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ABSTRACT: As one of the most important post-translational modifications (PTM), lysine acetylation (Kace) plays an important
role in various biological activities. Traditional experimental methods for identifying Kace sites are inefficient and expensive. Instead,
several machine learning methods have been developed for Kace site prediction, and hand-crafted features have been used to encode
the protein sequences. However, there are still two challenges: the complex biological information may be under-represented by
these manmade features and the small sample issue of some species needs to be addressed. We propose a novel model, MSTL-Kace,
which was developed based on transfer learning strategy with pretrained bidirectional encoder representations from transformers
(BERT) model. In this model, the high-level embeddings were extracted from species-specific BERT models, and a two-stage fine-
tuning strategy was used to deal with small sample issue. Specifically, a domain-specific BERT model was pretrained using all of the
sequences in our data sets, which was then fine-tuned, or two-stage fine-tuned based on the training data set of each species to obtain
the species-specific BERT models. Afterward, the embeddings of residues were extracted from the fine-tuned model and fed to the
different downstream learning algorithms. After comparison, the best model for the six prokaryotic species was built by using a
random forest. The results for the independent test sets show that our model outperforms the state-of-the-art methods on all six
species. The source codes and data for MSTL-Kace are available at https://github.com/leo97king/MSTL-Kace.

1. INTRODUCTION
Protein post-translational modifications (PTM) play pivotal
roles in bioregulatory processes, including cellular metabolism,
DNA repair, gene activation, gene regulation, and signaling
processes.1−3 Common types of PTM include crotonylation,
methylation, phosphorylation, ubiquitination, and acetylation.
As one of the most important PTMs, lysine acetylation (Kace)
exists in both prokaryotes and eukaryotes and is universally
present in the nucleus and cytoplasm. According to previous
studies, Kace is involved in several important physiological
functions including transcriptional regulation, regulation of
signaling pathways, metabolic regulation, and regulation of
protein stability.4

Identification of lysine acetylation sites is essential in the
study of acetylation, and it is necessary to develop efficient
methods to detect Kace sites. Although traditional exper-
imental methods can identify Kace sites, they are inefficient
and expensive. Therefore, researchers have developed

computational methods to predict lysine acetylation sites.5−14

In earlier years, most predictors were developed for identifying
Kace in eukaryotes, and studies on prokaryotes are lacking.

In recent years, with the development of artificial
intelligence technology and its application to bioinformatics,
several methods have been developed for predicting Kace sites
of prokaryotes based on machine learning (ML) and deep
learning (DL). Among them, the representative ones are
STALLION15 and DNNAce.16 In 2018, Chen et al. developed
a model, ProAcePred, to predict Kace sites of 9 prokaryotic
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species.12 In their work, the authors extracted 7 kinds of
features which were then optimized by elastic net. Based on
the optimized feature subsets, SVM was used to build the
models. Yu et al. constructed a deep learning model, DNNAce,
for acetylation sites prediction. They used the same data sets as
in Chen et al. work.12 For building DNNAce, six types of
features were extracted from protein sequences, and Group
Lasso was used to remove the irrelevant features. Based on the
selected features, a feedforward neural network (FNN) was
used to build the models. STALLION was developed based on
the data set from ProAcePred 2.0,13 an updated version of
ProAcePred, which includes six prokaryotic species. STAL-
LION is a stacking ensemble-based17,18 predictor. For building
the model, 11 types of encoding schemes were used to extract
the features from the protein sequences. Three feature
selection approaches were employed to carefully select the
optimal feature set for each of the five different tree-based
ensemble algorithms and to construct their respective base
learners for each species. Then, the model was trained and
evaluated with an appropriate classifier using the predicted
information from the base learners and fivefold cross-
validation.

Although the above methods have made considerable
progress in identifying Kace sites, there are still some
limitations. The features used for building these methods are
basically hand-crafted features that were extracted from protein
sequences. The hand-crafted features are mainly based on
experience, which may not be able to represent all of the
biological information contained in the protein sequences.
Therefore, to eliminate the reliance on hand-crafted features
for prediction performance and to mine the biological
information in sequences more deeply, bidirectional encoder
representations from transformers19 (BERT) have been used
to represent the high-level embeddings of protein sequences.

