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Abstract: Reported herein is the development of an effective strategy for controlled and efficient Lewis
pair polymerization of conjugated polar alkenes, including methyl methacrylate (MMA), n-butyl
methacrylate (nBuMA), and γ-methyl-α-methylene-γ-butyrolactone (γMMBL), by the utilization of
sterically encumbered Al(BHT)2Me (BHT: 2,6-di-tert-butyl-4-methylphenol) as a Lewis acid that shuts
down intramolecular backbiting termination. In combination with a selected N-heterocyclic carbene
(NHC) as a Lewis base, the polymerization of MMA exhibited activity up to 3000 h−1 TOF and an
acceptable initiation efficiency of 60.6%, producing polymers with high molecular weight (Mn up to
130 kg/mol) and extremely narrow dispersity (Đ = 1.06~1.13). This controlled polymerization with
a living characteristic has been evidenced by chain-extension experiments and chain-end analysis,
and enabled the synthesis of well-defined diblock copolymers.
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1. Introduction

Lewis pair polymerization (LPP), catalyzed by frustrated Lewis pairs (FLPs) [1–5] or classical
Lewis pairs (CLPs) in which Lewis acid (LA) and Lewis base (LB) are involved in monomer substrate
activation, chain initiation, as well as chain propagation and termination/transfer steps (Scheme 1A) [6],
has recently emerged and attracted enormous interest because the cooperation of a Lewis pair (LP)
allows for polymerization that is hardly accessible using a single catalyst and enhances the activity
and selectivity of this polymerization. The pioneering work of LPP was first reported by Chen et al.
in 2010 utilizing FLPs or CLPs consisting of bulky phosphine or an N-heterocyclic carbene (NHC)
LB and the highly acidic Al(C6F5)3 LA, which are capable of promoting rapid polymerization of
conjugated polar alkenes, such as methyl methacrylate (MMA) and biorenewable γMMBL (turnover
frequency (TOF) [7] up to 48,000 h−1) [8]. In their latter contributions, this unique catalytic system
was extended to the polymerization of other acrylate and acrylamide derivatives [9] as well as
monomers with C=C–C=N functionality such as 2-vinyl pyridine and 2-isopropenyl-2-oxazoline [10].
Recently, the highly active LPP of γMMBL by metal-free B(C6F5)3-based LA in combination with
NHC or phosphine LB was investigated by Chen et al., who found that interacting LPs or even
CLPs are essential for highly effective polymerization, whereas the B/P FLP systems exhibit no or
negligible polymerization reactivity [11–13]. In 2014, Lu and colleagues reported the chemoselective
polymerization of dissymmetric divinyl acrylic monomers by Al(C6F5)3-based CLPs, affording
soluble polymers with high molecular weight for post-functionalization [14]. Very recently, Xu and
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coworkers developed intramolecular and intermolecular rare-earth (RE = Sc, Y, Lu, La)/phosphine
LPs for the polymerization of MMA, γMMBL, and other acrylate derivatives [15,16]. Besides the
conjugated-addition polymerization of polar alkenes, controlled ring-opening (co)polymerizations of
heterocyclic monomers such as lactide, lactones, and α-amino acid N-carboxy-anhydride, as well as
the alternating ring-opening copolymerization of epoxides with carbonyl sulfide or cyclic anhydrides,
have been achieved with BEt3, B(C6F5)3, Al(C6F5)3 and Zn(C6F5)2-based LPs [17–25].

