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Simple Summary: Prostate cancer (PCa) is one of the leading cancer deaths in man’s world. Due to
the lack of a fast and sensitive diagnostic method, PCa is only recognized in the late stadium of the
disease. For this purpose, new tools are sought for sensitive diagnosis. One of them is the use of mass
spectrometry. The main goal of the study was to perform target lipidomic analysis of prostate tissue
with the use of two imaging methods: matrix-assisted laser desorption ionization with time-of-flight
mass spectrometer, and electrospray ionization with triple quadrupole mass spectrometer. Statistical
evaluation provided the knowledge about the phospholipids alteration linked with PCa progression.
In practice, its recognition enables development of a quick and sensitive diagnostic method. The
acquired knowledge may also lead to the increasement of hormone therapies effectiveness.

Abstract: The main goal of this study was to explore the phospholipid alterations associated with the
development of prostate cancer (PCa) using two imaging methods: matrix-assisted laser desorption
ionization with time-of-flight mass spectrometer (MALDI-TOF/MS), and electrospray ionization
with triple quadrupole mass spectrometer (ESI-QqQ/MS). For this purpose, samples of PCa tissue
(n = 40) were evaluated in comparison to the controls (n = 40). As a result, few classes of compounds,
namely phosphatidylcholines (PCs), lysophosphatidylcholines (LPCs), sphingomyelins (SMs), and
phosphatidylethanolamines (PEs), were determined. The obtained results were evaluated by uni-
variate (Mann–Whitney U-test) and multivariate statistical analysis (principal component analysis,
correlation analysis, volcano plot, artificial neural network, and random forest algorithm), in order
to select the most discriminative features and to search for the relationships between the responses
of these groups of substances, also in terms of the used analytical technique. Based on previous
literature and our results, it can be assumed that PCa is linked with both the synthesis of fatty acids
and lipid oxidation. Among the compounds, phospholipids, namely PC 16:0/16:1, PC 16:0/18:2, PC
18:0/22:5, PC 18:1/18:2, PC 18:1/20:0, PC 18:1/20:4, and SM d18:1/24:0, were assigned as metabolites
with the best discriminative power for the tested groups. Based on the results, lipidomics can be
found as alternative diagnostic tool for CaP diagnosis.

Keywords: prostate tissue; metabolomics; prostate cancer; MALDI-ToF/MS; ESI-QqQ/MS; lipidomics;
phospholipids
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1. Introduction

The prostate is a small gland, the functionality of which is dependent on hormones,
mainly androgens. In the physiological state, androgens are responsible for the cell growth
and functional activities of this gland. By binding to the androgen receptor (AR), androgens
stimulate the differentiation of luminal epithelial cells. The AR also plays a significant role
in the functions of the prostate because it modulates the production of a crucial protein,
namely prostate-specific antigen (PSA). Screening of PSA along with rectal examination is
widely used in the diagnosis of PCa. However, due to the fact that PSA is organ-specific
but not a characteristic of PCa, screening of this protein often leads to misdiagnosis [1]. For
this reason, PCa diagnosis is proved by biopsy.

Recent research indicates the significant role of androgens and related receptors in
enhanced lipogenesis in PCa [1]. In the process of cancerogenesis, androgens affect cell
proliferation, differentiate the secretory function of cells, and induce the formation of
cytoplasmic lipid droplets [2]. Moreover, AR has been recognized as a key player in the
development of PCa because it modulates the expression of several lipogenic enzymes, in
both primary and metastatic tumors. This observation inspired several researchers to study
the influence of lipids in carcinogenesis. The role of lipids in PCa development can be more
important than it was considered because of their physicochemical properties and varying
biological roles, and hence, they may be crucial in the diagnosis and treatment of PCa.
Lipids are the main building blocks of cell structure. They are used as a major source of
energy and take part in signaling. Few publications have proposed the possible mechanisms
of cancerogenesis, involving alterations in oxidation, glycolysis, and tricarboxylic acid cycle.
However, there is still a lack of knowledge about how lipids influence the development
of PCa [2–5]. For this reason, it is important to understand the pathogenesis of PCa.
Additionally, epidemiological studies suggest that fat consumption and supplementation
may have a significant impact on the development and progression of PCa [6]. Thus,
recognizing the contribution of lipids in tumor development may be crucial in the diagnosis
and treatment of this disease.

Undoubtedly, highly proliferative cancer cells have a higher demand for lipids. Sub-
uru pointed out that metabolic shift from catabolic to anabolic processes is a hallmark of
cancer cells [4]. In the case of PCa, upregulation of fatty acids, cholesterol, phospholipids,
and androgens may be observed as a consequence of the overexpression of fatty acid
synthase (FAS) or extracellular lipolysis of triglycerides [2,3]. Contrary to normal somatic
cells, cancer cells use de novo synthesis of fatty acids for signaling, for building the cellular
membrane, or for energy supply [7].From the clinical point of view, overexpression of FAS
enhances the invasion ability of cancer cells [7]. Several studies have indicated phospho-
lipids as important disease predictors. Ramirez de Molina et al. [8] showed the increased
concentration of two major structural phospholipids, namely phosphatidylcholine (PC) and
phosphatidylethanolamine (PE), as crucial membrane components in rapidly proliferating
cancer cells. This was due to the enhanced expression and activity of choline kinase, found
as an oncogenic factor [8,9]. Lipidomics is one of the analytical tools that can be success-
fully used to identify, quantify, and finally understand the structure and function of lipids
associated with cancer development. However, due to the high diversity in a structure
(headgroup or location 1’ of double bonds, as well as the linkage between the functional
groups in the molecule), determination of all groups of lipids is impossible with the use of
one universal method [10]. For this reason, mass spectrometry (MS) is widely applied in
lipidomics, as it can characterize the analytes by their mass-to-charge ratios (m/z) without
the need for a sample separation step. In addition, analysis with MS allows obtaining
information about the structure, by the study of fragmentation reaction. Furthermore, MS
is characterized by high selectivity and sensitivity. However, its application requires the
ionization of analytes. The most popular methods used for ionization are atmospheric
pressure chemical ionization [11] and electrospray ionization (ESI) [12].

