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Abstract

RUNX2 is an essential transcription factor required for skeletal development and cartilage formation. Haploinsufficiency of
RUNX2 leads to cleidocranial displaysia (CCD) a skeletal disorder characterised by gross dysgenesis of bones particularly
those derived from intramembranous bone formation. A notable feature of the RUNX2 protein is the polyglutamine and
polyalanine (23Q/17A) domain coded by a repeat sequence. Since none of the known mutations causing CCD characterised
to date map in the glutamine repeat region, we hypothesised that Q-repeat mutations may be related to a more subtle
bone phenotype. We screened subjects derived from four normal populations for Q-repeat variants. A total of 22 subjects
were identified who were heterozygous for a wild type allele and a Q-repeat variant allele: (15Q, 16Q, 18Q and 30Q).
Although not every subject had data for all measures, Q-repeat variants had a significant deficit in BMD with an average
decrease of 0.7SD measured over 12 BMD-related parameters (p = 0.005). Femoral neck BMD was measured in all subjects
(20.6SD, p = 0.0007). The transactivation function of RUNX2 was determined for 16Q and 30Q alleles using a reporter gene
assay. 16Q and 30Q alleles displayed significantly lower transactivation function compared to wild type (23Q). Our analysis
has identified novel Q-repeat mutations that occur at a collective frequency of about 0.4%. These mutations significantly
alter BMD and display impaired transactivation function, introducing a new class of functionally relevant RUNX2 mutants.
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Introduction

Osteoporosis is the major metabolic bone disease among

developed nations. The disease is characterized by low bone

density and reduced bone quality through the deterioration of

bone micro architecture. As a consequence, sufferers have

impaired skeletal strength and an increased susceptibility to

osteoporotic fractures. Bone mineral density (BMD) is a complex

trait and is controlled by environmental and genetic factors [1].

BMD is a primary predictor of osteoporotic fractures; it is however

a continuous trait related to age and weight. Osteoporosis as a

category is a truncation of this continuous normally distributed

trait, defined by a BMD value less than 2.5 SD from the

population mean of young adults [2]. The proportion of fractures

attributable to osteoporosis ranges from 10%–44% [3].

RUNX2 is a key regulator of skeletogenesis, bone and cartilage

formation [4–8] and has been genetically associated with BMD

[9–15]. RUNX2 transactivates genes such as osteocalcin, type 1

collagen and osteopontin and is initially expressed in mesenchymal

condensations where it plays an essential role in osteoblast

differentiation and in chondrocyte maturation [16]. RUNX2

deficient mice have un-mineralized skeletons with few immature

osteoblasts and an absence of vascular and mesenchymal cell

invasion in the cartilaginous templates. Heterozygous mutations in

coding and promoter sequences of RUNX2 cause the dominantly

inherited skeletal syndrome cleidocranial dysplasia (CCD). The

disorder is characterised by persistently open or delayed closure of

sutures, hypoplasia/aplasia of clavicles, Wormian bones, supernu-

merary teeth, short stature and other skeletal abnormalities

[17,18]. A spectrum of severity of CCD symptoms is correlated

with the extent of transcriptional activity remaining in the cognate

mutant RUNX2 with severest symptoms associated with complete

loss of RUNX2 function [19] and milder symptoms correlated

with some residual RUNX2 transactivation function [20].
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RUNX2 has consecutive polyglutamine and polyalanine repeats

(Q/A repeat) in the protein sequence. Such repeat regions have

the capacity to mutate via strand slippage during DNA replication.

Glutamine repeat sequence expansion has been the cause of some

diseases that show genetic anticipation, where severity increases in

subsequent generations as repeat length increases due to errors in

replication [21]. Wild type human RUNX2 contains a 23Q/17A

repeat; 23 consecutive glutamine followed by 17 alanine residues.

An insertion of the polyalanine tract (23Q/27A) was observed in

one patient with CCD [7] although no further polyalanine-related

CCD patients have been reported and no evidence currently

associates the Q-repeat region with CCD. We previously identified

Q-variants (15Q, 16Q, 24Q and 30Q) in an Australian fracture

cohort [9] and two 16Q variants as well as a single alanine

expansion variant (23Q/23A) in a randomly selected population

from Aberdeen [10]. Pineda et al. [22] observed three Q-variants

(16Q, 18Q and 30Q) in a Spanish population. Evidence exists that

the RUNX2 Q-repeat is a site of functional variation; in

carnivores the length of the Q repeat is significantly associated

with mid-face length and nose curvature [23], indicating an effect

on bone growth rates. Sears et al. [24] confirmed the functional

nature of carnivore related Q/A repeat alterations, showing

correlation of transcriptional variation with facial length in

carnivores. These lines of evidence suggest that RUNX2 repeat

variation may be functionally different in the human population.

We hypothesised that glutamine repeat variants would exist in

normal populations and may influence adult BMD and/or risk of

fracture.

Materials and Methods

Study Subjects
The study subjects were obtained from four different epidemi-

ological studies of bone density and are summarised in Table 1. All

subjects were female. Voting in elections in Australia is compul-

sory and each region maintains an electoral roll. The West

Australian study [25] consisted of females between the ages of 70

and 85 years who were randomly ascertained from the electoral

role and approached by letter. The Geelong Osteoporosis study

comprised a cohort recruited at random from the electoral role

(GOS random) [26] and a specific fracture study (GOS fracture),

where all fracture cases over the age of 35 years presenting at the

only two radiology practices in the region were invited to join, as

described [27]. Genotype was obtained on 834 subjects with no

history of fracture from the random sample of GOS and 578 of the

GOS fracture cases. The Sydney study comprised monozygotic

and dizygotic twins who volunteered for studies of general medical

issues through the Australian twin registry, as described [28]. Self

reported history of fracture was available among a series of

questionnaires completed by volunteers. Data were obtained on

980 participants. In the Tasmanian older adult cohort (TASOAC)

study, 388 DNA of females were available of which 385 yielded

genotype data. In this study, subjects ranged from 50 to 80 and

were recruited by random ascertainment from the electoral roll

[29]. For the Aberdeen study, subjects were postmenopausal

women aged between 45 and 55 years who were approached at

random using Community Health Index records of Aberdeen,

Scotland as previously described [30]. Data were obtained on 991

study participants. In addition, 101 elderly female clinic patients

with established osteoporosis and at least one osteoporotic fracture

were available from the Geelong endocrine clinic. A similar cohort

of 200 clinical patients with established osteoporosis defined by

recurrent vertebral fracture was available from a New Zealand

study, as described [31,32]. BMD data were not available for clinic

patients. Individuals in all studies were female Caucasians and no

subjects were excluded. Appropriate written consent was obtained

from subjects under procedures in accordance with the Declara-

tion of Helsinki approved by the relevant human research ethics

committees (HREC) as previously described [25–32]. The

committees are as follows: Sir Charles Gairdner Hospital HREC,

Barwon Health HREC, Northern Sydney Local Health District

HREC, Southern Tasmanian Health and Medical HREC and

University of Otago HREC.