The BERT20 model was proposed by Google in 2019 which
has shown outstanding performance in the field of natural
language processing (NLP), and upon its introduction, it
achieved state-of-the-art new results on 11 NLP tasks. After the
emergence of the BERT model, many scholars have applied it
to the analysis of biological sequences.21,22 By considering the
protein sequences as sentences, the BERT model has been
successfully applied to the prediction of protein PTM sites.
Qiao et al. proposed a model named BERT-Kcr,23 for
predicting protein lysine crotonylation (Kcr) sites. The
model was developed by using a transfer learning method
with pretrained BERT models. The features encoded by BERT
were extracted and then fed into a BiLSTM network to build
their final model. Similarly, Liu et al. proposed a model named
BERT-Kgly24 to predict protein lysine glycation sites by
extracting features from BERT. This suggests that using
sequence information and NLP pretrained models directly can
be an effective method for identifying protein PTM sites.
However, the two methods mentioned above utilize only the
embedding feature of the last encoder layer without
considering the information complementarity among multiple
embedding layers. In addition, the small sample problem for
predicting PTMs was also not addressed in the two previous
works.

In this study, we proposed a new approach called MSTL-
Kace to predict the Kace sites of proteins. By considering the
protein sequences as natural language sentences, a domain-
specific BERT model was pretrained using all of the sequences
in our data sets. Then, we fine-tuned the pretrained model in
one or two stages based on the training data sets of different
species. Then, the embedding of token “CLS” for each
sentence (sequence) was extracted from the fine-tuned model,
which was fed to the different downstream learning algorithms.
After comparison, a random forest was chosen as the optimal
classifier. The results for the independent test set show that our

Figure 1. Overall flow of analysis in the present study. Our workflow is composed of pretraining and fine-tuning, feature extraction, machine
learning-based, and deep learning-based prediction, evaluation, analysis of attention weights, comparison with existing methods, and web server
implementation.
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model outperforms the state-of-the-art methods on all six
prokaryotic species. The flowchart of the experiment is shown
in Figure 1.

2. MATERIALS AND METHODS
2.1. Data Sets. To fairly compare the performance with

other methods, we used the same data sets as those used in
STALLION. The data sets include peptides from six species,
Bacillus subtilis, Corynebacterium glutamicum, Escherichia coli,
Geobacillus kaustophilus, Mycobacterium tuberculosis, and
Salmonella typhimurium. The data sets were constructed by
Chen et al.,13 based on the PLMD database.25 The
homologous sequences were eliminated by using CD-HIT26

based on a threshold of sequence identity as 30%. Each
sequence is a peptide of 21 residues in length centered with a
residue K. If a residue is missing in the sequence, the missing
position is replaced with a pseudoresidue “O”. Ultimately, this
data set consists of a total of 11 138 nonredundant positive
(Kace) samples and 14 843 nonredundant negative (non-
Kace) samples. Then, 10 484 nonredundant positive (Kace)
and the same number of negative samples were selected as the
training set, and the remaining samples were used as the
independent test set. The specific number of samples for each
species is shown in Table 1.

2.2. Methods. 2.2.1. BERT Model. Bidirectional encoder
representations from transformers (BERT), which was
proposed by Devlin et al.,20 is a formidable language
representation model. The model is based on the original
transformer model that was proposed by Vaswani et al.19

BERT model has achieved excellent results on a wide range of
NLP tasks including answering questions and linguistic
inference. The architecture of BERT is a multilayer bidirec-
tional Transformer encoder that learns the information
contained within the text using both the left and the right
side of the text. The network structure is the same for all
encoder layers, and each encoder layer consists of two main
sublayers: a multihead self-attention layer and a feedforward
neural network layer. In addition, a residual connection is
added to each sublayer. Then, the output is normalized by
using LayerNorm.27 Thus, the output of each sublayer is
LayerNorm (x + Sublayer(x)). The schematic diagram of the
BERT model structure is shown in Figure S1. When a sentence
is input to the BERT model, each word is encoded by three
embeddings: token embedding, segment embedding, and
positional embedding. Generally, when training a BERT
model, special tokens such as “CLS” token and “SEP” token
are added as the beginning and the end of a sentence. Each
word of an input text is fed into the token embedding layer,
which is thus converted to a vector. The segment embedding is
used to distinguish whether the word belongs to the first half