Nowadays, there is growing interest in the use of the matrix-assisted laser desorption
and ionization (MALDI) method due to its high sensitivity (few attomoles of an analyte
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is sufficient) and ease of use. Although MALDI-MS is widely applied in proteomics and
genomics, its use in lipidomics is yet to be investigated [13].

The main aim of this study was to explore the lipidomic signature of PCa. A target
lipidomic analysis was performed using two complementary analytical techniques, namely
MALDI-ToF/MS and ESI-QqQ/MS, to identify the phospholipids that may potentially
serve as prognostic and/or early diagnostic markers of PCa. For this purpose, 80 fresh
prostate tissue samples were collected from patients with PCa (n = 40) and non-cancers
(n = 40). The obtained results were analyzed using multivariate statistical analysis and
chemometric method to select the lipidomic metabolites with a greater ability to discrimi-
nate between the controls and PCa cases.

2. Materials and Methods
2.1. Biological Material

All the participants enrolled in the study were selected on the basis of an exami-
nation carried out at the Department of Urology at Medical University of Gdańsk and
were matched according to sex and age (p = 0.30). The mean age of the PCa patients was
67.5 ± 5.5 years, and that of the controls was 68.1 ± 6.46 years. The participants were
divided into two groups: patients with diagnosed PCa (n = 40) and non-cancer controls
(n = 40). The studied group consisted of samples obtained from patients with diagnosed
PCa. The diagnosis was done on the basis of elevated PSA level during screening tests,
digital rectal examination, ultrasound examination, and histopathological evaluation. The
mean PSA level was 14.80 ± 12. ng/mL, where maximum concentration was 45.53 ng/mL
and minimum 0.008 ng/mL. Tissue samples were evaluated according to a histopathologi-
cal protocol and Gleason grading. The Gleason grade was ranging from 6 to 10. Among
them, 11 cases were assigned by Gleason grade 6, 14 corresponded to Gleason grade 7, 4
described by Gleason grade 8, 10 cases assigned as Gleason grade 9, and 1 case described
by Gleason grade 10. The characteristics according to the Gleason score are listed in Table 1.
The control group was consisted of samples obtained from patients with diagnosed benign
prostatic hyperplasia. The mean PSA level in non-cancer controls was 6.34 ± 3.82 ng/mL,
with minimum value 0.868 ng/mL and maximum 18 ng/mL.

Exclusion criteria included treatment with hormones, metastasis to other organs, and
presence of diabetes or any other chronic diseases. The study was conducted in accordance
with Independent Commission for Bioethics Research, Medical University of Gdańsk
(NKBBN/432-119/2017). All the subjects gave written consent to participate.

Table 1. Characteristic of samples obtained from prostate cancer patients.

Case No. PSA Level [ng/mL] Gleason

1 0.008 7
2 0.44 10
3 3.85 9
4 4.10 6
5 4.18 7
6 4.69 6
7 4.70 6
8 4.90 6
9 5.00 7
10 5.01 6
11 5.90 8
12 6.80 7
13 6.80 7
14 7.00 7
15 7.47 7
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Table 1. Cont.

Case No. PSA Level [ng/mL] Gleason

16 7.50 7
17 8.00 6
18 8.00 9
19 8.26 6
20 8.29 9
21 8.69 6
22 9.00 8
23 9.30 7
24 10.40 7
25 11.00 6
26 13.00 9
27 15.00 7
28 15.30 7
29 20.90 9
30 22.09 6
31 26.00 9
32 27.00 7
33 28.90 6
34 30.82 9
35 31.00 7
36 34.67 9
37 37.00 8
38 42.36 9
39 43.90 8
40 45.04 9

2.2. Chemicals

Water LC–MS Chromasolv, ethanol, acetonitrile, trifluoroacetic acid, formic acid,
and isopropanol were obtained from Sigma Aldrich (Steinheim, Germany). Chloroform
was purchased from POCH (Poland), while ultrapure water was obtained with the Milli-
Q water system purchased from Millipore (Bedford, MA, USA). All chemicals needed
for the MALDI-MS analysis (with the highest available purity) were purchased from
Fluka Feinchemikalien GmbH (part of Sigma Aldrich). α-Cyano-4-hydroxycinnamic acid
(HCCA) was obtained from Sigma Aldrich (St. Louis, MO, USA) and used as a matrix
for the MALDI analysis. Sample decomposition was carried out using polished steel
targets (Bruker Daltonik). External calibration was performed using protein Calibration
Standards I (Bruker Daltonik, Bremen, Germany). Standards of L-phosphatidylcholine
(≥99%) (PC), L-phosphatidylethanolamine (≥98%) (PE), sphingomyelin (SM) (≥95%), L-
lysophosphatidylcholine (≥98%) (LPC), L-lysophosphatidylethanolamine (≥97%) (LPE), L-
phosphatidylglycerol (≥98%) (PG), L-lysophosphatidylglycerol (≥98%) (LPG), L-phospha-
tidylinositol (≥98%) (PI), L-lysophosphatidylinositol (≥98%) (LPI), phosphatidic acid
(≥98%) (PA), and lysophosphatidic acid (≥98%) (LPA) from egg yolk were purchased from
Larodan Lipids (Malmö, Sweden).

2.3. Sample Preparation
2.3.1. Preparation of Chloroform:Methanol Solution (1:2; v/v)

The extraction solution was prepared by adding 150 mL of chloroform to 300 mL of
methanol in a volumetric glass. The solution was vortex-mixed.

