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Abstract

Background: Chromosome conformation capture (3C) and Hi-C DNA sequencing methods have rapidly advanced our
understanding of the spatial organization of genomes and metagenomes. Many variants of these protocols have been
developed, each with their own strengths. Currently there is no systematic means for simulating sequence data from this
family of sequencing protocols, potentially hindering the advancement of algorithms to exploit this new datatype.
Findings: We describe a computational simulator that, given simple parameters and reference genome sequences, will
simulate Hi-C sequencing on those sequences. The simulator models the basic spatial structure in genomes that is
commonly observed in Hi-C and 3C datasets, including the distance-decay relationship in proximity ligation, differences in
the frequency of interaction within and across chromosomes, and the structure imposed by cells. A means to model the 3D
structure of randomly generated topologically associating domains is provided. The simulator considers several sources of
error common to 3C and Hi-C library preparation and sequencing methods, including spurious proximity ligation events
and sequencing error. Conclusions: We have introduced the first comprehensive simulator for 3C and Hi-C sequencing
protocols. We expect the simulator to have use in testing of Hi-C data analysis algorithms, as well as more general value for
experimental design, where questions such as the required depth of sequencing, enzyme choice, and other decisions can
be made in advance in order to ensure adequate statistical power with respect to experimental hypothesis testing.
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Findings
Software testing

To the casual observer, formal software testing is often thought
to begin and end with the validation of fine-grained behavioural
(functional) aspects; such as the correct execution of individ-
ual methods. In day-to-day use, however, what can matter
most to end users are broader system attributes such as speed,
scalability, reproducibility, and ease of use. To ensure that a
project offersmaximumvalue, a thorough testing processwould
collectively examine all aspects.

For inferential software within scientific fields, the system-
level attributes of precision and accuracy are of primary
interest, and their quantification is best accomplished by com-
parison with a known truth (gold standard). Therefore, any test-
ing methodology capable of providing an a priori gold standard,
particularly without estimation, improves this facet of testing
significantly.

Purpose-built bioinformatics software ultimately acts on ex-
perimentally collected observations. The inherent noise and
variation that comeswith experimental datameans that achiev-
ing testing thoroughness is a great challenge. Ready access to

Received: 1 June 2017; Revised: 18 September 2017; Accepted: 23 October 2017

C© The Author(s) 2017. Published by Oxford University Press. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium,
provided the original work is properly cited.

1

http://www.oxfordjournals.org
mailto:aaron.darling@uts.edu.au
http://creativecommons.org/licenses/by/4.0/


2 DeMaere and Darling

sufficient data sources is a fundamental necessity for adequate
software testing.

For established experimental methods, public data archives
are a first choice for the necessary testing data. When high-
quality metadata are available, testing driven by real data
becomes possible. However, even when sufficient depth and de-
scription of data are available, difficulty can remain in match-
ing desired test data characteristics to what actually exists in
1 or several public datasets. Further, fine-grained whole-corpus
querying of metadata on remote data archives is not always
possible, frequently making the up-front job of data selection
a difficult task. Once selected, obtaining said real data can be
time-consuming or even infeasible in locations with lower net-
work speeds and/or high bandwidth costs. In advancing fields
such as DNA sequencing, new experimental datatypes can ap-
pear for which the public data archives contain only a handful
of examples, and few researchers would have the time and fi-
nancial resources to commit to experimental generation of new
data purely for software testing.

Though performance on real data is the ultimate arbiter of
analytical value, advantaged by explicit control over its charac-
teristics, a faithful simulation of real data can act as a valuable
proxy. Simulation-driven development and testing has proven to
be a highly cost-effective and time-efficient approach. It offers
the possibility to explore a near continuum of data character-
istics, subjecting software to an otherwise unavailable degree
of testing thoroughness. Certainty and control make attaining
the twin objectives of rigorous testing and an a priori gold stan-
dard straightforward. This enables us not only to bemore certain
about when we have failed, but also to extrapolate this process
to infer the limits of success within the experimental parameter
space.

Tools for simulating DNA sequencing reads have existed
from the very early days of genomics, beginning with the many
anonymous implementations of simple DNA shearing algo-
rithms, up to the most recent highly detailed empirical model
simulators [1–4]. From read simulation in isolation, field ad-
vancements such as metagenomics have been accompanied
soon after by simulators reflecting their specific data character-
istics and evolving experimental methodology [5–7].

We introduce Sim3C, a software package designed to simu-
late data generated by Hi-C and other 3C-based proximity lig-
ation (PL) sequencing protocols. The software includes flexi-
ble support for a range of sequencing project scenarios and
choice of three 3C methods (Hi-C, Meta3C, DNase Hi-C). The re-
sulting output (paired-end FastQ) is easily assimilated into ex-
isting analysis workflows. It is our intention that Sim3C pro-
vide the Hi-C/3C research community with a means to further
validate existing software projects, support new experimental
or analysis development initiatives, and serve as a platform
for exploration, such as the comparative analysis of clustering
algorithms [8].