Controlled polymerization with a living characteristic is a powerful strategy for the precise control
of macromolecular structure, which enables the addition of functionality to materials for practical
applications [26–32]. Though exciting results have been achieved in the LPPs of conjugated polar
alkenes, these polymerizations were unfortunately difficult to control, presumably due to undesired
chain termination proceeding via intramolecular backbiting to generate a six-membered lactone
(Scheme 1A) [33–35]. To avoid chain termination, the strategy reported in the literatures has been the
utilization of weak acidic LAs, which weakens the activation of adjacent ester groups of the growing
polymer chain, thereby suppressing the backbiting reaction. However, the controlled LPP via this
strategy is usually at the expense of polymerization activity, as the weak acidic LA also impairs the
activation of monomers, thus leading to slow propagation. For example, Rieger and co-workers
reported a controlled LPP of N,N-dimethylacrylamide (DMAA) and methylacrylate derivatives, such
as furfuryl methacrylate (FMA), nBuMA, and t-butyl methacrylate (tBuMA), via highly interacting
CLPs composed of weak acidic organoaluminum LAs (AlMe3 and AlEt3) and less sterically hindered
phosphines (PMe3 and PEt3), but the polymerization activity was relatively low (TOF: 67~500 h−1) [36].
Likewise, Taton et al. established a controlled but low active polymerization of MMA (TOF < 14.3 h−1)
via metal-free LPs composed of a weak silane LA (Me3SiNTf2, Me3SiOTf) and phosphine LB [37].

As shown by the above overview, the development of an effective LPP of conjugated polar alkenes
that not only exhibits good activity but also has a high degree of control over the polymerization
has remained elusive and is the central goal of this study. In this context, we set out to examine the
LPPs toward three representative acrylic monomers, including MMA, nBuMA, and γMMBL using
Al(BHT)2Me as an LA (Scheme 1B), which is more sterically hindered but slightly less Lewis-acidic
compared to commonly used Al(C6F5)3. We envisioned that the introduction of such a sterically
encumbered LA would block intramolecular backbiting termination (Scheme 1B); furthermore,
we figured that the LA’s suitable Lewis acidity as well as the utilization of a strong nucleophile
NHC ((Ph)EtNHC, iPrNHC, and tBuNHC) would ensure good activity and thus would present an
opportunity for efficient and controlled polymerization.
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Scheme 1. (A) Generalized chain initiation, propagation, and termination mechanisms of the Lewis
pair polymerization (LPP) of methyl methacrylate (MMA) through zwitterionic intermediates. (B) The
structures of Lewis acids (LAs) and Lewis bases (LBs) examined in this study.
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2. Results and Discussion

2.1. Interaction of Al(BHT)2Me with (Ph)EtNHC

The reactivity of the selected NHC ((Ph)EtNHC) toward equivalent Al(BHT)2Me was examined
at the NMR scale in J-Young NMR tube using bezene-d8 as the solvent at room temperature (RT).
1H-NMR analysis revealed that the reaction between (Ph)EtNHC and Al(BHT)2Me was rapid, which was
completed in 10 min, affording a clean (Ph)EtNHC→Al(BHT)2Me CLP adduct. The characteristic signals
corresponding to the >CHCH3 group of the (Ph)EtNHC were downfield-shifted by around 0.6 ppm
after the reaction, which is indicative of the strong donation of electron density from the carbene
center to the Lewis-acidic Al center. Interestingly, two sets of signals can be observed for the >CHCH3

and –CH=CH– groups of (Ph)EtNHC with a ratio of around 6:4, indicating that the resultant adduct
contains two isomers, presumably caused by the constrained geometry of (Ph)EtNHC in the adduct due
to the sterically hindered Al(BHT)2Me. The stoichiometric reaction of Al(BHT)2Me with MMA was
also investigated in the bezene-d8 by 1H-NMR. Most significantly, the signals attributed to the MMA
shifted upfield (=CH2: 5.11 ppm, –OCH3: 3.17 ppm, –CH3: 1.39 ppm) (exception: =CH2: 6.20 ppm)
relative to free MMA (=CH2: 6.07 and 5.19 ppm, –OCH3: 3.36 ppm, –CH3: 1.80 ppm), suggesting
the formation of MMA→Al(BHT)2Me CLP adduct and the ability of Al(BHT)2Me to activate MMA.
In contrast, the signals of MMA was shifted upfield even further (=CH2: 5.85 and 4.98 ppm, –OCH3:
3.11 ppm, –CH3: 1.30 ppm) when coupled with Al(C6F5)3 [8], which is consistent with the fact
that the Lewis acidity of Al(BHT)2Me is weaker than that of Al(C6F5)3. We also tried to detect the
zwitterionic imidazolium enolaluminate intermediate by the reaction of MMA→Al(BHT)2Me with
(Ph)EtNHC at RT in bezene-d8. However, 1H-NMR spectrum after the reaction was very complex and
the signals attributed to zwitterionic imidazolium enolaluminate were undetectable, though the signals
corresponding to MMA→Al(BHT)2Me and (Ph)EtNHC vanished, presumably a result of the limited
stability of zwitterionic intermediate at RT in the absence of a monomers.