2.3.2. Extraction Procedure for Tissue Samples

Each tissue sample was weighed and transferred into a separate tube. According to
the weight of tissue, an appropriate volume of the prepared extraction solution was added;
for each 10 mg of tissue, 200 µL of chloroform:methanol solution was added. Each sample
was homogenized using a Bullet Blender Storm homogenizer (Next Advance, New York,
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NY, USA). Sample homogenization involved three cycles, with each cycle carried out for
1 min, followed by cooling in ice for 1 min. In the last step, 400 µL of pure water was
added to 1 mg of the tissue sample, and the three cycles of homogenization were repeated
again. Finally, the tubes containing samples were placed in a water bath and sonication
was carried out (15 min, room temperature). Then, the samples were allowed to rest for
15 min to obtain two non-mixed phases. Each organic phase (bottom layer) was collected
and transferred to a new tube. The extracts were evaporated to dryness using a vacuum
concentrator (CentriVap DNA Vacuum Concentrators; Labconco, Kansas City, MO, USA)
for 2 h at 36 ◦C. The dry residue was dissolved in 200 µL of methanol.

2.4. Instrumentation and Lipidomic Profiling
2.4.1. MALDI-ToF/MS Analysis

In the lipidomic analysis, the classical “dry droplet” method was used [14]. The
protocol involved direct spotting of a sample onto a MALDI target. For this purpose,
lipidomic extract of biological samples were first spotted on the surface of a polished
steel target. Then, the sample spots were covered with 1 µL of the HCCA matrix solution.
Finally, the spots were air-dried before the analysis. Each sample was smeared onto MALDI
targets in triplicate. All spectra were acquired on an ultrafleXtreme MALDI-ToF/ToF
mass spectrometer system (Bruker Daltonik, Bremen, Germany). The mass spectra were
calibrated using the cesium triiodide cluster [14]. This system includes modified Nd:YAG
laser (Smartbeam IITM) operating at a wavelength of 355 nm and a frequency of 2 kHz.
Analyses were carried out in linear positive mode at an acceleration voltage of 25 kV. Spectra
were recorded manually in the m/z range of 150–2000 with flexControl and flexAnalysis
software. Each sample was analyzed in triplicate.

2.4.2. ESI-QqQ/MS Analysis

The ESI-MS analyses were carried out using a Shimadzu ESI-MS/MS 8050 system
(Tokyo, Japan), consisting of a binary solvent delivery system (LC-30 AD), a controller
(CBM 20A), and an autosampler (SIL-30A). For instrument control, data acquisition, and
processing, LabSolution 5.8 software was used. Analysis was carried out using isocratic
solvent program. The composition of the mobile phase was as follows: 90% MeOH and
10% of 0.1% HCOOH solution. The solvent flow was set at 0.2 mL /min. The optimal
parameters of MS were as follows: nebulizing gas flow—3.0 L/ min, heating gas flow—
10 L/min, and temperature of the drying gas—250 ◦C. The interface temperature was set
at 300 ◦C, while the heat block temperature was set at 400 ◦C. For the quantification of
phospholipids, species were monitored in the scheduled multiple reaction monitoring
mode. The total dwell time was 1 s. MRM analysis for identification of phospholipids are
listed in Table S1 of Supplementary Materials.

2.5. Statistical Analysis and Chemometrics

Unsupervised and supervised multivariate methods were carried out. The primary
database was normalized by the weight of tissue and consisted of analytical responses from
57 and 33 compounds detected by ESI-QqQ/MS and MALDI-ToF/MS analysis, respec-
tively. Discriminant features were determined by applying Mann–Whitney U-test, using
IBM SPSS Statistics v.23 software. Further data analysis was performed in R environment.
Principal component analysis (PCA) was conducted using “prcomp” R function. For PCA,
it was considered a matrix displaying detected metabolites (variables) and their respective
abundances for each of the analyzed samples. The statistics were performed separately for
matrices containing only results on MALDI-MS or ESI-MS observations. Only data present-
ing at least 10% of total abundance was considered; prior to analysis, the data was scaled
by subtracting variable’s mean and dividing it by the standard deviation. PCA allows
visualizing the general trends of data as well as providing information about the potential
outliers [15]. Compound identification enabled the determination of four main groups of
analytes, namely PCs, LPCs, SMs, and PEs. To search for the relationships between the
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responses of these groups of substances, also in terms of the used analytical technique, a
correlation analysis was performed. Correlation plots were built using “corrplot” package,
and the Spearman rank coefficient was selected as a correlation criterion. Volcano plots
were created using “EnhancedVolcano” package, and p < 0.05 was set as the relevance
criterion. The applied statistical methods provided information about the differences in the
level of metabolites between the two tested groups and the existing intercorrelations.

In the next step, machine learning models were developed to discriminate the studied
classes of samples (control and PCa). For this purpose, artificial neural network (ANN),
as well as random forest (RF) algorithm was employed, applying “neuralnet” and “ran-
domForest” R packages. For ANN, the following parameters were applied: number of
neurons/hidden layers = 10, algorithm = “rprop+” (default, resilient backpropagation with
weight backtracking), differentiable function = “logistic” (logistic/sigmoid function). The
number of neurons in the input layer was 14 (number of variables that were selected for the
model, refer to Section 3.1.4). The neurons constituting the output layer were two (number
of assumed test categories, detailed below in this section). The performed ANN analysis
was conducted in 99 and 228 steps (training epochs) and obtained errors were 0.53 and
5.97, for MALDI-MS and ESI-MS data, respectively. For RF, the following parameters were
applied: number of trees = 2000, number of variables randomly sampled as candidates at
each split = 8, cut-off = 1/k (majority vote wins, where k is the number of classes, i.e., 2).