or the second half of the sentence. The positional embedding
contains information about the position of the input token, the
formula for the position vector19 is listed as follows
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These embeddings are then processed by the Transformer
encoder for which the core is multihead self-attention layers.
Multihead attention involves the integration of multiple
attentional mechanisms, resulting in the generation of queries,
keys, and values by employing attention functions and linear
transformations. Each individual attention function operates on
a specific subset of the output sequence, ensuring their
independence from one another. There are several studies on
PTM site prediction that have achieved good results by
incorporating attention mechanisms.22,23,28,29 By generating
different attention weights, the multihead attention mechanism
can enhance model accuracy and stability. This is calculated
using the following formulas
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where Q, K, and V represent query, key, and value matrices,
respectively; X represents input matrices; and Wq, Wk, Wv, and
Wc represent the trained weight matrices.

In this study, we pretrained the BERT model with the
protein sequences in the training data sets of all species to
obtain a domain-specific BERT model. Then, the domain-
specific BERT was fine-tuned based on the training data set for
each species to obtain a species-specific BERT model.
Afterward, the embeddings were extracted from species-
specific BERT model, which were fed to the downstream
classifiers to build our final models.

2.2.2. Two-Stage Fine-Tuning. In the field of natural
language processing, generally, the larger the data set used to
train the model, the better the model’s performance and
generalization ability. However, in our case, the sample sizes of
some species are small. To address the issue of poor
performance on the species with small sample sizes, Tsukiyama
et al.22 used a two-stage fine-tuning strategy. Specifically, the
fine-tuned model on the species with large sample size was
fine-tuned again on the species with small sample size. In this
study, we also adopt a two-stage transfer learning approach to
deal with the small sample size issue. Specifically, we used the
fine-tuned model on the species with large data set as an
intermediate model and then fine-tuned the intermediate
model on the small data set to improve performance. This
method is used to mitigate the impact of limited data
availability.
2.3. Features and Classifiers. Because the embedding

features of different encoder layers can represent different

Table 1. Training and Independent Test Sets for Six Species

train set independent test set

species positive negative positive negative

B. subtilis 1571 1571 125 1165
C. glutamicum 1052 1052 83 830
E. coli 6592 6592 361 1384
G. kaustophilus 206 206 17 192
M. tuberculosis 865 865 68 575
S. typhimurium 198 198 10 217
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levels of information, we extracted the embedding features of
the “CLS” tokens from the different encoder layers of the fine-
tuned BERT models, and a mean fused strategy was used to
fuse these features. Based on mean fused features, four
machine learning classifiers random forest (RF),30 AdBoost
(ADB),31 XGBoost (XGB),32 support vector machines
(SVM)33 and two deep learning classifiers 1D-CNN34 (Figure
S2) and BiLSTM35 (Figure S3) were used to build our models.
Details of the six classifiers can be found in the Supporting
Information.
2.4. Model Evaluation Parameters. In order to validate

the performance of the model and compare it more intuitively
with other methods, we chose the area under the receiver
operating characteristic (AUROC) curve and the area under
the precision-recall curve (AUPRC) as the main evaluation
metrics. The receiver operating characteristic (ROC) curve is
an important index to measure the robustness of the model.
Considering that the independent tests used in this study were
unbalanced data sets, the area under the precision-recall curve
(AUPRC) was also used to evaluate the models. In addition,
we have also chosen specificity (SP), sensitivity (SN), accuracy
(ACC), and Matthew’s correlation coefficient (MCC) as
evaluation parameters, which are defined as follows
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where TP, TN, FP, and FN denote true positives, true
negatives, false positives, and false negatives, respectively.