2.2. Characteristic of Polymerization by NHC/Al(BHT)2Me

The initial investigation was carried out using an Al(BHT)2Me LA or (Ph)EtNHC LB alone for
polymerization of MMA at RT in toluene, and these control runs yielded no polymer formation for up
to 24 h (Table 1, Runs 1 and 2). Intriguingly, the polymerization became highly active when premixing
Al(BHT)2Me with MMA in toluene followed by the addition of (Ph)EtNHC to start the polymerization,
which can convert all monomers into polymers in 3 min (TOF = 2000 h−1, Table 1, Run 3), which is
consistent with the bimolecular, activated monomer mechanism proposed for LPPs in the literature.
In sharp contrast, no polymerization was observed when the Al(BHT)2Me LA was coupled with PtBu3

LB [9], demonstrating that the cooperation of LA and LB components is critical to the reactivity of
LPPs. Note that the dispersity of the obtained PMMA was very narrow (Đ = 1.11), despite the fact
that the resulting Mn (54.1 kg/mol) was higher than the theoretical value. The low initiation efficiency
(I* = 19.0%) was presumably caused by the stable NHC/Al adduct, which is difficult to dissociate in
the presence of monomers so as to generate free NHC for initiating polymerization. A reversed addition
sequence by premixing Al(BHT)2Me and (Ph)EtNHC first and then adding MMA resulted in low active
polymerization (TOF = 200 h−1, Table 1, Run 4) with an I* of only 3.0%, indicating the importance of
preventing the contact of Al(BHT)2Me and NHC before initiation. Nevertheless, the problem of low
I* can be solved by decreasing the catalyst loading to 0.2 mol %, which leads to polymerization with
an I* of 50.0% (Table 1, Run 5). As shown in Figure 1, monomer conversion increases linearly with
polymerization time after an initial induction period (1.2 min). The quantitative conversion can be
achieved in 16 min, affording the polymer a TOF value of 1875 h−1. It is worth noting that a perfectly
linear growth of Mn with increasing monomer conversion was observed while an extremely narrow
dispersity remained (Đ = 1.04~1.11, Table S1, Figure S1), indicative of controlled polymerization with a
living characteristic. Moreover, the MALDI-TOF MS spectrum of the PMMA oligomer produced by
Al(BHT)2Me/(Ph)EtNHC showed only one series of mass ions (Figure 2). A plot of m/z values of this



Molecules 2018, 23, 442 4 of 11

series vs. the number of monomer repeat units (x) yielded a straight line with a slope of 100.0 (the mass
of MMA) and an intercept of 277.6 corresponding to (Ph)EtNHC/H chain ends, supporting that the
polymerization is initiated by (Ph)EtNHC and proceeds through a conjugate–addition mechanism.
Note that a six-membered lactone chain end caused by backbiting termination was undetectable in
the MALDI-TOF MS spectrum, demonstrating the successful suppression of backbiting termination
by introducing sterically hindered Al(BHT)2Me LA as anticipated, thus giving rise to the controlled
polymerization with a living characteristic.