Bone measures
Bone density was measured by dual energy X-ray absorptiom-

etry (DEXA). In the Aberdeen study a Norland XR26 or XR36

was used (Norland Corporation, Fort Atkinson, WI, USA). A

Lunar DPX-L machine was used for the GOS. The Western

Australian study used a Hologic 4500A fan beam densitometer to

measure total BMD of the hip region. A Lunar Achilles ultrasound

machine was used to measure the left calcaneus bone. Measures of

speed of sound (SOS), broadband ultrasound attenuation (BUA)

and bone stiffness were available. In the Sydney study, a Hologic

4500A fan beam densitometer was used to measure BMD at the

lumbar spine, total hip, femoral neck and whole body. Western

Australian, TASOAC and Sydney studies used the same type of

densitometer and were calibrated with the same standard

phantoms.

Detection of Q-variants
PCR was used to amplify RUNX2 exon 1 fragments harboring

the Q/A repeat using the primers forward 59-CCGGCAAAAT-

GAGCGACG-39 and reverse 59-GGGCGGTGTAGCCTCT-

TACCTT-39. The PCRs were carried out in 20 ml reactions

containing 561027 M primers, PCR reaction buffer, 125 mM

dNTPs, 80 ng genomic DNA, 0.5 units Taq polymerase in 20 ml as

specified by the supplier (Promega, Sydney, Australia). The study

populations were genotyped separately by differing means: testing

100 random DNA by all methods gave the same genotypes. For

the GOS and TASOAC, the resulting 336 bp fragments were

resolved via nondenaturing 10% polyacrylamide gel electropho-

resis (PAGE). Heteroduplex analysis was used to determine the

presence of Q-repeat variants. For the Aberdeen populations the

PCR fragment was digested with MspA1I (New England Biolabs)

and resolved on 3% agarose. For the Western Australian samples,

all PCR products were initially analysed via dHPLC (Varian

Prostar 430, Varian Industries, Sydney, Australia) and subse-

quently by heteroduplex PAGE. Genotyping was done twice for all

samples and all variant genotypes confirmed by PAGE to reveal

heteroduplexes. All PCR amplified DNA fragments that displayed

unique mobility patterns on PAGE were sequenced using BigDye

Table 1. Characteristics of population studies.

Study
Age
range

N
genotyped

Recruitment
via Reference

Western Australian 70–82 1078 Electoral roll 25

GOS random 20–92 822 Electoral roll 26

GOS fracture 35–95 598 Present with
fracture

27

Sydney 19–78 980 Twin registry 28

TASOAC 50–80 385 Electoral roll 29

Aberdeen 45–55 991 Health records 30

doi:10.1371/journal.pone.0042617.t001
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Terminator v1.1 ready mix according to the manufacturer’s

protocol (Applied Biosystems).

Plasmids, transfection and cell culture
Expression plasmids containing mutant Q/A domains were

constructed by cloning the XbaI-XbaI fragment from full length

RUNX2 expression plasmid pEF-aA [33] into pUC18 to create

pUC18RUNX2 which served as a template to create glutamine

variants via PCR cloning. PCR was used to amplify partial

RUNX2 promoter and exon 1 fragments from DNA samples

harboring Q/A mutations using the oligonucleotide primers

59-TTCACCACCGGACTCCAACT-39 for the 59 side and 59-

CATCTGGTACCTCTCCGAGGGCTACCACCTTGAAGG-

CCACGGGCAGGGTC-39 for the 39 side. The reverse primer

contained an EcoNI tag facilitating the cloning of the PCR

amplified product into the BglII-EcoNI site of pUC18RUNX2.

Mutant Q/A regions were confirmed by DNA sequencing and the

XbaI-XbaI fragments were cloned into the XbaI-XbaI site of the

mammalian expression vector pEF-BOS [34]. Restriction digest

analysis and DNA sequencing confirmed the orientations of

RUNX2 inserts. pGL3-Basic served as a template to create the

reporter constructs. BglII and HindIII sites were introduced by

PCR amplification in the human osteocalcin gene using oligonu-

cleotide primers 59-CAGGAGATCTCTGACCGTCGAGCTG-39

for the 59 side and 59-GGGCAAGCTTGGTGTCTCGGGTGG-

C-39 for the 39 side. The resulting BglII-HindIII fragment was cloned

into the corresponding sites of pGL3-Basic to create pOSLUC, which

has 590 basepairs of the human osteocalcin promoter, including 70

base pairs of the untranslated message. Oligonucleotides containing a

consensus mouse osteocalcin RUNX2 response element (RRE: 59-

GATCCGCTGCAATCACCAACCACAGCA, with RUNX2 con-

sensus binding site underlined) were cloned into the BglII site of

pOSLUC to create pRRE, which had three copies of the RRE

inserted as direct repeats. Transfections were performed using

FuGENE (Roche) as the manufacturer’s protocols. Antibody

immuno-staining was performed as described in Yoshida et al.

[35]. 1,25 dihydroxyvitamin D3 (1,25(OH)2D3) was kept in the dark

under argon in isopropanol and added with appropriate vehicle

controls after dilution in ethanol. No more than 0.1 ml ethanol per ml

medium was present in cell culture. Western blots of transfected cells

were done by standard methods using anti-RUNX2 antibody (D130-

3, MBL International) according to the manufacturer’s instructions.

Luciferase Assay
NIH3T3 cells and HEK293 cells were maintained in DMEM

(Gibco) supplemented with 10% FBS (v/v) (Gibco), 1% Penicillin-

Streptomycin (v/v) (Gibco) in a 5% CO2 humidified atmosphere

at 37uC. For the luciferase assay NIH3T3 cells were seeded into 6-

well plates at a density of 16105 cells/well 24 hours prior to

transfection. HEK293 cells were seeded into 12-well plates at a

density of 16105 cells/well 24 hours prior to transfection.