3C sequencing

3C-based sequencing protocols, including Hi-C, 4C-seq, and
Meta3C, have great potential to address questions directed at the
spatial organization of DNA in samples ranging from eukaryotic
tissue to single cells to microbial communities. The growing use
of these protocols creates a legitimate need for a simulator ca-
pable of generating data with relevant characteristics.

Chromosome conformation capture (3C) was originally de-
signed as a polymerase chain reaction–based assay to mea-
sure interactions among a small number of defined regions

of eukaryotic chromosomes [9]. In 2009, Lieberman-Aiden [10]
reported an extension of the protocol to high-throughput se-
quencing, enabling the global spatial arrangement of chromo-
somes to be reconstructed at unprecedented resolution. All 3C
protocols depend on an initial formalin fixation step, which
crosslinks proteins bound to DNA in vivo. Subsequently cells are
lysed and the DNA:protein complexes are sheared enzymati-
cally and/or physically to create free ends in the bound DNA
strands. These free ends are then subjected to a proximity lig-
ation reaction, in which ligation of free ends preferentially oc-
curs among DNA strands cobound in a protein complex. The
DNA:protein crosslinks are then reversed, the DNA is purified,
and an Illumina-compatible sequencing library is constructed.
In Hi-C protocols, the proximity ligation junctions can then be
further purified in the sequencing library.

3C-derived methods have found several applications beyond
their initial use to reconstruct 3D chromosome structure. For ex-
ample, it has been shown that 3C-derived data provide a valu-
able signal for genome scaffolding [11,12], as well as a signal that
can support genome-wide haplotype phasing [13,14]. 3C-derived
data have also proven valuable for metagenomics, where ini-
tial studies on mock communities demonstrated that highly ac-
curate genome reconstruction in mixed microbial communities
could be facilitated by proximity ligation sequence data [15–17].
Subsequent application to naturally occurring microbial com-
munities has also suggested that bacteriophage can be linked
to their hosts with this data type [18].

In the remainder of this manuscript, we describe the Sim3C
software and demonstrate how it can be used to simulate data
for various 3C-derived experiments.

Experiment scenarios

Beyond simple monochromosomal genome sequencing exper-
iments, Sim3C offers support for the more complex scenarios
of multi-chromosomal genomes and metagenomes. A scenario
is defined by way of a community profile, assigning a copy-
number and containing genome to each chromosome and a rel-
ative abundance to each genome. The profile and supporting
reference sequences form a skeleton definition with which to
initialize the weighted random sampling process within a sim-
ulation. The user can elect to supply a profile either as an ex-
plicit table (Figs 1 and 2) or allow Sim3C to draw abundances at
runtime from 1 of 3 distributions (equal abundance, uniformly
random, log-normal distribution) for communities made up of
strictly mono-chromosomal genomes.

Error Modelling

Sim3C models 3 forms of experimental noise: machine-based
sequencing error, the formation of spurious ligation products,
and the contamination of PL libraries with whole genome shot-
gun (WGS) read-pairs.

To simulate machine-based sequencing error, the paired-
end mode from art illumina [2] has been reimplemented as a
Python module (Art.py). This approach was taken as delegat-
ing read-pair generation to native invocations of art illumina
proved cumbersome. More explicitly, a loosely coupled solution
(via subprocess calls but without an interprocess communica-
tion mechanism) lacked sufficient control to generate PL read-
pairs in an efficient and robust manner. On the other hand,
tightly coupling Sim3C to the ART C/C++ source code (i.e., im-
plementing hooks) would have left Sim3C vulnerable to changes
in a non-public external API (i.e., a codebase without formal
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Figure 1: A mock 2 genome community. For demonstration purposes, we assume that the plasmid (plas1) is present in 4 copies and that there is a 0.4/0.6 relative
abundance split between the 2 organisms (bac1, bac2) in the community.

Figure 2: A mock 4 chromosome genome. Cellular abundance is a constant across the profile, while chr4 exists in 2 copies. Note that relative abundances specified in
a profile are not required to sum to 1, but are normalized internally.

definition or guarantee of stability). Reimplementation also
meant that Art’s many empirically derived machine profiles are
available for use by Sim3C, allowing equivalent treatment ofma-
chine error when experiments involve both PL (Sim3C) and pure
WGS (art illumina) libraries.

The production of spurious ligation products is an inherent
source of noise in PL library construction [19]. Sim3C models
spurious pairs as the uniformly random ligation of any 2 cut-
sites across all source genomes. While this process disregards
cellular organization, it respects the relative abundance of chro-
mosomes. Spurious pairs, and to a lesser extent sequencing er-
ror, represent an important confounding signal to downstream
analyses that attempt to infer the cellular or chromosomal or-
ganization of DNA sequences.

Lastly, conventional WGS read-pairs represent a source of
contamination within a PL library that even after Hi-C enrich-
ment steps, are not completely eliminated. The rates at which
spurious and WGS read-pairs are injected into a simulation run
are controllable by the end-user.