Table 1. Selected results of polymerizations by Al(BHT)2Me/NHC LPs 1.

Run LB LA Monomer
(M) M/LA/LB Solvent Time

(min)
Conv.
(%) 2

Mn
3

(kg/mol) Đ 3 I* 4

(%)

1 1 - MMA 100/-/1 TOL 1440 0 - - -

2 - Al(BHT)2Me MMA 100/1/- TOL 1440 0 - - -

3 1 Al(BHT)2Me MMA 100/2/1 TOL 3 100 54.1 1.11 19.0

4 5 1 Al(BHT)2Me MMA 100/2/1 TOL 30 100 343.2 1.14 3.00

5 1 Al(BHT)2Me MMA 500/2/1 TOL 16 100 102.7 1.06 50.0

6 1 Al(BHT)2Me MMA 500/3/1 TOL 10 100 82.5 1.13 60.6

7 1 Al(BHT)2Me MMA 500/2/1 DCM 25 100 127.9 1.07 39.1

8 1 B(C6F5)3 MMA 100/2/1 TOL 75 99 15.8 1.48 65.2

9 1 Al(C6F5)3 MMA 100/2/1 TOL 1440 0 - - -

10 1 AlMe3 MMA 100/2/1 TOL 1440 0 - - -

11 1 AlEt3 MMA 100/2/1 TOL 1440 19.6 - - -

12 1 AliBu3 MMA 100/2/1 TOL 1440 99.8 106 1.47 9.70

13 2 Al(BHT)2Me MMA 500/2/1 TOL 30 98 130.6 1.07 38.0

14 3 Al(BHT)2Me MMA 250/2/1 TOL 34 93.2 258.0 6 1.08 6 9.03

15 1 Al(BHT)2Me nBuMA 500/2/1 TOL 20 100 128.9 1.18 55.0

16 1 Al(BHT)2Me MMBL 500/2/1 DCM+ TOL 7 40 98.5 133.0 1.04 41.5

17 8 1 Al(BHT)2Me MMA/nBuMA (400 + 250)/2/1 TOL 16
10 100 87.4

105.5
1.13
1.09 -

1 Conditions: M/LA/LB = 100/2/1: LB = 37.4 umol, [MMA] = 1.56 M, M/LA/LB = 500/2/1: LB = 18.7 umol,
[MMA] = 0.94 M, 250/2/1: LB = 37.4 umol, [MMA] = 0.94 M. 2 Monomer conversions were measured by 1H NMR
spectra. 3 Number-average molecular weight (Mn) and dispersity (Đ = Mw/Mn) were determined by GPC at 40 ◦C in
THF relative to PMMA standards. 4 Initiation efficiency (I*) = Mn(calcd.)/Mn(exptl), where Mn(calcd.) = MW(M) ×
[M]/[LB]× conversion (%) + MW(chain-end groups). 5 The polymerization was carried out by premixing LA and LB
first followed by adding MMA. 6 GPC trace showed a small (ca. 9%) high MW shoulder peak. 7 The polymerization
was started by the addition of an NHC solution in toluene to DCM solution of γMMBL and Al(BHT)2Me. 8 Diblock
copolymer was prepared by initiating MMA block first followed by adding nBuMA.