NIH3T3 and HEK293 cells were transfected using FuGENE6

transfection reagent according to the manufacturer’s instructions

(Promega). Cells were harvested 48 hours post-transfection.

Luciferase activities were determined using the dual luciferase

assay system described by Dyer et al. 2000 [36]. pRL-CMV

(Promega) was used as an internal control to normalize results.

Gel shift assays, in vitro protein translation and GST pull-
down assays

Gel shift assays were done by standard methods as previously

described, using 5% PAGE and in vitro translated proteins [37].

DNA probes representing RUNX2 binding sites were end labelled

using a fill in reaction of 59 overhangs using DNA polymerase 1

Klenow fragment and fragments purified by PAGE. In vitro

translated human RUNX2 variant proteins 23Q wild type, 16Q-

variant, and 30Q-variant were generated from DNA fragments

representing 23Q, 16Q, or 30Q variants recloned into a T7

promoter containing hRUNX2 vector by using T7 RNA

polymerase (TNTH Promega, USA) and coupled transcription-

translation reactions containing [35S]-methionine. Protein prod-

ucts were visualised and quantified by [35S]-methionine incorpo-

ration. Bacterial over-expression of glutathione-S-transferase

coupled human VDR (GSThVDR) fusion protein was performed

by induction with isopropyl-b-D-thio-galactopyranoside (IPTG,

1.25 mM) for 3 h at 30uC in the JM109 E.coli strain as described

previously [37]. GST pull-down assays were performed by

incubation of GSThVDR with either [35S]-23Q RUNX2 wild

type, [35S]-16Q variant, [35S]-30Q variant RUNX2. As a binding

agent, a GSThVDR-Sepharose bead slurry (50% w/v of beads) in

PPI buffer (20 mM HEPES, pH 7.9; 200 mM KCl; 1 mM

EDTA, 4 mM MgCl2, 1 mM dithiothreitol, 0.1% Nonidet P-40

and 10% glycerol) was used. GST fusion-Sepharose slurries were

pre-blocked in PPI buffer containing bovine serum albumin (1 mg/

ml) prior to use in pull-down assays. Unbound [35S]-23Q RUNX2

wild type, [35S]-16Q variant or [35S]-30Q variant RUNX2

labelled proteins were washed away with PPI buffer. In vitro

translated [35S] 23Q, [35S] 16Q or [35S] 30Q that had bound to

GSThVDR-Sepharose was released from the Sepharose, electro-

phoresed through a 12% SDS-PAGE, and detected by autoradi-

ography using either phosphor screens (BioRad) or X-ray film.

Densitometric analysis on resolved bands was performed using the

ChemicDoc system (BioRad).

Statistical methods
Within studies, Q-variants were analysed using analysis of

variance (ANOVA) and Student’s T-test. Genotype status (Q-

variant carrier or not) was coded as one and zero, respectively, and

used as a variable in ANCOVA analysis to test the effect of

covariates such as age and weight. Age, age-weight and age-

weight21 adjusted values of bone density parameters were

produced using linear regression. Stiffness was loge transformed

to comply with equality of variance assumptions in ANOVA.

These adjustments had no material influence on the conclusions

and Z scores of age-weight21 regression are presented. Incident

fracture during five years of observation was available for the

Western Australian study. Incident fracture was categorised as

zero and one for absence and presence of fracture, respectively, for

analysis by logistic regression and the number of such fracture

events also examined in genotype groups using contingency tables.

Results of logistic regression are presented as p values and odds

ratios (OR) with 95% confidence intervals (CI). Genotypes were

examined pooled (all variants) and separately as either deletions or

insertions. The only measure in common across all studies was

femoral neck BMD. In order to pool all studies, each individual

was expressed within a study as a Z-score of residual femoral neck

BMD from the age-weight21 regression specific for that study.

Under the null hypothesis of no effect at this locus on BMD, the Z

scores should be distributed randomly around a mean of zero.

Population simulations were constructed in excel, using the Monte

Carlo simulation plugin, PopTools [38], and the correlated

variable tool to simulate bone density parameters as a series of

correlated normal distributions, based on the correlations observed

in the populations studied. Results of transfections were analysed

using ANOVA with Fisher’s least significant difference test for pair

wise comparisons. Counts of cells were analysed using contingency

Q Variants in Human RUNX2
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tables and Chi-square. Analysis of covariance was used to analyse

categorical and continuous covariates.

Results

Q-variants identified
From the 1078 individuals genotyped in the Western Australian

study, there were five 16Q alleles, one 18Q allele and two 30Q

alleles. In the GOS random population sample three Q-variants

were identified in 822 subjects: these were one 15Q and two 16Q

variants. In the GOS fracture study, where recruitment was based

on any fracture at any age, four Q-variants were identified in 598

subjects: these were two 16Q and two 30Q variants. In a prior

publication [9], three of these variants were reported (two 16Q

and one 30Q): in this study more samples from the GOS fracture

cohort were genotyped and an additional variant identified. In the

Sydney population of 980, five individuals with Q-variants were

identified: carrying 16Q, 18Q and 30Q. The 16Q and 18Q

variants were found in two pairs of monozygotic twins. The 30Q

variant was in one individual of a dizygotic twin pair. For analysis,

the average bone density values of the monozygotic twin pairs

were taken and the pair considered as a single genetically unique

individual. In the Tasmanian study (TASOAC) no Q-variants

were found in 385 genotyped. In the Aberdeen study, two 16Q

variants were identified previously from 991 subjects [10]; in this

study their bone parameters are reported. In order to estimate the

frequency of the Q-variants without bias, only those populations

where the recruitment strategy involved volunteers were consid-

ered (Western Australia, Geelong, Tasmania and Aberdeen). In

this case, 13 Q-variants were observed within 3276 subjects,

yielding a population frequency estimate of 0.004 (95%CI, 0.002

to 0.007). Using the binomial theorem and the observed frequency

of Q-variants, it is estimated that 95% of repeat studies of a similar

size (approximately 3000 subjects) will detect between 6 and 19

such Q-variant carriers, if allele frequency is similar in other

populations. In 103 female post-menopausal clinic patients with

established osteoporosis with fracture, 16Q and 30Q variants were

found. In a similar population of vertebral fracture cases from New

Zealand [31,32], two 30Q variants were found in 200 patients

genotyped. Therefore, in clinic patients with osteoporosis, four Q-

variants were found in 303 patients genotyped. Apart from those

Q-variants described above, three examples of 24Q alleles were

detected overall. These 24Q subjects were not considered in this

analysis. All Q-repeat variants were heterozygous carriers with the

other chromosome containing a 23Q/17A wild type allele.