Variable importance was verified based on the calculated mean decrease in accu-
racy [16] (in the case of RF) and Olden’s method output [17] (in the case of ANN). The data
was split randomly into two groups: one half of the data (50%) comprised the training
set (used for model learning), while the other half was used for testing (the previously
developed model was used to make predictions on this new data; the observed rates of
false positive, false negative, true positive, and true negative were used to evaluate perfor-
mance by class). Ultimately, 10-fold cross-validation was conducted to obtain the mean
accuracy of the final models (validation step); in this step, 95% of the dataset was used
as training set while the remaining 5% were ascribed to the test set. Confusion matrices
and receiver operating characteristic (ROC) curves were created to assess the performance
of the classifiers, with “caret” and “ROCR” packages. ROC curves considered as input
the probabilities computed by the model of a case to be labeled as belonging to a specific
class, in addition to the actual classification values (1 for the state variable, 0 for control
cases). Sensitivity, specificity, and overall model accuracy were provided by examination
of confusion matrix.

3. Results

Lipid analysis was performed using MALDI-ToF/MS and ESI-QqQ/MS in both
positive and negative ionization mode. MALDI-ToF/MS enabled to identify phospholipids
containing choline (PC, LPC, SM) and ethanolamine (PE, LPE), while phosphatidylinositol
(PI), phosphatidylserine (PS), phosphatidylglycerol (PG), and PA were identified by ESI-
QqQ/MS.

The representative mass spectra of tissue lipidomic fingerprints obtained from the
MALDI-ToF/MS and ESI-QqQ/MS analysis are presented in Figures 1 and 2. Comparing
the mass spectra, it can be observed that both the MALDI-ToF/MS and ESI-QqQ/MS
techniques gave complementary information on lipids. Figure 1A presents the full scan
in the positive ionization mode for the MALDI-ToF/MS analysis, and Figure 2A shows
the full scan in the negative ionization mode for ESI-QqQ/MS. Moreover, tandem MS
analysis was performed for each compound to obtain the fragmentation spectra. Exemplary
fragmentation spectra as well as the probable fragmentation pathway of SM (d18:1/16:0)
and PS are presented in Figures 1B and 2B, respectively. SMs are phospholipids containing
ceramide and often also choline. The m/z 703.651 represents a protonated molecular ion
[M+H]+. The ion detected at m/z 644.812 corresponds to the neutral loss of trimethylamine
[M+H-N(CH3)3]+ (59 u). The fragments detected at m/z 86.110, 104.146, and 184.173
correspond to “dehydrocholine” [C5H12N]+, choline [C5H13NO+H]+, and “head of PC”
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[C5H14NPO4+H]+, respectively. The fragments observed at m/z 264.422 correspond to a
dehydrated long-chain base (18:1 chain), which is characteristic of the SM structure. The
elimination of 464.435 u from the m/z 703.651 gave rise to an ion at m/z 239 corresponding
to palmitic acid residue.

Figure 1. Mass spectra of the lipidomic profile obtained from MALDI-ToF/MS in positive ion mode (A) and MS/MS spectra
and fragmentation pathway of SM (d18:1/16:0) m/z 703.651 (B).

PS was identified in the negative ion mode. The ions at m/z 700.95 and 603.05 resulted
from the neutral losses of a serine head group [C3H5NO2]− (87.0 u) and phosphoserine
moiety [C3H8NPO6]− (185.2 u), respectively. The peak at m/z 281.40 corresponds to the
neutral loss of oleic acid (C18:1). The fragment detected at m/z 504.05 corresponds to
the loss of stearic acid [M-R1COOH]−. The ion at m/z 419.55 probably resulted from the
neutral loss of oleic acid with a serine head group.
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Figure 2. Mass spectra of the lipidomic profile obtained from ESI-QqQ/MS in negative ion mode (A) and MS/MS spectra
and fragmentation pathway of PS m/z 788.70 (B).

3.1. Chemometrics and Statistical Validation
3.1.1. Principal Component Analysis

The PCA plots are presented in Figure 3. Figure 3A corresponds to the data obtained
with the ESI-QqQ/MS approach, while the PCA model shown in Figure 3B was built on
the data obtained using the MALDI-ToF/MS technique. Samples are dispersed on the plot,
based on their biological variability. The presented general trends did not vary with respect
to the used technique. For both ESI-MS and MALDI-MS data, the first two components
were able to describe around 44% of the total variance. Considering PCs 3 and 4 (not
shown), these explained the following proportions of total variance: 8.38% and 5.76% (for
ESI-MS data), 8.72% and 5.97% (for MALDI-MS data), respectively; In this sense, it was
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verified that projections including other principal components were still not able to improve
the visualization of trends according to sample groups. In general, formation of isolated
clusters according to the group of samples was not observed, which indicates that the total
variance within the dataset is mainly attributed to various factors (age, tumor staging,
intake of medicines, diet, inter-variability of metabolism, etc.). The absence of spontaneous
distribution among the studied profile classes indicates that supervised statistical methods
may be required to discriminate the profiles.

Figure 3. PCA score plots built on the data from ESI-QqQ/MS (A) and MALDI-ToF/MS (B) analysis. Diamonds and circles
correspond to the profiles belonging to the PCa patients and control group, respectively.

3.1.2. Correlation Analysis

Correlation analysis was carried out using the total signals of phospholipids (summed
up responses, per class of analyte). This approach took into consideration the correspond-
ing 29 metabolites that were detected by both assays (MALDI-MS and ESI MS), namely:
PE 7:0/7:0, LPC 16:1, LPC 16:0, LPC 17:1, LPC 17:0, LPC 18:3, LPC 18:2, LPC 18:1, LPC 18:0,
SM d18:1/16:1, SM d18:1/16:0, PC 16:0/14:1, SM d18:1/18:3, PC 16:0/16:1, PC 16:0/16:0,
PC 16:1/18:2, PC 16:0/18:2, PC 16:0/18:1, PC 18:2/18:3, PC 16:0/20:4, PC 18:1/18:2, PC
18:1/18:1, SM d18:1/22:0, PC 18:0/18:1, PE 20:1/20:4, PC 17:0/20:4, PC 16:0/22:6, PC
18:1/20:4, and PC 18:1/20:3. Figure 4 shows that a positive moderation correlation (Spear-
man coefficient, rho > 0.4) was detected between the total LPC and total SM/PE/PC
signals, for both the analytical techniques used. In both cases, a strong positive correlation
(rho > 0.9) was found between the total SM and PC. However, it should be noticed that no
relevant correlation (empty squares) or a weaker correlation (rho < 0.4) was noted between
most of the data obtained using the two different techniques. Negative correlations were
also not observed.
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Figure 4. Correlation matrix built on the data using total response of phospholipids, in the case of
data acquired from both techniques (MALDI: MALDI-ToF/MS analysis, ESI: ESI-QqQ/MS analysis).
Color code refers to rho coefficient; the size of circles is proportional to the strength of correlations;
blank cells correspond to nonsignificant bicorrelations (p > 0.05).