When the amount of Al(BHT)2Me was increased to 3 equivalent relative to (Ph)EtNHC, the I* and
TOF values of the polymerization further enhanced to 60.6% and 3000 h−1, respectively, affording
the polymer with a narrow Đ value of 1.13 (Table 1, Run 6). Changing the solvent from toluene
to more polar DCM decreased both the activity and the I* (Table 1, Run 7), as NHCs are known to
decompose in DCM over time. In addition, polymerization by the other LAs in conjunction with
(Ph)EtNHC LB, has also been studied. The polymerization became sluggish and uncontrolled when
replacing Al(BHT)2Me with B(C6F5)3 (TOF = 79.2 h−1), producing the polymer with broader dispersity
(Đ = 1.48), though the I* of the polymerization was higher under the same conditions (Table 1, Run 8
vs. 3). No polymerization occurred within 24 h when the strong Lewis-acidic Al(C6F5)3 was used
as an LA for MMA polymerization (Table 1, Run 9). Switching to the alkyl aluminums, AlMe3 and
AlEt3 with weak Lewis acidity and less steric hindrance were inactive for LPP up to 24 h (Table 1,
Runs 10–11), while the polymerization by more sterically demanding AliBu3 exhibited very low activity
(TOF = 4.1 h−1) and an I* of 9.70% (Table 1, Run 12), producing the polymer with broad dispersity
(Đ = 1.47). These results indicated the unicity of the Al(BHT)2Me-based LA when coupled with the
(Ph)EtNHC LB for highly active and controlled polymerization of MMA.



Molecules 2018, 23, 442 5 of 11

Molecules 2018, 23(2), 442; doi: 10.3390/molecules23020442 4 of 10 

 

(Ph)EtNHC/H chain ends, supporting that the polymerization is initiated by (Ph)EtNHC and proceeds 
through a conjugate–addition mechanism. Note that a six-membered lactone chain end caused by 
backbiting termination was undetectable in the MALDI-TOF MS spectrum, demonstrating the 
successful suppression of backbiting termination by introducing sterically hindered Al(BHT)2Me LA 
as anticipated, thus giving rise to the controlled polymerization with a living characteristic.  

Table 1. Selected results of polymerizations by Al(BHT)2Me/NHC LPs 1. 

Run LB LA 
Monomer 

(M) M/LA/LB Solvent 
Time 
(min) 

Conv. 
(%) 2 

Mn 3 

(kg/mol) Đ 3 
I* 4 

(%) 
1 1 - MMA 100/-/1 TOL 1440 0 - - - 
2 - Al(BHT)2Me MMA 100/1/- TOL 1440 0 - - - 
3 1 Al(BHT)2Me MMA 100/2/1 TOL 3 100 54.1 1.11 19.0 

4 5 1 Al(BHT)2Me MMA 100/2/1 TOL 30 100 343.2 1.14 3.00 
5 1 Al(BHT)2Me MMA 500/2/1 TOL 16 100 102.7 1.06 50.0 
6 1 Al(BHT)2Me MMA 500/3/1 TOL 10 100 82.5 1.13 60.6 
7 1 Al(BHT)2Me MMA 500/2/1 DCM 25 100 127.9 1.07 39.1 
8 1 B(C6F5)3 MMA 100/2/1 TOL 75 99 15.8 1.48 65.2 
9 1 Al(C6F5)3 MMA 100/2/1 TOL 1440 0 - - - 
10 1 AlMe3 MMA 100/2/1 TOL 1440 0 - - - 
11 1 AlEt3 MMA 100/2/1 TOL 1440 19.6 - - - 
12 1 AliBu3 MMA 100/2/1 TOL 1440 99.8 106 1.47 9.70 
13 2 Al(BHT)2Me MMA 500/2/1 TOL 30 98 130.6 1.07 38.0 
14 3 Al(BHT)2Me MMA 250/2/1 TOL 34 93.2 258.0 6 1.08 6  9.03 
15 1 Al(BHT)2Me nBuMA 500/2/1 TOL 20 100 128.9 1.18 55.0 