Simulation modes

Since Hi-C was first introduced [10], the development of variants
and extensions has been continual [17,20–22]. Variants have of-
ten strived to further enhance the discriminatory power of the
original experiment, while seemingly adding yet more complex-
ity to an already challenging protocol (in situ DNase Hi-C, sciHi-
C) [22]. Others instead have sought compromise, with the aim
of lessening the burden on the laboratory (Meta3C). While not
considering more recent and complex extensions, Sim3C offers
3 simulation modes: traditional Hi-C, Meta3C, and DNase Hi-
C. The first 2 of these modes were chosen as representing the
fundamental basis (traditional Hi-C) and an attractive and prag-
matic simplification of the original (Meta3C). The third mode
(DNase Hi-C) replaces the restriction endonuclease-driven pro-
duction of the free ends, used to form PL products, with an ide-
ally free process of DNA fragmentation. In the laboratory, this
ideally free process could be carried out by DNase digestion or
mechanical shearing via sonication.

The most notable difference between the methods of Hi-
C and the more recent Meta3C is that after restriction digest,
Hi-C employs additional steps leading to the incorporation of bi-
otin tags at each PL junction. This biotinylation permits Hi-C li-

braries to be subsequently enriched for fragments containing PL
junctions by streptavidin-mediated affinity purification. With-
out enrichment, the simpler Meta3C protocol results in a gross
mixture of both WGS and PL read-pairs, where only a small per-
centage of the total read-pair yield (approx. 1%) will possess PL
junctions [23]. The enrichment process within Hi-C, however, is
not perfectly efficient, andWGS read-pairs are still observed (ap-
prox. 10-50% of reads contain a PL product) [23]. DNase Hi-C re-
places restriction digest with a non-specific endonuclease (e.g.,
DNase I) [24] or mechanical DNA shearing process (e.g., sonica-
tion) [20]. In this operational mode, Sim3C treats DNA cleavage
as a completely unbiased (free) process, and as such all genomic
positions have equal probability of participating in proximity lig-
ation events.

Within Sim3C, each of the 3methodological variations is con-
ceptualized as a sequencing strategy (figure 3), and each itera-
tion of a strategy produces 1 read-pair (PL or WGS in origin). For
all strategies, an iteration begins by drawing a 3-tuple of insert
parameters: length, direction, and junction point (Lins, dir, xjunc).

After obtaining insert parameters, the Hi-C strategy (Fig. 3a)
first tests if the insert will represent a WGS or PL read-pair
(∼Bern(peff)), where efficiency peff is defined in the sense of en-
richment. When peff = 1, there is perfect filtering and all WGS
read-pairs are eliminated from the experiment. In the case of
WGS, the iteration reaches an end-point and the simulation
emits a conventional read-pair drawn from the community def-
inition. In the case of PL, a cut-site 3-tuple is drawn (gen1,
chr1, x1), where the categorical distribution over chromosomes
is weighted by relative abundances (A) and chromosomal copy-
numbers (ncpy), genomic position is sampled uniformly from
the set of restriction sites (sites(chr1)), and the parent genome
(gen1) is implicit from the chromosome. Next, a spurious liga-
tion test is performed (∼Bern(pspur)). If a spurious event has oc-
curred, the 3-tuple defining the second cut-site (gen2, chr2, x2)
is drawn i.i.d. as the first. If not spurious, next a test for inter-
chromosomal (trans) ligation is performed. Only source chro-
mosome and position (chr2, x2) need be drawn as the second
genome is implicitly the same as the first (gen2 = gen1). Here,
chr2 is selected without replacement from the set of chromo-
somes of genome (gen1) where the categorical distribution is ad-
justed by removal of chr1. Finally, an intra-chromosomal (cis) lig-
ation must have occurred. As now both genome and chromo-
some are implicit (gen2 = gen1, chr2 = chr1), all that is left is to



4 DeMaere and Darling

A B

Figure 3: Logical schema used within Sim3C. (a) Hi-C and (b) Meta3C simulation strategies. Gold diamonds represent simple Bernoulli trials. Blue boxes represent

sampling distributions defined by runtime input data (community profile, genomic sequences, enzyme) and the empirically derived distribution for intra-chromosome
(cis) interaction probability (equation 1). Logical end-points to a single iteration of either algorithm are represented as red (producing aWGS read-pair) and green boxes
(producing a PL read-pair). Due to the elimination of the biotinylation step, Meta3C does not produce a duplication of the restriction cut-site overhang (grey boxes).

draw genomic position x2. The pair of positions (x1, x2) is con-
strained by their separation (s = |x2 − x1|), which is represented
by a mixture model of the geometric and uniform distributions
(equation 1). This relation possesses rapid falloff with increas-
ing separation and non-zero probability for all chromosomal po-
sitions, as has been commonly observed in real experimental
data [10,25].

Pr(X = s|α, β, l) = β(1 − α)sα + (1 − β)/ l, (1)

where β is a mixing parameter, α the geometric distribution
shape parameter, and l chromosome length.