Bone density in Q-variants
Characteristics of Q-variant carriers with respect to femoral

neck (FN) Z scores are presented in Table 2. Figure 1 shows the

mean Z score of Q-variants for each measured parameter in each

study cohort. The Q-variant carriers in Western Australian were

compared to non carriers (N = 1021) for differences in the

ultrasound measures of bone density: broadband ultrasound

attenuation (BUA) and speed of sound (SOS). Q-variants had

significantly lower BUA measures (n = 8, BUA, p = 0.025) at the

calcaneus, with a difference of 20.80 standard deviations (SD, or

Z score) and significantly lower SOS (p = 0.05) and log stiffness

(p = 0.013). Weight, height and age were not significantly different

in Q-variants. For all BMD values, age and age-weight21

adjustment was done using regression and adjusted values

produced. Individual values were then expressed as Z scores

around the relevant population mean. While the particulars of

reported measures change depending on such adjustment, the

general outcomes reported here are not dependent on this

mathematical adjustment. Measures of bone density using DEXA

were similarly lower in Q-variants (Fig. 1A) although only

nominally significant with the total hip BMD measure

(p = 0.028). At other sites there was a trend for Q-variants to

have lower BMD compared with all others in the study: femoral

neck (p = 0.22), trochanter (p = 0.065), and intertrochanteric

region (p = 0.06). Of the seven Q-variants identified from GOS

there was a trend for negative Z scores (BMD below the

population mean value, Fig. 1A) with 6 of 7 sites having negative

average BMD. The Q-variant subjects from the Aberdeen study

had negative Z-scores for both femoral neck and lumbar spine

BMD (averaging 21.39SD and 21.36SD, p = 0.01 and p = 0.11

respectively, Fig. 1A). In the Sydney study, the data from each

monozygotic twin pair were averaged and thus three were

available with BMD data. The Q-variants had negative BMD

Z-scores for the femoral neck with an average effect of 20.62SD.

There was a trend for negative Z scores for all bone measures

(Table 3).

Combining BMD data using Monte Carlo simulation
Bone density measures at different anatomical sites are

correlated: additional measures in individuals therefore contribute

useful information to explore the bone phenotype of Q-variants.

All these data from skeletal sites can be used collectively to explore

the genotype-phenotype relationship. Empirical p values based on

Monte Carlo modelling make use of the additional data available

in bone studies, where the scanning methods provide BMD

measures of multiple sites. Considering only Z scores derived from

within each study eliminates the effect of using different DEXA

devices. A simulation was made based on the likelihood of

sampling such individuals with measurements of correlated bone

related variables. Correlated variables were simulated based on the

measured correlations of bone parameters in the various

populations, and a simulation of sampling was done in order to

determine how many such samples met or exceeded the observed

data. This approach was first taken with the Western Australian

study, considering just deletion variants. There were six deletion

variants, identified in a population sample of 1078 subjects, each

with seven measured parameters related to bone. In this case, of

100,000 simulations of sampling six individuals measured for seven

correlated bone parameters, only 252 such samples had an overall

group mean equal to or more negative than the observed mean of

20.74 Z scores for all variables. This yields an empirical

multivariate p value of 0.0025. The GOS study came from a

similar population via similar recruitment with seven bone related

parameters measured; although the bone parameters were

measured using different equipment. The three deletions observed

in GOS study were combined with those from Western Australia

and a simulation done based on the idea of sampling from the

combined population: in this case the observed mean was 20.63 Z

scores and 235 samples from 100,000 trials met or exceeded the

observed mean, giving an empirical p value of 0.0024. When 30Q

variants were combined with all other variants from the two

Australian studies the Monte Carlo based multivariate p value

was: 0.0007. Of the 75 bone related measures from the Q variants

identified in Aberdeen, Western Australia and Geelong studies, 59

measures had negative Z score values. Combining data from the

three studies for Monte Carlo simulation resulted in 9 samples in

100,000 trials; giving an empirical probability of p = 0.0009. These

simulations suggest that the additional measures provide useful

data supporting the hypothesis that Q-variant carriers have lower

bone density and that the average deficit is of the order of 0.7 Z

scores of age, weight21 adjusted BMD.

Q Variants in Human RUNX2
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Using BMD data from the Q-variants derived from the GOS

fracture cohort is not necessary, since a significant p value was

already obtained using data from studies with no apparent

recruitment bias. However, if the GOS fracture and Sydney

cohort data were used in the Monte Carlo simulations the result

was still significant. Addition of all subjects for whom BMD data

were available to the Monte Carlo simulation supported the

hypothesis that Q-variant carriers have significantly lower BMD (3

samples in one million trials with mean values equal to or more

extreme than the observed means).

Femoral neck BMD was the only measure in common between

the GOS random sample, GOS fracture, Aberdeen, Sydney and

Western Australian studies. In order to combine the effects of these

studies, age-weight21 adjusted Z-scores for each study were taken

giving a mean Z score of 20.60. Simply combining all

populations, as if there were one global population from which

the samples were drawn, gave a p value of 0.0007. The conclusions

were not altered appreciably by taking the average of those who

were twins.