16 1 Al(BHT)2Me MMBL 500/2/1 
DCM+ 
TOL 7 

40 98.5 133.0 1.04 41.5 

17 8 1 Al(BHT)2Me MMA/nBuMA 
(400 + 

250)/2/1 
TOL 

16 
10 

100 
87.4 

105.5 
1.13 
1.09 

- 

1 Conditions: M/LA/LB = 100/2/1: LB = 37.4 umol, [MMA] = 1.56 M, M/LA/LB = 500/2/1: LB = 18.7 umol, 
[MMA] = 0.94 M, 250/2/1: LB = 37.4 umol, [MMA] = 0.94 M. 2 Monomer conversions were measured 
by 1H NMR spectra. 3 Number-average molecular weight (Mn) and dispersity (Ɖ = Mw/Mn) were 
determined by GPC at 40 °C in THF relative to PMMA standards. 4 Initiation efficiency (I*) = 
Mn(calcd)/Mn(exptl), where Mn(calcd) = MW(M) × [M]/[LB] × conversion (%) + MW(chain-end groups). 
5 The polymerization was carried out by premixing LA and LB first followed by adding MMA. 6 GPC 
trace showed a small (ca. 9%) high MW shoulder peak. 7 The polymerization was started by the 
addition of an NHC solution in toluene to DCM solution of γMMBL and Al(BHT)2Me. 8 Diblock 
copolymer was prepared by initiating MMA block first followed by adding nBuMA. 

0 4 8 12 16 20 24 28 32 36
0

15

30

45

60

75

90

105

C
on

v.
 (%

)

Time (min)

Al/tBuNHC
Al/iPrNHC
Al/(Ph)EtNHC

 
Figure 1. Conversion–time plots for the MMA polymerization by different Lewis pairs (LPs) in 
toluene at room temperature (RT). 

Figure 1. Conversion–time plots for the MMA polymerization by different Lewis pairs (LPs) in toluene
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Besides (Ph)EtNHC, two other NHCs, iPrNHC and tBuNHC, were also utilized as LBs to examine
the effect of the NHC structure on Al(BHT)2Me-based LPP. As shown in Figure 1, the monomer
conversions in both LP systems also increase linearly with polymerization time after an initial induction
period (iPrNHC: 0.3 min, tBuNHC: ca. 0 min). The activities and I* values of the polymerizations follow
the order of tBuNHC (411 h−1, 9%) < iPrNHC (980 h−1, 38%) < (Ph)EtNHC (1875 h−1, 50%) (Table 1,
Run 5 vs. 13 vs. 14). The most nucleophilic tBuNHC as an LB for LPP exhibited the lowest activity and
I*, probably due to the extremely high steric stress between the bulky tBuNHC and steric demanding
MMA→Al(BHT)2Me adduct that prevents the formation of zwitterionic species. On the other hand,
compared to (Ph)EtNHC, less sterically hindered iPrNHC-based LP exhibited lower activity and I*,
presumably caused by the formation of a more stable CLP, which is more difficult to dissociate so
as to generate free NHC for initiating polymerization. Hence, it appears that the steric hindrance
of (Ph)EtNHC has a fine balance between the ability to attack the monomer and the propensity to
dissociate from the CLP, thus enabling the highest activity and I* in (Ph)EtNHC/Al(BHT)2Me-mediated
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polymerization. It is noteworthy that the polymerization by iPrNHC/Al(BHT)2Me is also very
controlled with a living characteristic, similar to the (Ph)EtNHC/Al(BHT)2Me system, as confirmed by
a linear growth of Mn with increasing monomer conversion as well as maintained extremely narrow
dispersity (Đ: 1.06~1.13, Figure 3, Table S2). Different from (Ph)EtNHC and iPrNHC-based LP systems,
tBuNHC/Al(BHT)2Me promoted uncontrolled polymerization, affording the polymer with a bimodal
molecular weight distribution (Figure S2). In terms of the stereoselectivity of these LPP systems,
the use of the sterically demanding Al(BHT)2Me LA did not noticeably affect the stereoselectivity,
and the PMMAs produced at RT were typically syndio-rich (~70% rr).
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Following a successful polymerization protocol developed for MMA polymerization,
the (Ph)EtNHC/Al(BHT)2Me LP system was also found to be highly active and controlled for the
polymerization of the sterically encumbered nBuMA (TOF = 1500 h−1) and biorenewable γMMBL
(TOF = 750 h−1), showing moderate I* values (41.5~55.0%) and producing polymers with narrow
dispersities (1.04~1.18), though their activities were lower than those of MMA polymerization (Table 1,
Run 15 vs. 16 vs. 5). Moreover, the living characteristic of LPP by (Ph)EtNHC/Al(BHT)2Me enabled
the synthesis of well-defined diblock copolymers. The sequential addition as a result of polymerizing
MMA first with MMA/Al(BHT)2Me/(Ph)EtNHC = 400/1/2 without quenching and subsequently
with another 250 equivalent of nBuMA afforded the successfully well-defined diblock copolymer
PMMA-b-PnBuMA (Table 1, Run 17), as evidenced by GPC traces (Figure S3), where PMMA produced
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first (Mn = 87.4 kg/mol, Đ = 1.13) shifted to a higher molecular weight region while the narrow
dispersity remained (Mn = 105.5 kg/mol, Đ = 1.09).