3.1.3. Assessment of Discriminating Variables

Volcano plots (Figure 5) were used for supervised data inspection, to select the metabo-
lites characterized by the most discriminating power. This type of plot allows combined
visualization of fold change in the analyte’s response and its significance; the first one is
expressed in terms of log2 of analyte intensity in the positive group divided by its intensity
in the control group, and the latter is expressed in terms of −log10 of p value.

Figure 5. Volcano plots prepared from the data acquired from the ESI-QqQ/MS (A) and MALDI-
ToF/MS (B) analysis, displaying the comparison between PCa vs. control cases. NS-nonsignificant;
FC-fold change; significance threshold, p < 0.05.
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In a basic approach, metabolites placed above the threshold limit (horizontal dashed
line) can be considered as distinguishing features. Compounds displayed on the left or
right side of the graph correspond to those with increased or decreased responses in the
positive cases, respectively. Compounds placed toward the top of the graph are those that
displayed a greater significance as discriminant variables. Variables differentiating the two
tested groups are indicated by blue and red colors in the graphs. Blue dots correspond to
statistically significant variables (p < 0.05), while red ones refer to statistically significant
variables with a fold change greater than 1.

Considering the cancer cases against the controls, in the data obtained from the
MALDI-ToF/MS analysis, only one variable out of 33, namely PC 18:0/22:5, was indicated
as a discriminant. The PC 18:0/22:5 level was downregulated in reference to controls. In
the case of data obtained using the ESI-QqQ/MS analysis, 14 variables out of 57 were found
as statistically significant. Among them, PCs and SMs can be noticed. All the indicated
metabolites, PC 16:0/14:0, PC 16:0/16:1, PC 16:0/18:2, PC 16:0/18:1, PC 16:0/18:0, PC
18:1/18:2, PC 18:1/18:1, PC 18:0/18:1, PC 18:1/20:4, SM d18:1/24:2, PC 18:1/20:2, PC
18:1/20:1, SM d18:1/24:0, and PC 18:1/20:0, appeared to be upregulated in the positive
samples. These results suggest that, for both types of analysis, latent metabolic patterns
may be associated with the PCa cases. Therefore, supervised statistical models may allow
discrimination between clinical conditions based on selected metabolites from the analyzed
lipidome.

3.1.4. Machine Learning Predictive Models

Statistical models enabling the prediction of the studied conditions were developed.
The RF approach is used for the examination of latent patterns and is based on the genera-
tion of multiple decision trees from independent training sets. The combined outputs fit
the best solution for the attempted prediction [18]. In the first step, all the variables were
considered for generating a preliminary model, and then the importance of variables was
evaluated in terms of the calculated mean decrease in final accuracy if that specific feature
would be removed from the system. The number of selected features to be incorporated
in the final model should be as low as possible, without hindering the system’s accuracy.
In this manner, 14 features ranked as the most relevant were chosen. Figure 6A,B present
the metabolites selected from the ESI-QqQ/MS and MALDI-ToF/MS data, respectively,
and their contribution to an output corresponding to the classes control or PCa (green and
blue bars, respectively). For the ESI-QqQ/MS analysis, PC 18:1/18:2, PC 16:0/14:1, and PC
18:1/20:1 were found to be notably valuable in the discrimination between the investigated
classes; the first one was positively correlated to the cancer group, the others were mostly
positively correlated to controls and negatively correlated to PCa. In the MALDI-ToF/MS
data, SM d18:1/18:3 was identified as the variable displaying greater decision-making
power, mainly related to the PCa class. The ROC curves were built from the calculated
probabilities derived from the developed classifiers (Figure 6C,D). The obtained area under
the curve indicated that both datasets showed adequate classification performance, with
the ESI-MS data providing a superior accuracy. The sensitivity and specificity of the pro-
posed RF models ranged from 64.5 to 74.2% and from 84.5 to 89.0%, respectively. Table 2
summarizes the parameters related to the suitability of the prepared models.

The ANN algorithm is inspired by the neurons of the brain, where a given input
elicits responses represented by the interlayer connection weights, which influence to a
lesser or greater extent a certain outcome (ANN output) [19]. As previously described, a
preliminary model was built considering all the available variables, and from these, 14
were selected based on their importance in terms of combined layer weights culminating
in a certain output (Olden’s method). Figure 7A,B present the variable importance plots
displaying the chosen features. In the case of the ESI-QqQ/MS data, PC 16:0/18:1, PC
16:0/18:2, and PC 12:0/12:0 were presented as particularly valuable variables; all of these
were positively correlated with the cancer group and negatively correlated with the control
cohort. Regarding the results of the MALDI-ToF/MS analysis, PC 16:0/14:1, LPC 20:3,
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LPC 17:0, LPC 16:1, and PE 7:0/7:0 appeared to be specifically related to the PCa samples,
while showing a negative association with controls. The ANN algorithm applied to the
ESI-QqQ/MS and MALDI-ToF/MS results showed an accuracy of 72.5 and 87.5% in the
validation step. The ROC curves (Figure 7C,D) demonstrated that the sensitivity and
specificity of the proposed ANN classifier ranged from 82.2 to 91.1% and from 64.5 to
96.8%, respectively. When considering adequacy of sensitivity and specificity parameters,
the ANN model was demonstrated to be more suitable for the available data than the
RF classifier. For ANN, it can be observed that MALDI-MS data as input provided even
superior value of overall model accuracy in the validation phase. Considering that the used
data possibly contain several relevant nonlinear relationships (please refer to Section 2.5), it
can be expected that the ANN algorithm will perform better than RF once it is reported that
this first model has superior ability to solve nonlinear problems and deal with noisy data.