3. RESULTS AND DISCUSSION
3.1. Performance of the Fine-Tuned BERT Models.

After we pretrained the BERT model with the samples in the

training data sets of all species, we fine-tuned the model to
predict the Kace sites for each species. During fine-tuning, the
performance of the model can be improved by adjusting
hyperparameters such as epoch, learning rate, optimizer, etc.
We selected hyperparameters suitable for different species
through fivefold cross-validation. The fine-tuned model was
then used to make predictions for the test set. The results on

the fivefold cross-validation and the test set are shown in Table
2, respectively. The cross-validation AUROC of B. subtilis is
0.71. For C. glutamicum, it is 0.707. And the AUROC values of
E. coli, G. kaustophilus, M. tuberculosis, and S. typhimurium are
0.702, 0.604, 0.712, and 0.528, respectively. In addition, the
values of AUROC for six species on the independent test set
are 0.736, 0.746, 0.721, 0.709, 0.734, and 0.580.
3.2. Models Built Based on the Embedding Features

Extracted from Pretrained Domain-Specific BERT
Model. Besides fine-tuning pretrained BERT model for
downstream tasks, the embedding features can be extracted
from BERT model to build models based on other learning
algorithms.21,36 We extracted the embedding features of token
“CLS” from the pretrained model and fed them into several
downstream classifiers such as AdaBoost (ADB), random
forest (RF), XGBoost (XGB), support vector machine (SVM),
BiLSTM, and 1D-CNN. Table 3 shows the fivefold cross-
validation AUROC values of different models on the training
data sets. The results indicate that there is no significant
improvement compared to the cross-validation AUROC values
in Table 2. Therefore, we proceeded with extracting features
from the fine-tuned model for subsequent experiments.
3.3. Models Built Based on the Embedding Features

Extracted from Fine-Tuned BERT Models. Furthermore,
we extracted the embedding features of the “CLS” tokens from
the different encoder layers of the fine-tuned BERT models.
Note that for each round of cross-validation, the fourfold of
data was used to fine-tune the model and the remaining fold of
data as validation set was not used to fine-tune the model to
avoid overfitting. Then, the embeddings were extracted based
on the fine-tuned model. Considering the complementarity
between the embeddings extracted from different encoder
layers, the embedding features were combined by the mean
fusion method, by which the embeddings extracted from
different encoder layers were averaged as the final feature
vector. Based on the mean fused features by combining the last
encoder layer, the last 3 encoder layers, the last 6 encoder
layers, the last 9 encoder layers, and all 12 encoder layers, we
built models for different species by using three machine
learning classifiers (ADB, XGB, SVM) and two deep learning
classifiers (1D-CNN and BiLSTM). We used grid search to
optimize the hyperparameters of each classifier, the ranges of
the parameters and the parameters used for the final models
are shown in Tables S1 and S2. The cross-validation AUROCs
of the models based on fusion features from different encoding
layers by using different learning algorithms are shown in
Tables S3−S8. Figure 2 shows the cross-validation AUROCs
of the models based on the random forest. The trends of all
species are basically consistent and the highest AUROCs were
obtained when using the fusion features from the last 6 layers.

Table 2. Results Predicted by the Fine-Tuned BERT Model
on the Validation and Test Sets

validation set independent test set

species MCC ACC AUROC MCC ACC AUROC

B. subtilis 0.306 0.657 0.710 0.290 0.691 0.736
C. glutamicum 0.342 0.631 0.707 0.305 0.735 0.746
E. coli 0.325 0.709 0.702 0.359 0.669 0.721
G. kaustophilus 0.130 0.555 0.604 0.229 0.565 0.709
M. tuberculosis 0.371 0.663 0.712 0.323 0.734 0.734
S. typhimurium 0.072 0.531 0.528 0.069 0.652 0.580

Table 3. Fivefold Cross-Validation AUROC Values of the
Models by Using the Embedding Feature from Pretrained
BERT Model

ADB RF XGB SVM BiLSTM
1D-
CNN

B. subtilis 0.632 0.675 0.638 0.643 0.645 0.638
C. glutamicum 0.644 0.657 0.687 0.68 0.677 0.681
E. coli 0.624 0.630 0.673 0.665 0.67 0.684
G. kaustophilus 0.585 0.563 0.564 0.561 0.572 0.568
M. tuberculosis 0.646 0.658 0.67 0.677 0.669 0.679
S. typhimurium 0.563 0.587 0.582 0.541 0.569 0.583
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The corresponding figures obtained by using different
classifiers are presented in Figure S4, and they show the
same trend as Figure 2.