3. Experimental Section

3.1. Materials, Reagents, and Methods

All synthesis and manipulations of air- and moisture-sensitive materials were carried out in
flamed Schlenk-type glassware on a dual-manifold Schlenk line, on a high-vacuum line, or in an
argon-filled glovebox. HPLC-grade organic solvents were first sparged extensively with nitrogen as
they were placed into 20 L solvent reservoirs and then dried via passage through activated alumina
(for dichloromethane (DCM)) and then via passage through Q-5 supported copper catalyst stainless
steel columns [for toluene (TOL)]. Methyl methacrylate (MMA) was purchased from Aldrich Chemical
Co. (Shanghai, China), while butyl methacrylate (nBuMA) and γ-methyl-α-methylene-γ-butyrolactone
(γMMBL) were purchased from TCI Shanghai. These monomers were first degassed and
dried over CaH2 overnight, followed by vacuum distillation. MMA was further purified by
titration with neat tri(n-octyl)aluminum to a yellow end point and distillation under reduced
pressure [38]. The purified monomers were stored in brown bottles inside a glovebox freezer
at −30 ◦C for further use. Triisobutylaluminum (AliBu, 1.0 M in hexanes) was purchased from
J&K Chemical Co. (Shanghai, China), while trimethylaluminum (AlMe3, 1.0 M in heptane) and
triethylaluminum (AlEt3, 0.6 M in heptane) were purchased from Acros Chemical Co. (Shanghai,
China), which were all used as received. 2,6-di-tert-Butyl-4-methylphenol (BHT-H) was purchased
from Macklin and recrystallized from hexanes prior to use. Literature procedures were used to
prepare MeAl(BHT)2 [39]. Tris(pentafluorophenyl) borane (B(C6F5)3) was purchased from Aldrich
Chemical Co. and further purified via sublimation under vacuum. Tris(pentafluorophenyl)alane
(Al(C6F5)3), as a (toluene)0.5 adduct, was prepared by ligand exchange reaction between B(C6F5)3 and
AlMe3 [40]. N-Heterocyclic carbenes (NHCs), including 1,3-bis-(1-phenylethyl)imidazolin-2-ylidene
((Ph)EtNHC) [41] and 1,3-diisopropal-4,5-dimethylimidazol-2-ylidene (iPrNHC) [42], were synthesized
according to literature procedures, while 1,3-di-tert-butylimidazol-2-ylidene (tBuNHC) was purchased
from TCI Shanghai. Benzene-d6 was dried over a sodium/potassium alloy and vacuum-distilled
or filtered.