Figure 6. RF analysis—variable importance plot referring to the 14 most relevant features selected
from the ESI-QqQ/MS (A) and MALDI-ToF/MS (B) analysis; ROC curves corresponding to the
plotted probabilities calculated from the developed model for the ESI-QqQ/MS (C) and MALDI-
ToF/MS (D) data, when PCa is labeled as the state variable.
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Figure 7. ANN analysis—variable importance plot referring to the 14 most relevant features selected
from the ESI-QqQ/MS (A) and MALDI-ToF/MS (B) analysis; ROC curves corresponding to the
plotted probabilities calculated from the developed model for the ESI-QqQ/MS (C) and MALDI-
ToF/MS (D) data, when PCa is labeled as the state variable.

Table 2. Information regarding the performance of the developed machine learning models (RF—
random forest, ANN—artificial neural network, AUC—area under the curve).

Model Statistics PCa vs. Control

RF

ESI-QqQ/MS

Sensitivity 74.20%

Specificity 84.50%

AUC 0.866

Calculated overall accuracy 76.4% (training set)
80.3% (validation step)

MALDI-ToF/MS

Sensitivity 64.50%

Specificity 89.00%

AUC 0.838

Calculated overall accuracy 75.0% (training set)
79.0% (validation step)

ANN

ESI-QqQ/MS

Sensitivity 91.10%

Specificity 64.50%

AUC 0.810

Calculated overall accuracy 80.2% (training set)
72.5% (validation step)

MALDI-ToF/MS

Sensitivity 82.20%

Specificity 96.80%

AUC 0.960

Calculated overall accuracy 92.5% (training set)
87.5% (validation step)
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4. Discussion

Tissue is considered to be a quite difficult biological matrix. Collection of tissue
is invasive and problematic due to ethical reasons. Although, the tissue matrix is the
most informative one and a proper histopathological assessment coupled with lipidomic
study may reveal the complex signature of the changes occurring during carcinogenesis
and disease progression. From the histopathological point of view, tumor progression is
associated with morphological changes. Undoubtedly, alterations in the tissue morphology
and composition of the cell membrane may affect the transport system, cellular tightness,
and the activity of enzymes present in the membrane. All these may be crucial for cell
proliferation and growth contributing to the progression of PCa [5].

Previous lipidomic studies have determined the molecular mechanism underlying
PCa development. Increased levels of fatty acids in tumors may be due to the increased
expression of the biosynthetic genes and may result from the upregulated conversion
of glucose and/or glutamine into cytosolic acetyl-CoA. Taking this into consideration,
it is reasonable to assume that the production of phospholipids is accelerated during
carcinogenesis [20]. The level of phospholipids is strictly associated with the clinical
parameters of PCa (clinical stadium, pathological grade, and Gleason score) [5]. It has
been hypothesized that the total increase in the level of phospholipids is linked with
further increased progression of PCa and the intensified need for phospholipids during
fast cell proliferation which is a characteristic of carcinogenesis [5]. The abovementioned
mechanism is one of the possible metabolic pathways in tumor development. Suburu
et al. [4] pointed out that metabolic shift from catabolic to anabolic processes is a hallmark
of cancer cells. Oxidative phosphorylation is replaced by glycolysis which delivers the
basic precursors for the synthesis of membrane, protein, and nucleic acid [20]. Furthermore,
this hypothesis was confirmed by the study conducted on cell culture by [21].

Neoplasm microenvironment seems to be sensitive to alterations in fatty acid syn-
thesis pathways, as these provide resources that are essential for tumor progression. In
malignancies, factors such as altered availability of substrates, differential gene expression,
and changes in enzymatic activity are potentially connected with variations in the levels of
PCs. Moreover, biosynthesis and catabolism of PCs may be associated with the processes
related to cell survival, proliferation, and programmed death, which highlight the role of
PCs and their derivatives in the key mechanisms involved in cancer development [20].

In the proposed study, two lipidomic approaches, namely MALDI-TOF/MS and ESI-
QqQ/MS were used in order to confirm the hypothesis regarding changes in lipidomic
signature within cancerogenesis.

The innovative model for searching of potential prostate cancer biomarkers supported
by advanced chemometric analysis was proposed. By definition, the ionizing MALDI
and ESI in a broad spectrum of specificities are complementary to each other. However,
the MALDI-TOF/MS technique allows for a global imaging of the current physiological
state of the organism at the molecular level. Undoubtedly the main advantage of this
method is the ability to monitor changes which occur for a whole panel of metabolites
rather than for individual ones. Moreover, this method requires small amount of sample
and relatively simple sample preparation protocol. Additionally, MALDI-TOF/MS can
be characterized by high specificity and the possibility for process automation. MALDI-
TOF/MS is commonly used in another diagnostic area in the field of bacteria identification
(biotyper) or sequencing of protein.

The second method used within the project is ESI-QqQ/MS. Semiquantitative analysis
followed by the advanced chemometric analysis is enabled to select metabolites assigned
as the most discriminative for tested groups. This analytical approach can be found as a
comprehensive method which provides information about metabolic changes occurring
during carcinogenesis.