For Meta3C (Fig. 3 b) after insert parameters are determined,
in the same fashion as a regular WGS read, an initial free ge-
nomic position is drawn (chr1, x∗

1), uniformly distributed over the
extent of chr1 rather than only over its cut-sites. In real datasets,
it has been observed that neither the restriction digestion nor
the re-ligation of free ends is perfectly efficient. Taken as in-
dependent probabilities, in our model we conceptualize their
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Figure 4: Model details. Generation of proximity ligation inserts (a) involves joining 2 randomly drawn parts (red and blue), from which the read-pair (R1, R2) is then
simulated. The junction point (xjunc) varies over the interval [0..L), and reproduction of read-through events is possible. For an unbounded chromosome (b) (circular
here), besides strictly primary separation (black arrow), spatial proximity can be induced from successive folding (red, green arrows). When the spatial arrangement

is consistent across the population of cells, this will be observable as modulations in the contact frequencies. Sim3C models simple structurally related modulation
of observed contact frequencies (c). Beyond primary interactions forming the main diagonal, users can reproduce inter-arm-mediated anti-diagonals. Finer-scale
modulations attributed to topologically associated domains can optionally be randomly simulated. Primary interactions f0(s|θ0) (equation 1) cover the full interval [0,
L). Each level of recursion (d = 1, 2. . .n) generates a finer set of intervals, to which a distribution fi(s|θ i) and probability pi are assigned. The final covering of intervals

each define a range (green, curly braces) over which a set of probabilities and empirical distribution pairs govern interaction separation s.

joint occurrence as an efficiency factor, peff, and a Bernoulli trial
(Bern(peff)) determines whether a sequence read is successful in
containing an observable proximity ligation event. Failing this
coverage test relegates the iteration and end-point and emits
a WGS read-pair. Successful candidates instead continue akin
to the Hi-C decision tree, beginning with the test for spurious
ligation.

For bothHi-C andMeta3C, PL read-pairs are produced by join-
ing the free ends drawn above as defined by the fragment param-
eters (Fig. 4a). Here the location of the PL junction within the
insert is determined by xjunc. At the junction, Hi-C differs from
Meta3C as the process of biotinylation results in the duplication
of the restriction cut-site overhang sequence. The overhang du-
plication in Hi-C is included in the simulation.

DNase Hi-C is handled similarly to traditional Hi-C, with the
exception that, as in silico digestion trivially leads to all sites,
the simulated digestion is unnecessary to perform and positions
can be drawn directly from the uniform distribution over the
interval [0..Lchr). Site duplication, attributable to the likely pro-
duction of random overhangs in this scenario, is not presently
simulated.

Structurally related interactions

Independent of any 3D structure that might exist, the pri-
mary and most frequently observed interactions are those that

occur along a chromosome (intra-arm) (Fig. 4b), seen as the pri-
mary (y � x) diagonal in the contact map. Sim3C can approxi-
mate the less frequent interactions occurring between chromo-
somal arms (inter-arm) [26], which are visible as anti-diagonal
(y � L − x) in the contact map.

At progressively smaller scales, the hierarchical 3D folding
of DNA into topologically associated domains (TADs) produces
overlapping regions of interaction visible in the contact map as
block-like intensitymodulations. Though the agents responsible
for their formation vary [27,28], the characteristic patterns evi-
dent in real data–derived 3C contact maps have been observed
across all 3 domains [25,26,29]. Sim3C can optionally approxi-
mate the sense of TAD-related modulation by means of a recur-
sive stochastic process.

Our approximation of hierarchical folding begins from the
full extent L of a chromosome (Fig. 4c). Folding is portrayed by
the division of the interval [0..L) into a set of non-overlapping
sub-intervals {[0, x1), [x1, x2), . . . , [xn − 1, xn)}, the number and
widths of which are drawn at random (U(lmin, lmax), U(nmin, nmax)).
The procedure is then recursively applied to each sub-interval
until a depth d, producing a nested set of coverings of the full
interval [0..L) at progressively finer scales. Across this hierarchi-
cal collection, each interval is assigned a uniformly distributed
random probability pi and empirical distribution fi(s|θ i) (equa-
tion 1) for separation s, parameterized by shape parameter αTAD

and interval length linv = xi + 1 − xi, where θ = (αTAD, β, linv).
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Table 1: Real Hi-C and Meta3C data-sets used within this work

Authors Type Method Accession Sequencing Mapped
details reads

Beitel et al. [15] Synthetic bacterial metagenome Hi-C SRX377733 MiSeq 160bp PE insert
range: 280-420bp enzyme:

HindIII

20552775

Burton et al. [16] Synthetic yeast metagenome Hi-C SRX527868 HiSeq2500 100bp PE insert
range: 450-550bp enzyme:

HindIII

9704944

Le et al. [26] Single bacterial genome Hi-C SRX263925 HiSeq2000 40bp PE insert
range: 200-600bp enzyme:

NcoI

22324360

Marbouty et al. [41] Synthetic bacterial metagenome Meta3C doi:10.5061/
dryad.gv595

HiSeq2000 100bp PE insert
range: 400-800bp enzyme:

HpaII

7975740

The total off-diagonal weight of the contact map was used to calibrate the amount of simulated sequencing required to approximately match the outcome of the real
experiments.