Relationship to fracture
In the GOS study, the random sample that was genotyped

excluded any with history of fracture, whereas in the Western

Australian study, although recruitment was essentially random,

fracture was not a reason for exclusion. Of the eight Q-variants

found in the Western Australian study, four had prior osteoporosis

related fractures (hip, spine and arm fractures). Data on incident

fracture during a five year observation period were available for

those who had completed the follow-up. Incident fracture during

the study period was coded as 0 or 1 for absence and presence of

fracture and the type of fracture was ignored. Four of 8 Q-variant

carriers sustained incident fracture whereas the fracture rate was

17.8% in 1036 subjects with the normal 23Q RUNX2 allele. Q-

variant carriers were significantly more likely (Fisher’s exact test,

Figure 1. Characterization of RUNX2 Q variants with respect to clinical measures of bone density and in vitro transactivation. A.
RUNX2 Q-variant carriers from Western Australia, Geelong (GOS random sample and GOS fracture), Sydney and Aberdeen studies have lower mean
bone density parameters. Q-variants have lower mean Z-scores of bone density measured by calcaneal ultrasound (BUA, SOS, Stiff) and by DEXA at
various skeletal sites. Abbreviations: Abd., Aberdeen; BUA, broadband ultrasound attenuation; SOS, speed of sound; Stiff, bone stiffness; FN, femoral
neck BMD; TR, trochanteric region BMD; Hip, Hip BMD; TB, total body BMD; LS, lumbar spine BMD; WT, Ward’s triangle BMD; DR, distal radius BMD;
UD, ultradistal radius BMD. Error bars are standard error. Z-scores presented are the within-study age-weight21 adjusted Z score derived from within
that cohort. B and C. Q-variant expression vectors have diminished capacity to transactivate target promoters in NIH3T3 mouse fibroblasts (B) and
human embryonic kidney cell (HEK293) (C). Cells were transfected as described in the methods. In B the target was pRRE which is the human
osteocalcin promoter with three additional synthetic mouse RUNX2 target sites added upstream, and in C the target promoter construct was 590 bp
of the authentic human osteocalcin promoter driving luciferase (pOSLUC). D. Transfected cells show appropriate sizes of expressed product and
exhibit equivalent amount of protein. NIH3T3 cells were transfected with empty vector (Con) or expression constructs as indicated. Cellular extracts
were Western blotted after electrophoresis on SDS-PAGE. Numbers indicate molecular weight markers in kilodaltons. In B and C transactivation is
expressed as percentage relative to the 23Q variant in order to normalise scales of NIH3T3 and HEK293 cells.
doi:10.1371/journal.pone.0042617.g001
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p = 0.036) to be in the fracture category (OR 4.7 with 95% CI 1.2

to 19.2). Overall, 6 of 8 Q-variants from the Western Australian

study had prior or incident fractures. If the Geelong fracture study

(n = 598) is combined with Western Australian study subjects who

had ever fractured (n = 426), 1024 Australian subjects are available

who had sustained fracture. Combining Western Australian [25]

and GOS [39] subjects who had not reported fracture gave 1478

Australian non-fracture subjects. Despite the fact that no age

matching was done, there was a significant increase (p = 0.036) in

Q-variants within the fracture category in this comparison.

Overall, of 22 Q-repeat variants identified, 12 had sustained

some form of bone fracture, including the clinically important sites

of femur, hip, spine and arm. Within the 30Q variants, three of

five had fractured.

Reduced capacity to transactivate RUNX2 target genes
Expression vectors were constructed to express 23Q, 16Q and

30Q variants of RUNX2. Significantly lower transactivation of

target gene promoters occurred after transfection for 16Q and

30Q compared to the wild type 23Q was observed using a semi-

synthetic RUNX2 reporter construct (pRRE) in mouse fibroblastic

NIH3T3 cells (p = 0.002 and 0.016, for 16Q and 30Q, respec-

tively, Fig. 1B). Similar data was obtained using the human

osteocalcin promoter driving luciferase (pOSLUC) in HEK293

cells (Fig. 1C). Western blot of total protein from transfected

NIH3T3 cells demonstrated the expected differences in apparent

molecular weight in PAGE while there was no evidence a

difference in relative abundance of Q-variants compared to 23Q

wild type. Control cells transfected with empty vector showed no

immunoreactivity (Fig. 1D).

Comparison with CCD-related RUNX2 mutants
CCD is a disease where severe inactivating mutations of RUNX2

exist. Some CCD-related RUNX2 mutants have no transactiva-

tion capacity while others, related to milder phenotypes, have a

residual activity. CBFB is a heterodimer binding partner of

RUNX2, known to increase DNA binding. The ability of RUNX2

variants to co-localise with endogenous CBFB in either nuclear,

and/or cytoplasmic compartments was assessed by confocal

immunomicroscopy with simultaneous staining with RUNX2

and CBFB with different fluorophores (Fig. 2 A–C). Cells were

counted with exclusively nuclear staining, nuclear plus cytoplasmic

and cytoplasmic only staining. The data were expressed as

percentages of cells counted with a particular type of staining. For

RUNX2, more cells with cytoplasmic staining were observed in

transfected cells with 16Q and 30Q variants than expected

compared with wild type 23Q (p = 0.007), with the 30Q having the

stronger effect (p = 0.01). The majority (90%) of cells transfected

with wild type 23Q RUNX2 also showed nuclear localization of

CBFB: the other 10% represented cells with both nuclear and

cytoplasmic staining. For transfected 16Q variant, 75% of positive

cells showed nuclear RUNX2 while only 45% showed nuclear

CBFB (p = 7.561025) with the difference appearing in the

combined nuclear and cytoplasmic compartment (Fig. 2C). For

transfected 30Q, the difference in CBFB binding was not as great:

64% showed nuclear RUNX2 while 54% of cells were also being

positive for nuclear CBFB (p = 0.002) with a 10% increase in the

nuclear and cytoplasmic compartment for CBFB.

The transactivation functions of the Q-variants were analysed

using a third RUNX2 target gene reporter assay and activity

compared to RUNX2 mutants known to cause CCD. Using the

mouse osteocalcin reporter (p147) in NIH3T3 mouse fibroblastic

cells: 16Q and 30Q variants had reduced capacity to transactivate

Table 2. Characteristics of Q-variant allele carriers.

Allele Age Weight Height Z-FN

15Q 41 69 159 20.33

16Q 30 79 171 21.42

16Q 45 56 166 0.07

16Q 47 68 174 21.52

16Q 49 66 161 21.07

16Q* 69 71 165 20.15

16Q 70 56 152 20.34

16Q 72 80 168 0.89

16Q 75 71 165 21.69

16Q 76 52 156 20.91

16Q 78 61 152 20.70

16Q 79 65 167 20.31

16Q 85 70 147 20.13

18Q* 65 66 161 20.21

18Q 74 69 156 20.24

30Q 39 97 161 21.34

30Q 48 62 160 21.37

30Q 72 57 161 0.07

30Q 74 54 162 20.02

30Q 87 50 155 21.18

Age (years), weight (kg), height (cm) and Z-score of femoral neck BMD are
presented. Subjects are ranked by allele length and then age.
*indicates average of identical twin pair. In addition, a 16Q and three 30Q
variants were observed in clinic patients.
doi:10.1371/journal.pone.0042617.t002

Table 3. Bone parameters in standardized Z scores averaged
over all Q-variants carriers.

