO term nodes and gene nodes. The
intensity of GO term node colors indicates p-values
of enrichment. The colors of gene nodes indicate
expression values. These values can be supplied as
contrast values during the submission process.
Alternatively, one can use expression values
available from currently supported datasets. For
human genes the following expression data are
supported:

1) DICE-DB (http://www.dice-database.org/) data.
Dataset covers major blood cell types [14].

2) Human Protein Atlas data. Dataset is available at
https://www.proteinatlas.org/ [20] and covers major
human tissues.
For mouse genes expression data used is taken from

3) Bgee database [21].

6. Run layout. Nodes of the graph are split into
connected components; then a user specified layout
is applied to every component. All orphan nodes
(not connected to any other node) are positioned
separately on a grid.

ID resolution, GO analysis, and node data population
involves various data sets from external databases which
are subject to updates of various frequency. New
versions of the corresponding data files are incorporated
every two months.

Results and discussion
The application of genome-wide experimental approaches
to biological problems has raised the challenge of how the
resulting data can be fully utilized. Computational
methods can help to grasp otherwise immense
high-throughput data. Several databases and related appli-
cations exist for this purpose. Namely, the Gene Ontology
database provides an extremely important utility to filter
down the complexity of -omics data. Various available GO
tools facilitate biological classification of the provided gene
lists and help to highlight over-represented functional
groups. However, in practice, this is a starting point for
further analysis in which a biologist uncovers an under-
lying biological effect leading to these observations. This
transition from data to biological interpretation can be
complex and various visualization techniques are espe-
cially useful at this step. In the case of Gene Ontology
analysis, the hierarchy of the vocabulary can be conveni-
ently visualized as a graph. This graph-based approach
was utilized by GOnet application for Gene Ontology
analysis. Additionally, the tool provides several features es-
pecially useful for users working with genomic/transcrip-
tomic/proteomic data and will help to adapt GO
vocabulary to their research needs.
GOnet specifically aims to construct and display

interactive graphs that include GO terms and genes while
retaining term-gene relationships. Interactivity of a graph
gives easy access to node and edge data linking the entries
to external databases. It provides the possibility of
one-click access to gene/protein data available in UniProt,
Ensembl, DICE-DB, Genecards, and GO term data avail-
able in AmiGO.
Depending on the size and structure of the graph, the

application allows the user to arrange and filter the nodes
to adapt the graph further for particular use cases.
Specifically, several layouts can be applied depending on
what information the user wants to highlight. If GO term
hierarchy is the main focus, then a hierarchical layout can
be applied which positions terms depending on their ‘is_a’
and ‘part_of ’ relationships. Gene nodes can be completely
hidden in this case. If one needs to highlight gene-term re-
lationships, then physics simulation layouts imitating node
repulsion can be applied. A refined arrangement of the
nodes can be exported for illustrative purposes.
Another important advancement of the application is

integration of two different yet related tasks: GO
enrichment analysis and GO annotation analysis. In the
first case, a user is interested in which functional categories
are enriched in a specific list of genes or proteins. In the
second case, the user’s intent is to have a general look at
the categories present in the list regardless of the
enrichment score. In both of these tasks, the goal is to
browse how a list of genes or proteins is related to a certain
subset of GO vocabulary. The difference is in which terms
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will constitute this subset. Due to the inherent similarity of
the two tasks, they can be implemented within a single
framework. Additional input parameters can specify GO
subsets further, and for the enrichment analysis, the user
can limit GO terms by imposing an FDR procedure
threshold. For the annotation analysis, the user can choose
a certain GO subset to analyze against or even supply a
custom subset of the Ontology. Currently, the application
supports a generic GO slim maintained by the GOC but
we believe that creation of such subsets is an important
direction for further adapting GO tools to specific research
areas.
GOnet also provides transparent ID conversion. The

user can check on a per gene level how the input entries
were converted to external database IDs. If the
conversion is not satisfactory, the user can make
changes to the input accordingly by incorporating
specific primary IDs (UniProt ID for human and MGI
IDs for mouse) where necessary. Primary IDs are
unambiguous and generally lead to more consistent
results.
Lastly, the application supports various export options

valuable for downstream analysis. These options include
machine readable delimiter-separated files and JSON-se-
rialized files suitable for analysis in desktop versions of
the Cytoscape application.

Conclusions
Researchers working with -omics data often face the
problem of biological interpretation of a list of genes or
proteins they obtained from upstream analysis steps.
Utilizing a Gene Ontology annotation/enrichment
approach is very useful at this stage, but several
advancements can be made to improve interpretation of
such data. Specifically, one could benefit from interactive
analysis of relationships between the entries and their GO
annotations. Here we present a GOnet tool which
implements such interactive analysis in the form of a web
application. On top of that, GOnet has several additional
features facilitating per-entry review of the data by providing
links to external databases containing biological information
about the submitted entries. We believe the application can
help to summarize and explore -omic data in a convenient
and informative way.
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