Then, we utilized six classifiers mentioned above to build
models based on the mean fused embedding features of the last
6 encoder layers. Totally, we built 36 models for predicting the

Kace sites. The cross-validation results (Tables S9−S14) of
these models on the six species are shown in Figure 3. The
results indicate that the models built by using RF show the best

Figure 2. Cross-validation AUROCs of the models based on the fusion features from different encoding layers by using random forest.

Figure 3. Fivefold cross-validation results of different models on the training sets.

Table 4. Performance of MSTL-Kace on Independent Test
Sets of Different Species

species MCC SN SP ACC AUROC AUPRC

B. subtilis 0.31 0.700 0.765 0.76 0.804 0.270
C. glutamicum 0.347 0.759 0.777 0.775 0.829 0.338
E. coli 0.416 0.712 0.771 0.759 0.811 0.526
G. kaustophilus 0.379 0.765 0.818 0.813 0.796 0.290
M. tuberculosis 0.339 0.750 0.74 0.742 0.798 0.385
S. typhimurium 0.407 0.300 0.991 0.960 0.705 0.207

Table 5. Comparison of Fivefold Cross-Validation Results
between One-Stage Fine-Tuned (OSF) and Two-Stage Fine-
Tuned (TSF) Models on G. kaustophilus, M. tuberculosis,
and S. typhimurium

speciesa MCC SN SP ACC AUROC

G. kaustophilus (OSF) 0.165 0.605 0.555 0.568 0.605
G. kaustophilus (TSF) 0.173 0.603 0.570 0.584 0.639
M. tuberculosis (OSF) 0.415 0.711 0.702 0.706 0.776
M. tuberculosis (TSF) 0.495 0.751 0.744 0.747 0.821
S. typhimurium (OSF) 0.105 0.577 0.527 0.545 0.601
S. typhimurium (TSF) 0.098 0.526 0.572 0.544 0.555

aOSF: one-stage fine-tuning; TSF: two-stage fine-tuning.
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performance for all six species. The values of AUROC are
0.742, 0.760, 0.762, 0.658, 0.797, and 0.629 for B. subtilis, C.
glutamicum, E. coli, G. kaustophilus, M. tuberculosis, and S.
typhimurium, respectively. In addition, the values of MCC and
ACC of the models built by using random forest are also
higher than those of other classification methods. Based on the
results of the fivefold cross-validation, we choose random
forest as the classifier to build our models. Moreover, the
performance of the models built based on the mean fused
features by using RF is also significantly better than the
performance of the fine-tuned models according to Figure 3
and Table 2.

These models were further evaluated on independent test
sets of the six species. Table 4 shows that the AUROCs on the
independent test sets are 0.804, 0.829, 0.811, 0.796, 0.798, and
0.705 for B. subtilis, C. glutamicum, E. coli, G. kaustophilus, M.
tuberculosis, and S. typhimurium, respectively. And the AUPRCs
are 0.270, 0.338, 0.526, 0.290, 0.385, and 0.207 for the six
species, respectively.
3.4. Improve the Model Performance via Two-Stage

Fine-Tuning. In this work, there are three species, G.
kaustophilus, M. tuberculosis, and S. typhimurium, whose
positive sample sizes of training data sets are less than 1000.
For this small sample size issue, a previous study22 shows that
the performance of the model can be improved by introducing

an intermediate model. In the case of small sample data, single-
stage transfer learning may be limited by insufficient data.
However, employing a multistage transfer learning strategy
allows for gradual knowledge and feature transfer, thereby
progressively improving model performance and generalization
ability. In our work, we chose to use the fine-tuned model of E.
coli as the intermediate model because the data set for E. coli in
this experiment is the largest. Specifically, the two-stage fine-
tuning strategy involves first fine-tuning the pretrained BERT
model on the data set of E. coli to obtain an intermediate
model and then fine-tuning the intermediate model on the data
sets of the other three species. Then, the embedding features
were extracted from the fine-tuned models of the second stage.