Site Mean Z N P value

Z_Spine 20.709 14* 0.0032

Z_FN 20.601 22* 0.0006

Z_WT 20.484 6 0.1449

Z_TR 20.774 14* 0.0022

Z_UD 20.102 5 0.8358

Z_MI 20.271 5 0.4149

Z_TB 20.531 10* 0.0844

Z_INT 20.760 7 0.0206

Z_HIP 20.653 11* 0.0146

BUA 20.798 8 0.0254

SOS 20.700 8 0.0505

STIFF 20.809 8 0.0130

N is the number of observations available.
*Asterisk indicates sites with data from more than one study combined using Z
scores. P value is the test of the hypothesis that the mean Z score is zero. Key:
Z_ indicates a Z score adjusted by age weight21 regression, FN is femoral neck,
WT is Ward’s triangle, TR is trochanteric region, UD is ultra distal radius, MI is
Mid shaft of the radius, TB is total body, INT is intertrochanteric region, HIP is
total hip, BUA is broadband ultrasound attenuation measured at the calcaneus,
SOS is speed of sound, STIFF is stiffness and p value refers to loge transformed
stiffness.
doi:10.1371/journal.pone.0042617.t003
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and this was a stronger effect than had been observed in the prior

reporter-cell line combinations (Fig. 2D). The depressed transacti-

vation ability of the 30Q variant was approximately the same as

that observed in the Q266X CCD mutant, whereas the 16Q

variant was similar to that seen in the A348fs mutant. Exogenous

transfected CBFB enhanced wild type RUNX2 activity and

rescued, to a large extent, the transactivation activity on the p147

target promoters when Q-variants were considered (Fig. 2E).

Under the same conditions, the activity of CCD-related RUNX2

mutants was not rescued fully by co-transfection of CBFB partner

(Fig. 2E).

Endogenous CBFB nuclear translocation was significantly

related to RUNX2 Q-variants when observed using confocal

microscopy (Fig. 2 A–C). Despite the fact that endogenous CBFB

localization might be altered in RUNX2 variants, we reasoned

that transfection of CBFB expression vector, may alter the

phenotype of the Q-variants by augmenting endogenous CBFB

levels. Expression vector for CBFB was transfected with Q-variants

and activity on the p147 target in NIH3T3 cells examined.

Vitamin D receptor (VDR) and Q variants
In order to test the interaction of VDR with RUNX2 Q-

variants in cells, the human osteocalcin promoter luciferase

construct (pOSLUC) was transfected into NIH3T3 fibroblasts,

with or without VDR expression vector and with or without

1,25(OH)2D3 and RUNX2 expression vector (Fig. 3A). Differences

in target promoter activity were once again observed, as described

above, with 16Q and 30Q showing significantly lower activity

compared to wildtype 23Q (Fig. 3A). As expected, transfection of

VDR resulted in induction of pOSLUC. In the presence of 45 ng

RUNX2 vector, 10 ng VDR vector and 1,25(OH)2D3 (at 1028 M)

approximately 63 fold induction of the target vector occurred

compared to empty vector vehicle treated cells (Fig. 3A). In the

absence of 1,25(OH)2D3, transfected VDR had no significant

effect on promoter activity. Treatment of cells with 1,25(OH)2D3,

in the absence of transfected VDR, resulted in some induction of

pOSLUC, consistent with activation of endogenous VDR.

Induction by 1,25(OH)2D3 was increased in the presence of

transfected VDR (p = 1.7610210). In the absence of 1,25(OH)2D3,

both 16Q and 30Q variants had significantly lower target gene

Figure 2. RUNX2 Q-variants have reduced nuclear localization and transactivation activity. A. Expression constructs were transfected
into NIH3T3 cells and RUNX2 detected using confocal immunofluorescence, counts were then made of the number of cells with staining in the
nuclear or cytoplasmic compartment, or both. The figures show representative cells and the insert percentage numbers indicates the proportion of
cells that show that particular staining location. Panel A shows Q-variant forms of RUNX2 and panel B shows RUNX2 mutants that are associated with
the condition cleidocranial dysplasia (CCD). C. Nuclear or cytoplasmic localization of CBFB in cells transfected with RUNX2 Q-variant constructs. D.
RUNX2 Q-variants compared with CCD-associated RUNX2 mutants, tested against the p147 mouse osteocalcin construct. In this assay Q-variants 16Q
and 30Q have a deficit of transcriptional activity that overlaps that of CCD-associated variants. E. Co-transfection of CBFB expression vector with
RUNX2 Q-variants completely overcomes the defect in transcriptional activity detected by the p147 promoter. In contrast, the transcriptional activity
of CCD-associated RUNX2 mutants on the p147 construct is not rescued by CBFB co-transfection. The transcriptional activities of 16Q and 30Q alleles
were compared to wild type 23Q RUNX2 and known CCD-related mutants using an in vitro target gene reporter assay consisting of the proximal
mouse osteocalcin promoter (p147) driving luciferase target gene construct and transfected with expression vector for RUNX2 variants in mouse
NIH3T3 fibroblast-like cells. In D and E, transactivation data are not percentages relative to 23Q wild type, but arbitrary units related to the ratio of
firefly luciferase to Renilla luciferase. Key to symbols: Con, control cells with target gene promoter p147 but transfected with empty expression vector;
23Q, wild type; 16Q and 30Q, Q variants; R211Q, missense mutation at residue 211; Q266X, early termination at residue 266; A348fs, frames shift
mutation at alanine residue 348.
doi:10.1371/journal.pone.0042617.g002
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promoter activity compared to 23Q wild type construct (23Q

versus 16Q, p = 1.161025; 23Q versus 30Q, p = 4.061026),

regardless of the presence or not of transfected VDR. In contrast,

in the presence of 1,25(OH)2D3 and transfected VDR the

difference between 23Q and other Q-variant constructs measured

by osteocalcin promoter activity was eliminated or reduced (23Q

versus 16Q, p = 0.95; 23Q versus 30Q, p = 0.08).