In this study, the application of lipidomic analysis enabled us to explore the alterations
in the synthesis and metabolism of phospholipids. A total of 26 phospholipids were
selected with the use of the chemometric approach. Among them, four subclasses, namely
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PC (15 metabolites), LPC (7 metabolites), PE (1 metabolite), and SM (3 metabolites), can
be marked (Figure 8). It is worthy to mention that the use of univariate methods to
assess the discriminating power of metabolites is a straightforward approach but may
not explain the collective contribution of variables to a specific condition. An alternative
relies on the combination of statistical techniques, to better represent relevant relationships
between variables and to provide a scheme of how condition specification is given by
these features [22]. Nevertheless, the strategy here presented has exploratory value, being
useful to indicate possible discriminating features that can be further investigated and
submitted to experimental validation procedures in order to confirm their status as potential
biomarkers.

Figure 8. Variables assigned as statistically significant for PCa development.

A detailed description of statistically significant metabolites determined by the ac-
knowledge method is shown in Table 3. As can be observed, only 7 out of 29 phospholipids
(over 24%) were selected based on each of the applied statistical methods. Among them,
PC 16:0/16:1, PC 16:0/18:2, PC 18:0/22:5, PC 18:1/18:2, PC 18:1/20:0, PC 18:1/20:4, and
SM d18:1/24:0 were assigned as metabolites linked with PCa development, according to
the three used statistical approaches. Further, 10 of the phospholipids (34.5%) were selected
using two out of three statistical methods. These included LPC 16:1, LPC 18:3, LPC 20:3,
LPC 20:4, PC 16:0/14:1, PC 16:0/18:0, PC 16:0/18:1, PC 18:0/18:1, PC 18:1/20:1, and PC
18:1/20:2.



Cancers 2021, 13, 2000 16 of 20

Table 3. Compounds assigned as metabolites with discriminant power determined using the ac-
knowledge method.

Compound
Statistical Method

Volcano Plot RF ANN

LPC 16:1 + +
LPC 17:0 +
LPC 18:0 +
LPC 18:1 +
LPC 18:3 + +
LPC 20:3 + +
LPC 20:4 + +

PC 16:0/14:0 +
PC 16:0/14:1 + +
PC 16:0/16:0 +
PC 16:0/16:1 + + +
PC 16:0/18:0 + +
PC 16:0/18:1 + +
PC 16:0/18:2 + + +
PC 16:0/22:6 +
PC 18:0/18:1 + +
PC 18:0/22:5 + + +
PC 18:1/18:2 + + +
PC 18:1/18:1 +
PC 18:1/20:0 + + +
PC 18:1/20:1 + +
PC 18:1/20:2 + +
PC 18:1/20:3 +
PC 18:1/20:4 + + +

PE 7:0/7:0 +
SM d18:1/16:1 +
SM d18:1/24:0 + + +
SM d18:1/24:1 +
SM d18:1/24:2 +

The levels of the abovementioned metabolites were upregulated in the case of PCa
samples. However, a great variance of individual lipid species in the same lipid class was
observed (e.g., among the PCs). Phosphatidylcholine is the main phospholipid occurring
in eukaryotic cell membranes. In mammalian cells, PC can be de novo synthesized by two
independent pathways. One of them is the CDP-choline pathway, which is responsible for
the majority of de novo PC biosynthesis in mammalian tissues. The other mechanism of
PC production is based on the methylation of PE catalyzed by PE N-methyltransferase. PC
synthesized by these pathways is further modified through the Lands cycle remodeling
pathway, where fatty acids at the sn-2 position are replaced by the action of phospholipase
A2 (iPLA2) and reacylation by lyso-PC acyltransferase. The high variation in the level of
metabolites may be explained by an imbalance between the synthesis and remodeling of
phospholipids. For this reason, special attention should be paid to the alterations in the
expression level of the key enzyme, lysophosphatidylcholine acyltransferase 1 (LPCAT1),
in the Lands cycle remodeling pathway [23]. A similar observation was reported by [23]
and [24]. Moreover, the authors indicated that the level of phosphocholines increases
with the increasing grade of PCa [23]. The main pathways of phospholipid synthesis and
modeling are presented in Figure 9 (adapted from Jones et al. ([25]).
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Figure 9. Phospholipids synthesis and modeling pathways. Acyl Co A—acyl coenzyme A; FA—fatty acid; GPAT
1/3—glycerol-3-phosphate acyltransferase 1/3; LPA—lysophosphatidic acid; APGAT 1—acylglycerol-3-phosphate O-
acyltransferase 1; PA—phosphatidic acid; CDS—cytidylyltransferase; CDP-DG—cytidine 5’-diphosphocholine diacyl-
glycerol; PIS—phosphatidylinositol synthase; PI—phosphatidylinositol; PGPS—phosphatidylglycerolphosphate syn-
thase; PGP—phosphatidylglycerolphosphate; PG—phosphatidylglycerol; CLS—cardiolipin synthase; CL—cardiolipin;
PAP—phosphatidic acid phosphatase; CDP—cytidine 5′-diphosphocholine; CEPT—choline/ethanolamine phospho-
transferase; DG—diacylglycerol; PE—phosphatidylethanoloamine; PSD 1—phosphatidylserine decarboxylase; PS—
phosphatidylserine; PSS—phosphatidylserine synthase; PEMT—phosphatidylethanolamine N-methyltransferase; TG—
triacylglycerides; DGAT—diacylglyceride acyltransferase; SM—sphingomyelin; Cer—ceramide; PC—phosphatidylcholine;
CPT—phosphatidylcholine; SMS—sphingomyelin synthase.

The determined increase in the level of phosphocholine is in accordance with the
results reported by [8]. The authors indicated the increased concentration of two major
structural phospholipids, namely PC and PE, in PCa cells. It can be assumed that this
increase in concentration is a consequence of enhanced expression and activity of choline
kinase, which is found as an oncogenic factor [8].

Another metabolite identified as statistically significant is LPC. LPC is known as a
metabolite which is an substrate known as a dominant metabolite in cellular signaling.
LPC plays a significant role in the transport of glycerophospholipids between tissues. It is
also involved in the activation of G-protein-coupled receptors, initiates cell proliferation,
migration, inflammation, and migration, and is important for cell survival [26,27].