Table 5 shows the cross-validation results of the three
species on the training data sets. Compared with the results in
Figure 3, the table demonstrates a significant improvement in
performance for G. kaustophilus and M. tuberculosis. Table 6
shows the predictive results for the independent test sets of the
three species. Compared to the results in Table 4, the results
demonstrate a better performance, particularly for G.
kaustophilus and M. tuberculosis. We analyzed the possible
reasons for our results. Related studies37−41 have revealed
partial similarities between G. kaustophilus, M. tuberculosis, and
E. coli in terms of their growth conditions, metabolism, and
molecular mechanisms. For example, both bacteria can grow

Table 6. Comparison of the Results on the Test Set between One-Stage and Two-Stage Fine-Tuned Model on G. kaustophilus,
M. tuberculosis, and S. typhimurium

speciesa MCC SN SP ACC AUROC AUPRC

G. kaustophilus (OSF) 0.379 0.765 0.818 0.813 0.796 0.290
G. kaustophilus (TSF) 0.404 0.706 0.865 0.852 0.8405 0.373
M. tuberculosis (OSF) 0.339 0.75 0.74 0.742 0.798 0.385
M. tuberculosis (TSF) 0.442 0.735 0.845 0.828 0.834 0.474
S. typhimurium (OSF) 0.407 0.300 0.991 0.960 0.705 0.207
S. typhimurium (TSF) 0.186 0.400 0.894 0.872 0.720 0.121

aOSF: one-stage fine-tuning; TSF: two-stage fine-tuning.

Figure 4. Performance comparison between MSTL-Kace and other methods for predicting Kace sites on independent test sets.

ACS Omega http://pubs.acs.org/journal/acsodf Article

https://doi.org/10.1021/acsomega.3c07086
ACS Omega 2023, 8, 41930−41942

41935

https://pubs.acs.org/doi/10.1021/acsomega.3c07086?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07086?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07086?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acsomega.3c07086?fig=fig4&ref=pdf
http://pubs.acs.org/journal/acsodf?ref=pdf
https://doi.org/10.1021/acsomega.3c07086?urlappend=%3Fref%3DPDF&jav=VoR&rel=cite-as


under aerobic conditions and have similar metabolic pathways
for energy production. There are also some similarities in their
molecular mechanisms such as the presence of mechanosensi-
tive channels. In addition to the similarities in growth
conditions, metabolism, and molecular mechanisms mentioned
earlier, there are also some homologies and similarities
between the two species, in terms of enzymes and proteins.
For example, the architecture of the E. coli bd oxidases is highly
similar to that of G. kaustophilus42 and both M. tuberculosis and

E. coli possess homologues of the enzyme isocitrate lyase,
which is involved in the glyoxylate cycle.43 Moreover, the two
species have similar ribosomal proteins and DNA replication
proteins.44,45 These similarities may contribute to the trans-
ferability of the MSTL-Kace model between the two species.
3.5. Comparison with Other Prediction Tools on the

Independent Test Sets. To show the superiority of our
model, we compared our model with the other two state-of-
the-art models, STALLION and DNNAce, on the same

Figure 5. ROC curves generated by MSTL-Kace and other methods for the independent test sets.

Figure 6. Precision-recall curves generated by MSTL-Kace and other methods for the independent test sets.
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independent test sets. STALLION is an advanced machine
learning method based on the stacking integration strategy,
which is superior to ProAcePred2.0 in the comparison of its
experimental results. DNNAce is a predictor developed using
deep learning and is based on the data used in ProAcePred. To
compare fairly, we used the same training set as that in their
paper to rebuild the DNNAce. The predictive results of
STALLION, DNNAce, and our model are shown in Figure 4.
By using MCC, ACC, AUPRC, and AUROC as the main
evaluation metrics, for B. subtilis, MSTL-Kace obtained the
highest MCC, ACC, AUPRC, and AUROC of 0.31, 0.76, 0.27,
and 0.804, respectively. More specifically, AUROC of MSTL-
Kace is 3% higher than STALLION and 8.2% higher than
DNNAce. AUPRC of MSTL-Kace is 4.3% higher than