VDR is a RUNX2 partner protein that can be activated by

ligand, 1,25(OH)2D3. To examine the interaction of VDR and

RUNX2 variants, in vitro translated proteins were made and tested

in glutathione-S transferase (GST) pull down reactions for

differences in protein-protein interaction. Unlabelled GST-VDR

fusion construct was used to pull down 35S labelled Q variant

RUNX2 proteins (Fig. 3B). Under these conditions, GST-VDR

demonstrated a strong interaction with RUNX2 (approximately

25% of label being recovered in pull down) but no significant

difference in capacity to pull down RUNX2 Q-variants (p = 0.08),

suggesting that protein-protein interactions of RUNX2 and VDR

are unaffected by either variation in the glutamine repeat or the

GST moiety added to VDR. There was no difference in the

Figure 3. RUNX2 Q-variant interaction with the vitamin receptor (VDR). A. Transfected VDR, activated by 1,25(OH)2D3, can overcome the
deficit in Q-variant transcriptional activity on a target human osteocalcin promoter. Although 16Q and 30Q variants show significantly reduced
transactivation in NIH3T3 cells, as seen previously, transfected VDR alone does not alter the significant defect, however activation of VDR by the
natural ligand 1,25(OH)2D3, results in essentially no difference in activation on the target gene promoter between the Q-variants. Promoter activity
refers to human osteocalcin promoter construct driving fire fly luciferase (pOSLUC). Transactivation units are arbitrary based on the ratio of fire fly to
Renilla luciferase. Empty vector controls are not shown but had activity of about one half unit on this graph. B. There was no detectable difference in
the affinity of [35S] RUNX2 Q-variants for binding labelled VDR protein in in vitro pull-down assays where VDR was used to pull down 35S labelled
RUNX2 protein via an affinity column. C. The ability of in vitro translated RUNX2 Q-variants to bind a RUNX2 DNA element from the mouse
osteocalcin promoter (known as ORE) is enhanced by VDR in a ligand dependant manner. DNA binding was measured by phosphor analysis of
labelled bands in gel shift assays after 5% PAGE. A difference in binding capacity existed on this element. Although addition of VDR or VDR and
1,25(OH)2D3, resulted in a increased total binding, in a ligand dependent manner, there was still a difference in Q-variants relative to 23Q. D. Images
show gel shift data, with triplicates, RUNX2 variants indicated on the image and above the additional proteins added. Data suggest a difference in
DNA binding and interaction with VDR. 1,25D3 in figure indicates 1,25(OH)2D3.
doi:10.1371/journal.pone.0042617.g003
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amount of GST-pull down signal in the presence or absence of

1,25(OH)2D3 ligand.

Quantitative gel-shift assays were done using in vitro translated

RUNX2 variants and a synthetic RUNX2 element from the

mouse osteocalcin gene. These data showed a significant difference

in the binding capacity of the Q-variants to the response element,

suggesting that variation in the Q repeat can influence DNA

binding, at least on some elements. In vitro conditions for ligand

(1,25(OH)2D3) dependent VDR binding to DNA were previously

described [36]. Under these conditions, the RUNX2 response

element binding activity was increased by addition of in vitro

translated VDR protein and further enhanced by addition of

1,25(OH)2D3. Despite increased DNA affinity in the presence of

VDR and 1,25(OH)2D3 a significant difference in the in vitro DNA

binding activity of Q-variants persisted such that 16Q and 30Q

variants were less active than 23Q wild type (Fig. 3 C, D).

Discussion

Various lines of evidence suggest that the RUNX2 Q/A repeat

region has functional polymorphism. We screened samples from

various studies for Q-repeat mutations in RUNX2. A total of 26

Q-variant carriers were identified, involving 24 genetically unique

individuals. The Q-variants did not present with cleidocranial

dysplasia (CCD) and thus we hypothesized that the Q-variants

may alter another skeletal phenotype such as BMD. Overall, Q-

variants were significantly lower for BMD measures including

bone ultrasound attenuation of the calcaneus, and DEXA

measures of BMD at several sites. After pooling BMD measures

from all studies, using Z scores, an overall estimate of the effect of

Q-variant status was obtained. The genetic effect of Q-variants

was around 0.7 Z-score (SD) reduction in bone density whether

measured by DEXA or ultrasound. These data confirm that the

Q-tract of RUNX2 has a reasonably high rate of population

variation and furthermore, suggest that this variation manifests in

the phenotype of lower BMD. Q-variant heterozygotes were

detected at around 0.4%, or around 40,000 per ten million

inhabitants. Q-variant homozygotes are expected to be infrequent;

but such homozygotes may have a more severe phenotype with a

mean effect of 21.4 Z-scores, if the genetic effect is additive.

Whether Q-insertions have a more extreme phenotype than

deletions, as suggested by the BMD data, remains to be

determined in larger populations.

New repeat variants can occur through strand slippage during

replication of repeat sequences such as that encoding the RUNX2

Q-repeat. Expansion of Q-repeats is known in other diseases such

as Kennedy’s disease where expanded androgen receptor repeats

result in motor neuron disease [40] and, incidentally, the length of

the repeat has been related to transcriptional function [41]. Long

Q-repeats are thought to adopt b-sheet structures [42] that coil

into a nanotube by forming a super helix with a critical point of

increased stability at a length of 30Q [43]. This might suggest that

the super structure of the Q-repeat, rather than the length, is

important for altered function. Although the Q-variants observed

in this study were either 30Q or less, it seems possible that longer

repeat expansion of RUNX2 may be observed and may be

associated with some other pathology. Interestingly, the most

frequent variants observed are 16Q and 30Q, each being 7 amino

acids difference from the standard wild type 23Q allele. This

represents a deletion or expansion of 21 base pairs in the DNA

helix, being exactly two turns of the helix increase or decrease,

given the accepted value of 10.5 base pairs per helical turn in

DNA.

The transcriptional activities of the 16Q and 30Q mutants were

analysed using three different luciferase reporter gene assays. The

variants exhibited transactivation function, however at significant-

ly reduced levels compared to wild type (23Q). The effect was of

greater magnitude using a truncated mouse osteocalcin promoter,

p147, where 16Q and 30Q variant activity overlapped that of

some RUNX2 mutations that are associated with cleidocranial

dysplasia. The reduction in transactivation function is consistent

with the decrease in BMD observed. In the case of a heterozygote

with a normal wild-type allele, the net effect would be expected to

reflect the activity of individual alleles. The significant effect of Q-

variant RUNX2 on transactivation activity in transfection assays

could result from effects on DNA binding, nuclear residence and

interactions with partner proteins. Nuclear residence of Q-variants

was decreased significantly in transfected cells while quantitative

gel shift assays suggested a difference in binding to consensus DNA

elements. We cannot distinguish between the nuclear import

effects and direct effects on transcriptional machinery, since we did

not examine in vitro transcription. Regardless of the mechanism, it

seems plausible that the quantitative reduction in the transactiva-

tion capacity of RUNX2 is associated with overall decrease in

BMD seen in human carriers. Accumulated over a lifetime, this

may be enough to explain the observed effects on bone density.