SM was also assigned as a metabolite discriminating metabolite between the two
tested groups. It is involved in several cellular processes such as cell death and survival.
The biological activity of SM is related to cell signaling reactions. This phospholipid is
mainly involved in aggregation and fusion. It is also assumed to play a significant role in
the development of resistance to chemotherapy [28].

Phospholipids were the topic of interest of the study conducted by Cvetković et al. [5].
The authors noticed that PE is one of the most sensitive plasma phospholipids and may
be considered as a specific indicator of disease development and progression (Cvetković
et al., 2012). Phospholipids were also determined in urine samples by Min et al. [25]. The
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authors identified 70 metabolites belonging to the classes of PCs (21), PEs (11), PSs (17), PIs
(11), PAs (7), and PGs (3). Based on the statistical analysis, 10 metabolites were assigned
as statistically significant. Among them, increased concentrations of PS 18:0/18:1 and PS
16:0/22:6 were observed in the PCa patients, while metabolites such as PS 18:1/18:0, PS
18:0/20:5, PI 18:0/18:1, and PI 16:1/20:2 were downregulated in the patients in compar-
ison to the controls. Moreover, two PS molecules (PS 18:1/18:0 and PS 18:0/20:5) were
assigned as the most discriminative. However, the authors indicated that the results were
characterized by a relatively large variation in individual concentrations. This observation
is in accordance with the results of the present study, and can be explained by the huge
biological variability [26]. Taking into account the trend of changes, the results presented
by Min et al. were not in accordance with those presented by Cvetković et al. [5], who ob-
served that all groups of phospholipids were decreased in comparison to the control group.
Undoubtedly, this was due to the use of a different matrix—urine, which is considered as
an organism’s elimination route, and is mostly composed of small and polar metabolites.
Moreover, in the study performed by Min et al. [29], only a small set of samples were
analyzed. It should also be pointed out that the samples were not matched according to
the subjects’ parameters (age, weight).

Additionally, the correlation between the two analyzed methods was evaluated in
this study. As observed, the results proved the rightness of the use of the two imaging
methods, with each of them being more appropriate and sensitive to different metabolites.
The correlation between the data obtained from these techniques was rather non significant,
but it should be mentioned that a weak correlation was observed. This proved that the
use of the two complementary techniques allowed obtaining a complex picture of the
alterations occurring in lipid profiles during disease development or progression.

The lack of correlations between the responses from the individual metabolites de-
tected and confirmed by ESI-QqQ/MS and MALDI-ToF/MS analyses may be due to the
use of different protocols for sample preparation. Apart from that, the different physico-
chemical properties of the metabolites can influence the efficiency of sample ionization, and
therefore, detection, depending on the different mechanisms, is associated with the used
technique. Determination of qualitative and quantitative correlations within phospholipid
“fingerprints” creates the basis for the development of quick and specific diagnostic meth-
ods for cancer diseases, including prostate cancer. Continuous development and acquired
knowledge give new opportunities in the investigation and validation of new sensitive,
diagnostic tests. The presented research gives a new insight for fast and specific screening
tests directed towards prostate cancer. The possibility of lipidomic profiling directly from
the tissue with the use of imaging methods can also aid the formulation of more accurate
diagnosis and prognosis. Potential biomarkers (discriminating features) pointed out by this
study can be further investigated in other biological matrices. The determination of these
biomarkers may contribute to the selection and monitoring of therapeutic protocols. The
proposed techniques may serve as complementary exam, which could be implemented sep-
arately or together with bioinformatics approaches in the promotion of timely diagnostics.
The prepared statistical models can be implemented to an automated streamline workflow,
enabling the generation of a diagnosis report right after processing of analytical data. Such
statistical models can be continuously improved by inclusion of expanded learning data.
The upload of additional model data can provide outputs containing more specific clinical
information.

Apart from this, studies on tissue samples enable to validate the biochemical source
of candidate biomarkers reported elsewhere. The comprehensive investigation of changes
in lipids metabolism in case of prostate cancer can assist the elucidation of molecular
mechanisms associated to this disease, which are so far unknown. A deeper understand-
ing of affected biochemical pathways can serve the development of novel, personalized
therapeutic approaches.
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5. Conclusions

In the case of PCa development, changes in the lipid metabolism lead to the recon-
figuration of the existing metabolome. Although several studies have been conducted
analyzing the role of lipids in cancer, specific underlying mechanisms are still unknown.
Moreover, it remains unclear if the observed metabolic changes are caused by AR repro-
gramming or if metabolome alteration leads to the reprogramming of the AR activity. For
this reason, the present study focused on demonstrating the alterations in lipid synthesis
and catabolism in PCa. Two analytical platforms were evaluated, and the results obtained
from both approaches indicated that PCa tissues are characterized by modified lipid pat-
terns. A greater number of metabolites and discriminating features were detected by using
the ESI-QqQ/MS technique. The response of individual metabolites did not appear to be
correlated when considering the two analytical techniques used. However, a notably strong
correlation was found between total PC and SM in both data. The classification models
developed based on the RF and ANN algorithms were found to be robust and enabled the
prediction of the studied cases with a mean accuracy of at least 72%. Superior classifier
performance was observed by using ANN for MALDI-ToF/MS data. This suggests that
although a lower number of metabolites were detected by this type of analysis, these
configured as quite characteristic patterns, serving to discriminate lipidomic profiles into
controls and PCa cases.

Nevertheless, in the further stages of the study, several limitations should be con-
sidered. Undoubtedly, the study should be performed on a larger population of patients.
Different stages of the disease should be taken into account. Secondly, obtained results
should be validated by using other biological matrices. Finally, lipidomic metabolism and
synthesis, which appears to play a crucial role in in CaP development, should be studied
more carefully.

Undoubtedly, further multidisciplinary investigations should be carried out focusing
on several factors in order to discover the unknown mechanisms, which could improve the
diagnosis and treatment of PCa.
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