STALLION and 7.9% higher than DNNAce. For C.
glutamicum, the values of MCC, ACC, AUPRC, and
AUROC were 0.347, 0.775, 0.338, and 0.829, respectively.
For E. coli, the ACC of MSTL-Kace was 0.759 which is 9.1%
higher than that of STALLION. It is also slightly higher than
other methods in AUPRC and AUROC. Because of the
disfunction of STALLION web server, we cannot get the
predictive results and calculate AUPRC and AUROC for G.
kaustophilus. So, the evaluation metrics reported in their paper
were used here. According to other metrics, our model
achieved an MCC of 0.379, which is 12% higher than that of
STALLION, and an ACC of 0.813, which is 16.2% higher than
that of STALLION. For M. tuberculosis, MSTL-Kace
performed lower than STALLION by 1.2% in terms of

Figure 7. Heatmap showing the cross-species predictive AUROC.

Figure 8. t-SNE illustration of the embedding features extracted from pretrain BERT and fine-tuned BERT.
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AUROC, while outperforming STALLION in all other metrics.
This is the only metric in which MSTL-Kace falls behind
STALLION. For S. typhimurium, as the result shows in the
figure, MSTL-Kace also outperforms the other two methods in
various metrics, especially in MCC and AUPRC, with
improvements of 20.5 and 9.6% compared to STALLION,
and 35.5 and 14.4% compared to DNNAce, respectively.
Summing up the above results, MSTL-Kace can achieve an
excellent performance more than STALLION and DNNAce.
The receiver operating characteristic curve and the precision-
recall curve are shown in Figures 5 and 6.
3.6. Cross-Species Evaluation. In this study, we

ultimately established six species-specific models. It is
interesting to test the specificities of these models to evaluate
if it is possible to build a generic model for predicting Kace
sites for prokaryotes. Thus, we conducted cross-species
prediction on the six independent test sets by using six
species-specific models. A heatmap (Figure 7) was plotted to
show the AUROC values of these models on the six test sets. It
is clear that the highest AUROC values are obtained at the
diagonal positions, which indicates that the species-specific

predictive results are significantly better than the cross-species
predictive results. According to our results, it is better to build
species-specific models to predict Kace sites for different
species.
3.7. Visualization of Embeddings of Pretrained and

Fine-Tuned BERT Models. Fine-tuning is a common
technique in transfer learning.46 Transfer learning is a method
of identifying and applying knowledge and skills learned in a
previous domain or task to a novel domain or task. Researchers
usually pretrain a model on a data-rich task first and then fine-
tune it for downstream tasks. In this experiment, we have
pretrained a protein language model based on 10 484 positive
samples and 10 484 negative samples. The pretrained model
was fine-tuned to build models for predicting Kace of different
species based on the data for different species. To observe the
difference of the embeddings obtained between the pretrained
and the fine-tuned models, we use t-SNE47 to visualize the
features learned from the data. Figure 8 shows the results for B.
subtilis, and it is obvious that there is a clear distinction after
fine-tuning. The t-SNE figures for other species are shown in
Figure S5.
3.8. Visualization of Attention Weights between

Different Layers. The present study is based on the BERT-
Base model, which consists of 12 encoder layers. The
embedding features of different encoder layers represent
information at different levels of natural language. The
combination of the embedding features from different encoder
layers might be beneficial for the performance of the models.
Our results indicate the model based on the mean fusion
features of the last six encoder layers achieves the best
performance.

To explain these results, we analyzed the attention weights
of different encoder layers by using the data of B. subtilis as
example, and other species in Figure S6. The BERT model
uses a multihead self-attention mechanism to calculate the
attention weights for each position,48 representing the
importance of that position to the current query. We calculated
the attention weights for each position of the positive samples
in the training set and plotted the average attention heatmap.

As shown in Figure 9, the attention in the shallow layers of
the BERT model is relatively scattered and the attention
weights is low. With the increase of the model layers, the
attention weights increase and become concentrated near

Figure 9. Attention weights of different positions in 12 encoder layers.

Figure 10. Pearson correlation coefficient between embedding feature
of 12 encoder layers.
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position 10, where the Kace site is located. In layer 12,
positions 9, 10, and 11 receive the highest attention weights,
indicating that the attention mechanism of the BERT model
can identify the interaction between the Kace site and other
amino acid residues in the protein sequence.