The process of drawing samples of separation begins by de-
termining the set of intervals {linv} that contain an initial point
x0. The intervals, as tuples (pi, fi(s|θ i)), then forma categorical dis-
tribution (equation 7), fromwhich a governing distribution fi(s|θ i)
is drawn, and finally a sample of separation is taken, s ∼ fi(s|θ i).
To efficiently sample from the full collection, an interval-tree
data structure is employed. When queried, an interval-tree re-
turns the set of intervals {l} overlapping a position x in order
O(logn + m), where n is number of intervals and m is number of
intervals returned by the query.

f = {
f0(s|θ0), f1(s|θ1), · · · , fi (s|θi )

}
(2)

N = number of distributions = ∣∣f
∣∣ (3)

p = {p0, p1, · · · , pi } (4)

pi ∼ U (0,1) and
∑

pi = 1 (5)

n ∼ Cat(N,p) (6)

f (s|n) =
N−1∏

i=0

fi (s|θi )[i=n], (7)

where [i = n] is the Iverson bracket.

Example scenarios

In the following, 3 use cases are presented to demon-
strate aspects of the resulting simulation output: bacterial
genome, multi-chromosomal eukaryotic (yeast) genome, and
metagenome. For each use case, 3C contact maps have been
used to pit simulation output against the corresponding real
experimental data (table 1).

Bacterial

A monochromosomal bacterial genome is perhaps the simplest
scenario to which proximity ligation methods have been ap-
plied, making for a sensible entry point from which to make

comparison. Due to the smaller extent, a bright and high-
resolution contact map (10-kbp bin size) is possible for a prac-
tical volume of sequencing data, potentially revealing fine detail
not easily discerned with larger bin sizes (50–100-kbp bin size).

The genome of Caulobacter crescentus NA1000, a model or-
ganism in the study of cellular differentiation and regulation
of the cell cycle, is comprised of a single 4-Mbp circular chro-
mosome [30]. Deep Hi-C sequencing of C. crescentus has been
used to explore the degree to which bacterial chromosomes
can be regarded as organized and provided evidence for the ex-
istence of so-called chromosomal interaction domains (CIDs)
[26]. As a prokaryotic analog of topologically associated domains
from eukaryotic literature [28,31–32], these regions are believed
to promote intra-domain loci interactions and thereby act to
functionally compartmentalize the genome. This chromosomal
structure was observed to be at once disruptable through
rifampicin-mediated inhibition of transcription and malleable
by the movement of highly expressed genes [26].

For the raw contact map of C. crescentus, prominent rectilin-
ear features are apparent for both real and simulated traditional
Hi-C sequencing data (Fig. 5a,b), while notably for simulated
unrestricted Hi-C the field is much smoother (Fig. 5c). Within
the Sim3C model, a single distribution governs both intra- and
inter-arm interactions. Inspection of the real-data contact map
(Fig. 5a) suggests that the true relationship governing inter-
arm interactions is more dispersed. This perhaps is not surpris-
ing, where different arms associating spatially possess a greater
number of potential configurations than can be taken on by the
primary chromosome backbone. Additionally, for the real con-
tact map, long-range interactions away from either diagonal can
be seen to drop to a lower threshold than that produced from
simulation.

Within the unrestrictedHi-Cmap, the fine zero-intensity rec-
tilinear features are a direct result of poor mappability (non-
unique sequence), where their small size reflects the extent of
the non-unique regions (example: rRNA genes) and the single
base-pair resolution of the less constrained read generation pro-
cess. The process of enzymatic digestion is the only difference
between the unrestricted and traditional Hi-C simulation mod-
els. The clear contrast in their contact maps is thus a combina-
tion of factors either directly inherent to digestion (cut-site den-
sity) or a byproduct of downstream bioinformatics analysis (e.g.,
filtering heuristics). Though the problem of mappability exists
for any reference-based representation, for real and simulated
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Figure 5: Bacterial contact maps. Observed Hi-C interactions for the monochromosomal genome of Caulobacter crescentus NA1000. Comparing (a) real experimental

data [26] with the 3 simulation choices (b) traditional Hi-C, (c) DNase Hi-C, and (d) traditional Hi-C with TADs enabled. Sharp rectilinear modulations of the intensity
within (a) and (b) indicate a reduction in PL observations within a given bin. Not due to 3D chromosome structure, rather such features can be attributed largely to
mappability and low cut-site density. (c) Without an enzymatic constraint, a significantly smoother field is apparent, yet still susceptible to mappability. (d) Enabling
topologically associated domains highlights the similarity between features produced merely from biases and what could be truly associated with 3D structure.

traditional Hi-C, zero-intensity rectilinear featuresmark regions
devoid of cut-sites over at least 10 kbp.

Enabling TAD approximation in simulated traditional Hi-C
(Fig. 5d) has the effect of modulating map intensity in a manner
not particularly distinct from that produced purely from exper-
imental/workflow bias. Discriminating between these 2 feature
sources—one representing experimental signal, the other rep-
resenting noise—demands attention when developing solutions
to problems such as normalization. Contact map normalization
methods, whether based upon explicit or implicit bias models
[33], may leave behind remnants of noise-related features from
either a lack of convergence or model limitations. Downstream
inferencing should therefore not be made under an assumption
of bias-free signal.