On the other hand, only one semi-synthetic and two natural target

genes were tested, so the effect of Q-variants on other genes is not

known. The vitamin D receptor (VDR) is ligand activated, is

known to bind RUNX2 by interaction on the osteocalcin

promoter [44], and has potent direct effects on bone cells. In the

human, but not in mouse, VDR activates osteocalcin through a

vitamin D response element. In this case, partial recovery of the

transactivation potential of the RUNX2 Q-variants on the human

osteocalcin promoter was observed on co-transfection and

activation of VDR with the ligand 1,25(OH)2D3.

Are the Q-variants related to fracture? While it is suggestive that

a significant effect on incident fracture was observed within the

Western Australian study, this outcome should be viewed with

caution due to the small numbers of Q variants. In addition, the

apparent enrichment of Q-variants in post-menopausal clinic

fracture cases (four variants in 303 cases genotyped) should also be

considered with caution. Given the rare nature of these Q-

variants, much larger studies are required to determine the

relationship with fracture with precision. A frequently quoted

proposition is that for every one standard deviation decrease in

BMD, a person increases two fold in liability for fracture. If the

effect on BMD of Q-variants is similar to the measured amount

(0.7SD deficit), we can expect an increase in liability to fracture of

slightly less than two-fold, if the effect of a gene such as RUNX2

on fracture acts solely via BMD. Based on the observed allele

frequency, very large studies indeed (10,000 cases and controls)

would be required for reasonable power test the hypothesis of

association with fracture at 99% confidence for an odds ratio of

around 2. If the hypothetical effect on fracture is greater than that

suggested by BMD differences, then it may be possible to detect an

effect in smaller numbers.

Severe RUNX2 mutations that cause CCD have a more

profound effect in transfection assays, usually abolishing transacti-

vation [6,7,19,20]. Milder phenotypes are associated with

RUNX2 mutants that have some transactivation function. In

some transactivation assays, notably using the p147 mouse

osteocalcin promoter, the 30Q RUNX2 variant resulted in

transactivation in a manner similar to CCD mutant RUNX2

forms (Q266X), suggesting a phenotype similar to CCD in terms

of transfection. The subjects that carry Q-repeat mutations do not

present with CCD, thus the Q-variant proteins transactivate target
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promoters at levels that are high enough to avoid the manifesta-

tions of CCD but at levels that reduce bone density within the

normal range. Alternatively, some other mechanism may keep the

phenotype out of the range of CCD, such as the CBFB or VDR

interactions that were investigated in this study. The transfection

data are consistent with this hypothesis. Our constructs were based

on the RUNX2 protein that starts MRIPV, an isoform that is

expressed off the second promoter of RUNX2. At least in mouse,

and possibly in human, an isoform beginning MASNS is expressed

off the first promoter. We have not tested the effect of Q-variants

within the context of the isoform RUNX2-II, expressed off the first

promoter. In addition, recent evidence suggests that Q-repeat

regions contain an activity similar to a trans-activation domain

[45,46]. Furthermore, RUNX2 Q/A repeat variation is related to

skull shape in carnivores [25,26] suggesting that functional

polymorphism is associated with this repeat: unfortunately no

data on facial characteristics or skull shape was taken from the

subjects presented in this study. It is also notable that the RUNX2

locus shows evidence of intense evolutionary selection in the

comparison between Neanderthal and modern human DNA

sequences [47]. How this relates to functional change remains to

be established. Our data support a role for the Q-repeat in

contributing to transactivation activity, although we have no data

on a biochemical mechanism. It seems reasonable to conclude that

a number of activities are altered to arrive at a change in target

gene transactivation: including nuclear localization, DNA binding

and possibly the activity of the Q-repeat as a transactivation

function. The data suggests lower transcriptional activity of

RUNX2, contributing to lower bone density and possibly flow-

on increased risk of fracture, through reduced transcriptional

activity in osteoblasts.

There are several limitations of this study. No subjects were

rejected from the collections for any reason prior to genotyping

although some DNA failed to amplify for technical reasons.

Recruitment bias was minimised as far as could be done in such

clinical collections and there is no reason to suspect that genetic

stratification might have influenced the outcome, although this

was not formally tested. Similar results were observed in different

locations, although all populations were essentially Caucasian.

Bone phenotype data were derived from different commercial

devices in each population and were compared through the use of

standardized Z scores or Monte Carlo modelling; which should

remove device-related differences. The study was limited to female

Caucasians. The statistical outcome observed was not dependent

on modelling covariates, although adjusted standardized values are

presented. While statistically significant, these outcomes do not

extend to the whole genome level of significance used in genome

scans, although this study was not designed as a genome scan. The

Q-variants observed in this study may be new mutations, although

intergenerational studies are needed to verify this. If these are new

mutants such a mutable locus may not be detected in a whole

genome association study, as new mutations would be sporadically

associated with genetic markers used in genome scans studies such

as haplotype blocks. We have not formally established that these

variants are new mutations, although the range of alleles (15Q,

16Q, 18Q and 30Q) suggests new mutations and these are

compatible with strand slippage models of DNA replication

through repeated sequences. Furthermore, the biochemical data

based on transfections for Q-variants were tested only in 16Q and

30Q types and only within the context of RUNX2-I isoform.

Biochemical effects of Q-variants may be different in the RUNX2-

II isoform, which is more osteoblast specific [48] and has a

differential interaction with CBFB [49] compared to RUNX2-I.

Three different target constructs were tested, with similar results,

although other target promoters may give different results. Finally,

interactions of VDR and RUNX2 were tested in artificial

constructs with a GST moiety, and tested on a single DNA

element, so differences observed may not relate to the situation in

the human and on other promoters.

In conclusion, the lines of evidence presented here suggest that

variation in the glutamine repeat of RUNX2 has functional

consequence. Significantly different phenotypic values for bone

density parameters were observed in individuals heterozygous for

the Q-variants. Significant functional differences were observed in

assays of transcription factor activity on different target gene

promoters. Furthermore, an alteration in both in vitro DNA

binding activity and nuclear residence was observed, suggesting a

number of different cumulative effects might occur with these

variants. A partial correction of the defect in Q-variant

transcriptional activity was observed in studies of interaction with

two nuclear partners, CBFB and VDR, which are candidates for

increasing residence of the RUNX2 variant on DNA. In addition,

due to the large number of potential carriers, this genetic marker

may be of some interest in the clinical setting. Intriguingly,

transfection of the VDR, in the presence of active 1,25(OH)2D3

overcame some of the in vivo defect in RUNX2 Q-variant,

suggesting a possible route for clinical studies of Q-variant carriers

or at least future studies of the bone phenotype of Q-variants

relative to vitamin D status.
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