When the embedding features of the last layer alone are
used, the overfitting caused by the highest attention weights
may lead to poor results on the validation set. Furthermore,
when features from all layers are fused, the redundant
information contained in the shallow features can also affect
the prediction results. From the attention heatmap, it can be
seen that the last six layers contain higher attention weights.
Therefore, selecting the embedding features from the last six
layers for fusion is a better choice.

Furthermore, we performed Pearson correlation analysis on
the embedding features of all 12 encoder layers. As shown in
Figure 10, it can be seen that the correlation coefficients are
high between adjacent layers, but the correlation coefficient is
low between distant layers, which indicates the complemen-

tarity between different embedding features obtained from
different layers.
3.9. Sequence and Attention Mechanism Analysis.

The results in Figure 4 show that MSTL-Kace outperforms
STALLION and DNNAce on all species. MSTL-Kace used
fewer types of features and provided better performance than
STALLION and DNNAce, which implies that embeddings
extracted from BERT are relevant to the sequence information.
This demonstrates that the attention mechanism of the BERT
model is capable of focusing the partial information on the
input. The attention weights of the token “CLS” have been
used to demonstrate the importance of different positions.23

So, we calculated the average “CLS” attention weights of
different protein sequence positions and analyzed the relation-
ship between sequence motifs49,50 and attention weights
obtained by BERT.48

As shown in Figure 11, we take the intermediate residue K as
the origin, and Figure 11(a) shows the proportion of amino
acid types in the protein sequence. We visualized the attention
maps in Figure 11(b), which shows the attention weights of

Figure 11. (a) Comparison of the amino acid composition between positive and native samples. (b) Differences in the averaged position weights
between the positive and negative samples.
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token “CLS” in sequence positions. The blue polyline
represents the fraction of the Kace sequence, the red polyline
represents the fraction of the non-Kace sequence, and the
black represents the absolute value of the difference between
these two fractions. What is evident is the significant difference
in attention weights between positive and negative samples
near the center position. For example, there is a significant
difference in attention weights between G. kaustophilus and M.
tuberculosis at position 1. In G. kaustophilus, the positive
samples show a higher probability of residue E, P, and D, while
the negative samples have a higher probability of A, L, and Q.
Similarly, in M. tuberculosis, the positive samples exhibit a
higher probability of residue H, Y, S, while the negative
samples have a higher probability of K, R, and A. Similar
observations were made in other species, where positions with
larger attention weight differences also exhibited substantial
differences in residue distribution.

These results indicate that MSTL-Kace can effectively
identify the interactions between Kace sites and other amino
acids in the sequence and assign higher attention to them. This
could assist biologists in gaining further insights into the
mechanisms and physicochemical information about lysine
acetylation.
3.10. Web Server. As demonstrated above, we proposed a

model, MSTL-Kace, which has outstanding performance in
predicting lysine acetylation sites. For the convenience of
researchers, we offered the web service for the model, which
allows site prediction by simply entering the protein sequence.
The address of this web server is: http://MSTL-Kace.zhulab.
org.cn/. Hopefully, these things may provide thoughts and
help relevant researchers.

4. CONCLUSIONS
In this article, we proposed a novel method to predict the Kace
sites of prokaryotes. By using the protein sequences from
different species, we pretrained a domain-specific BERT
model. After fine-tuning the model with species-specific
sequences, we extracted the sequential embeddings from the
model, which were used to build the models for different
species based on different downstream learning algorithms.
The results of the independent test sets show that our models
outperform the other state-of-the-art methods for all six
species. Through multistage transfer learning, the model can
progressively transfer knowledge and features, thereby
enhancing predictive performance on small sample data. This
strategy helps alleviate the limitations caused by data scarcity
and provides an improved generalization ability and robust-
ness. By analyzing the attention weights of the fine-tuned
model, we demonstrated that the sequence patterns can
partially be obtained by the BERT model. For the convenience
of related researchers, we provided a stable prediction web site
service to speed up the identification of Kace sites for other
researchers.

In the process of this study, we found that MSTL-Kace still
needs improvement. We will introduce contrastive learning
and multitask learning to improve our model.
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