Eukaryotic

The 8 chromosomes of the 15.4-Mbp genome of the native
xylose-fermenting yeast Scheffersomyces stipitis CBS 6054 [34]
range in size from 970 kbp to 3.5 Mbp. The organism was 1 of 16

yeasts included in a synthetic community to explore the appli-
cation of Hi-C sequencing to deconvolvingmetagenomic assem-
blies [16], and it is divergent enough from other synthetic com-
munity members to permit unambiguous read mapping, and
thus act as a proxy for a clonal experiment.

From the contactmap of real Hi-C data (Fig. 6a), it can be seen
that the rates of intra-chromosomal and inter-chromosomal in-
teractions are roughly equivalent in magnitude. Across the 8
chromosomes of S. stipitis, there is significant uniformity in the
degree of physical intimacy within and between all chromo-
somes. The subtleties of this chromosomal organization reveal
a self-similar “fuzzy-x” pattern repeated between all chromo-
somes across the contact map. The convergence point within
the pattern is attributed to centromere-SPB binding and has
been used to predict centromere locations [35]. It has been
shown that the physical constraints generated from the in-
teraction of centromeres to the spindle pole body (SPB) and
telomeres to the nuclear envelope are sufficient to explain a
number of experimental observations in real data [36,37]. As
Sim3C was derived from the study of bacterial datasets, our
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Figure 6: Eukaryotic contact maps. Observed Hi-C interactions of (a) real and (b) simulated data from the 8 chromosome genomes of the budding yeast Scheffersomyces

stipitis CBS 6054 [16]. Grey dashed lines and alternating light and dark grey axes demarcate the boundaries between chromosomes. (b) Simulated data elicit a flat field,
and the clearly evident higher rate of intra- to inter-interactions makes for easily observable chromosomal boundaries within the map. (a) Contrastingly for real data,

the similar rates of intra-chr and inter-chr interactions reveal the physical constraints imposed by centromere-SPB tethering on all 8 chromosomes [35].

simulation model does not currently include a notion of these
higher organismphysical constraints. Consequently, the contact
map derived from simulated traditional Hi-C sequencing elicits
a flat field (Fig. 6b), where the intensity variation that does ex-
ist is a byproduct of aforementioned factors such asmappability
and cut-site density. For the runtime parameters employed, the
rate of intra-chromosomal contact is higher than that of inter-
chromosomal, making clear the boundaries between the 8 chro-
mosomes (Fig. 6b). Though our model is presently incomplete
for higher organisms, there remains a potential utility as an an-
alytical or simply observational prior.

Metagenomic

In the deconvolution of metagenomes, proximity ligation meth-
ods hold great potential as new sources of information and
have been investigated by the construction and sequencing of
synthetic communities [15–17]. We selected 2 previously con-
structed synthetic bacterial communities, 1 employing tradi-
tional Hi-C and the other Meta3C (table 1). Intended as “proof of
concept” experiments, neither community reflects a real envi-
ronment, but rather they were intended to be easily interpreted
and include interesting features, such as range of GC, single and
multi- chromosomal genomes, and strain-level divergence. The
Hi-C community involved 5 genotypes from 4 species, 1 genome
of 2 chromosomes (B. thailandensis), E. coli strains BL21 and K12
(average nucleotide identity [ANI], 99%), and a wide overall GC
range of 37–68% (Table 2). Of lower complexity, the Meta3C com-
munity involved 3 genomes from 3 species, included 1 genome
of 2 chromosomes (V. cholerae), and had a narrower GC range
of 44–51% (table 3). Relative to the single genome experiments
above, a lower depth of sequencing resulted in a lower over-
all contact map intensity (Fig. 7). This is particularly the case
for Meta3C, where, by the nature of the method, a large pro-
portion (approx. 99%) of the sequencing yield is in reality con-
ventional WGS read-pair data [17]. As a direct result, in binning
the Meta3C dataset, there were insufficient counts to fully es-
tablish finer detail within the contact maps, leaving a smoother
appearance.

As with single-genome experiments, metagenomic contact
maps are locally modulated by factors such as mappability and
cut-site density. Importantly now for metagenomes, the factors
of relative abundance and GC content interact to alter the ob-
served intensity of each chromosome within the contact map.

As a first approximation and assuming agreement in nu-
cleotide sampling frequency, we expect n0 = L/4λ recognition
sites for an enzyme of site length λ and DNA sequence length
L. The degree to which an enzyme and DNA sequence deviate
from this estimate could be described as how well they match,
m = nx/n0. Poorer quality matches (m < 1) occur when an en-
zyme’s recognition site is underrepresented, while conversely,
better qualitymatches (m> 1) describe a situation ofmore recog-
nition sites than expected.

When multiple chromosomes are taken as a community, the
relative proportion of sites from each represents an observa-
tional bias when conducting 3C-based experiments. For com-
munity C, the number of sites nx from chromosome x deter-
mines the number of potential PL pairings Nx within C that
x (equation 8). The number of intra-chromosomal and inter-
chromosomal potential pairs thus respectively vary quadrat-
ically and linearly with nx. Regarding the process of observ-
ing a PL event (read-pair) from the community as a random
draw with replacement, and the selection pool as comprised of
all potential events from all chromosomes, variation in match
quality constitutes a per-chromosome bias. In real laboratory
experiments, the composition of the selection pool is further
modified by variation in other factors, such as cellular lysis
efficiency, unintended DNA fragmentation, and relative abun-
dance. In particular, when relative abundances A are introduced,
the odds of observing a PL event involving chromosome x are
then proportional to the product px ∝ AxNx/NC. Although the
processes of intra-chromosomal, inter-chromosomal, and inter-
cellular (spurious) ligation are treated independently in our sim-
ulation model, in this manner, per-chromosome intensity (ob-
servation rate of chromosome x) can vary significantly within a
metagenome.

Nx = n2x + nx
∑

ny∈C\nx
ny (8)
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Table 2: Synthetic Hi-C community

Name Replicons Accession Chr abbr. A ncpy %GC nx m

NC 007651 Bt1 67.29 225 0.24
Burkholderia 2 0.054 1

NC 007650 Bt2 68.07 144 0.20
thailandensis E264
Escherichia coli BL21 1 NC 012892 BL21 0.242 1 50.83 508 0.46
Escherichia coli K12 1 NC 010473 K12 0.166 1 50.78 568 0.50
DH10B

NC 008497 Lb 46.22 629 1.12
Lactobacillus brevis 3 NC 008498 - 0.436 1 38.64 3 0.92
ATCC 367 NC 008499 - 38.51 16 1.84
Pediococcus pentosaceus 1 NC 008525 Pp 0.102 1 37.36 863 1.93
ATCC 25745

A synthetic community used to demonstrate the utility of Hi-C sequencing data in resolving a microbial metagenome [15]. It is composed of 5 bacteria, including 2
closely related strains (E. coli K12 and BL21), a genome with 2 plasmids (L. brevis), and a 2-chromosome genome (B. thailandensis). A is relative abundance, ncpy is copy
number, nx is number of restriction sites, and m = nx/n0 is match quality between chromosome and enzyme choice: m < 1 is worse, m > 1 is better.

Table 3: Synthetic Meta3C community

Name Replicons Accession Chr abbr. A ncpy %GC nx m

Bacillus subtilis subsp. 1 NC 000964 Bs 0.123 1 43.51 14529 0.88
subtilis str. 168
Escherichia coli str. 1 NC 000913 K12 0.562 1 50.79 24311 1.34
K-12 substr. MG1655

NC 002505 Vc1 47.70 5909 0.51
Vibrio cholerae O1 2 0.332 1

NC 002506 Vc2 46.91 1802 0.43
biovar El Tor str.
N16961

A synthetic community used to demonstrate the utility of Meta3C sequencing data in resolving a microbial metagenome [17,41]. It is composed of 3 bacteria with 1
possessing 2 chromosomes. A is relative abundance, ncpy is copy number, nx is number of restriction sites, and m = nx/n0 is match quality between chromosome and

enzyme choice: m < 1 is worse, m > 1 is better.

Though the original laboratory experiments reported by Bei-
tel et al. [15] andMarbouty et al. [17] intended to create synthetic
communities with uniform relative abundances, in practice
each possesses a non-uniform profile. The variation in GC con-
tent is largest for the Hi-C experiment and, together with non-
uniform relative abundances, produces a wide range of chromo-
some intensity for both real and simulated data (Fig. 7a,b). For
both the real and simulated Hi-C maps, the frequent observa-
tion of PL events involving P. pentosaceus (Pp) and L. brevis (Lb)
suggests the possibility that inter-cellular interaction is signifi-
cant. Within the simulated map at least, inter-cellular pairs are
produced exclusively through the process of spurious ligation
(noise) and are observed at a higher rate than in the real data, in-
dicating that, as expected, spurious ligation rates across species
are correlated with their relative abundances.

Further for the Hi-C data, the 2-chromosome genome of
B. thailandensis (Bt1, Bt2) (Fig. 7a) has a greater rate of inter-
chromosomal interaction than expected from comparing it with
simulation (Fig. 7b). Meanwhile, the clear delineation of E. coli
strains BL21 and K12 (ANI > 99%), with little inter-cellular sig-
nal, helps to support the notion that the inter-chromosomal in-
teractions observed between B. thailandensis chromosomes (ANI
� 83%) are real and not a by-product of inadequate filtering.

Limitations and future work

Sim3C in its current form has several limitations, some of
which present opportunities for future work. Sim3C’s reper-
toire of structural features is currently limited to those
found in microbes—circular and linear chromosomes with ran-

domly generated approximations of self-associating domains
(CIDs/TADs). Sim3C does notmodel structural features observed
in larger,more complex genomes (CTCF/cohesin loops, A/B com-
partments, chromosome territories) [10,38]. Such features are
becoming increasingly well characterized [39], and a simulator
capable of modelling these features would surely be valuable.
Mammalian genomes are much larger than microbial genomes,
however, and additional work to improve the scalability of
Sim3C will likely be required.

Some features ofmicrobial eukaryotes, such as the point cen-
tromeres found in budding yeast genomes [40], are computa-
tionally simpler [35,36] yet remain unmodelled in Sim3C. The
addition of these sorts of model details would be best supported
by introducing model initialization via external data (experi-
mental observations, motif detection, cell phase), which subse-
quently would require extension of the community profile defi-
nition. Careful designwould be required to ensure these features
could be added without compromising ease of use.

Methods
Reference Data

To compare Sim3C against real experiments, we obtained pre-
viously published experimental read-pair datasets (Table 1) and
their accompanying reference genomes (Tables 2, 3) from public
archives. In the case of the single genome project of Caulobac-
ter crescentus CB15 [26], sequencing data derived from untreated
swarmer cells was chosen and the laboratory strain C. crescen-
tus NA1000 (acc: NC 011916) was used as the reference genome.
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Figure 7: Metagenomic contact maps. From synthetic microbial communities, raw contact maps from real (a) and simulated (b) traditional HiC, and real (c) and
simulated (d) Meta3C. Chromosome boundaries are demarcated by alternating light and dark grey bands (Tables 2, 3), while the small plasmids of L. brevis are omitted
for clarity. Although the original works [15,17] intended uniform abundance, the results exhibit significant variation in abundance. Lysis efficiency (not modelled)

and enzyme suitability are significant factors contributing to the overall intensity of a given chromosome. For more abundant members of the Hi-C community
(P. pentosaceus and L. brevis), signal due only to spurious ligation can appear to suggest inter-cellular interactions when none are present (b).

For the yeast genome, the completed 8-chromosome genome
of Scheffersomyces stipitis CBS 6054 was used as a reference (acc:
PRJNA18881), and the respective reads were extracted from the
MY16 yeast synthetic metagenome [16] by direct mapping with
BWA MEM. Extraction by mapping in isolation was employed
as S. stipitis was the second furthest phylogenetically removed
yeast in the synthetic community and was the most contigu-
ous (N50: 60 kbp) from the whole synthetic community de novo
metagenomic WGS assembly.

Read generation

Experimental parameters used in read simulation were set to
agree as closely as reasonably possible to the respective real ex-
periments, employing the same read length and restriction en-
zyme (Table 1). In each experiment, the published fragment size
range was approximated by a normal distribution (Table 4). For
ease of reproducibility, a single random seed (1234) was used
in all simulations. As our intent was primarily to demonstrate
functionality, rates of inter-chromosomal and spurious events
were adjusted per-experiment only through a qualitative pro-
cess. For simulation of metagenomic datasets, relative abun-

dances were estimated by mapping real experimental reads to
the respective reference genomes. From each real experiment,
the off-diagonal weight of the resulting contact map was used
to calibrate the amount of simulated sequencing required to
achieve roughly equivalent intensity (Table 4). Both real and sim-
ulated read-pair datasets were mapped to their respective refer-
ence genomes using BWAMEM (v0.7.15-r1140, RRID:SCR 010910)
[42].

Contact maps

Contact maps were produced using our own tool
(contact map.py), where heatmap intensity was plotted as
log-scaled observational frequency. All aligned reads were sub-
ject to the same basic filtering criteria: BWA MEM mapq >5 and
alignment length ≥50% of read length, with the added restric-
tion that read alignments must have begun with a match. For
methods that employed a restriction enzyme (traditional Hi-C,
Meta3C), we constrained the maximum allowable distance from
an aligned read to the nearest upstream cut-site. Calculated
per chromosome, this distance constraint could not exceed
2-fold the median cut-site spacing. Rather than simply delete

https://scicrunch.org/resolver/RRID:SCR_010910
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Table 4: Runtime simulation

Experiment Insert μ (bp) Insert σ (bp) Anti rate Spurious rate Trans rate Reads (×106)

Beitel et al. 300 50 0.2 0.05 0.1 7
Burton et al. 400 50 0.2 0.5 0.15 1.5
Le et al. 400 100 0.2 0.2 0.1 22
Marbouty et al. 600 100 0.2 0.2 0.2 7.5

Parameters supplied to Sim3C during read generation.

the primary diagonal for the sake of reducing the displayed
dynamic range in figures, we instead reduced its intensity by
categorizing properly paired reads with an estimated fragment
size of less than 2 of the reported mean as being conventional
WGS (non-PL) reads and ignored them. The resolution of contact
maps was adjusted between experiments so as to present a
sufficiently bright image without undue loss of resolution. The
contact map bin sizes employed were: 10 000 bp for the single
bacterial genome, 25 000 bp for the yeast genome, and 40 000 bp
for the Hi-C and Meta3C metagenomes (Tables 2, 3).

Availability of data and materials

Snapshots of the supporting code are available from the Giga-
Science repository, GigaDB [43].

Availability of supporting source code and
requirements
� Project name: Sim3C
� Release version: 0.1
� Project homepage: https://github.com/cerebis/sim3C
� RRID: SCR 015772
� DOI: 10.5281/zenodo.1030812
� Operating system: platform independent
� Programming languages: Python 2.7
� License: GNU GPL v3

Abbreviations

PL: proximity ligation;
WGS: whole genome shotgun
CID: chromosomal interaction domain
TAD: topologically associated domain
Bern(x): Bernoulli distribution
U(x): uniform distribution
N(μ, σ ): normal distribution
cis: intra-chromosomal
trans: inter-chromosomal
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