3.2. Stoichiometric Reaction of Al(BHT)2Me with MMA and In Situ Generation of MMA→Al(BHT)2Me Adduct

To a benzene-d6 (0.5 mL) solution of MMA (3.5 mg, 0.035 mmol) in a J-Young NMR tube,
Al(BHT)2Me (16.8 mg, 0.035 mmol) was added. The mixture was allowed to react for 10 min before
1H-NMR measurement, which indicated the formation of MMA→Al(BHT)2Me adduct. 1H-NMR
(400 MHz, benzene-d6, 25 ◦C): δ 7.18 (s, 4H, Ar–H), 6.20 (s, 1H, =CH2), 5.11 (s, 1H, =CH2), 3.17 (s, 3H,
–OCH3), 2.32 (s, 6H, Ar–CH3), 1.56 (s, 36H, –tBu), 1.39 (s, 3H, –CH3), 0.01 (s, 3H, Al–CH3).

3.3. Stoichiometric Reaction of Al(BHT)2Me with (Ph)EtNHC and In Situ Generation of
(Ph)EtNHC→Al(BHT)2Me Adduct

To a benzene-d6 (0.5 mL) solution of (Ph)EtNHC (5.0 mg, 0.018 mmol) in a J-Young NMR tube,
Al(BHT)2Me (8.7 mg, 0.018 mmol) was added. The mixture was allowed to react for 10 min before
1H-NMR measurement, which indicated the formation of (Ph)EtNHC→Al(BHT)2Me adduct as two isomers
A (major) and B (minor) in a 6:4 ratio. 1H-NMR (400 MHz, benzene-d6, 25 ◦C): δ 6.98~7.20 (m, (Ph)EtNHC:
8H, Ph–H, Al(BHT)2Me: 4H, Ar–H), 6.61 (d, J = 8.0 Hz, (Ph)EtNHC: 2H, Ph–H), 6.42 (s, 0.7H, B isomer,
–CH=CH–), 6.32 (s, 1.3H, A isomer, –CH=CH–), 6.04 (q, J = 8.0 Hz, 0.7H, B isomer, >CHCH3),
5.98 (q, J = 8.0 Hz, 1.3H, A isomer, >CHCH3), 2.40 (d, J = 8.0 Hz, 6H, >CHCH3), 1.33~1.59 (m, 42H,
–tBu and Ar-CH3), –0.21 (s, 3H, Al–CH3).
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3.4. General Polymerization Procedures

Polymerizations were performed either in 25 mL flame-dried Schlenk flasks interfaced to the
dual-manifold Schlenk line for runs using external temperature bath or in 20 mL glass reactors inside
the glovebox for ambient temperature (ca. 25 ◦C) runs. In a typical polymerization procedure,
a predetermined amount of LA was first dissolved in a predetermined amount of monomer [M] and
solvent inside a glovebox. The polymerization was started by the rapid addition of an LB solution in a
solvent via a gastight syringe to the above-mentioned mixture containing the LA and monomer under
vigorous stirring. The amount of the monomer was fixed for the varied [M]/[LB] ratio runs. After the
measured time interval, a 0.2 mL aliquot was taken from the reaction mixture via syringe and quickly
quenched into a 2 mL vial containing 0.4 mL of undried “wet” CDCl3 stabilized by 250 ppm of BHT-H;
the quenched aliquots were later analyzed by 1H-NMR to obtain the percent monomer conversion
data. After the polymerization was stirred for the stated reaction time, the polymer was immediately
precipitated into 200 mL of methanol, stirred for 1 h, filtered, washed with methanol, and dried in a
vacuum oven at 50 ◦C overnight to a constant weight.

3.5. Polymer Characterizations

NMR spectra were recorded on a Varian 400 MHz spectrometer. Chemical shifts for 1H and 13C
spectra were referenced to internal solvent resonances and are reported as parts per million relative
to SiMe4. Polymer number-average molecular weights (Mn) and molecular weight distributions
(Đ = Mw/Mn) were measured by gel permeation chromatography (GPC) analyses carried out at 40 ◦C
and a flow rate of 1.0 mL/min, with THF as the eluent, on a Waters 1515 GPC instrument equipped
with a Waters 2414 refractive-index detector and three Waters Styragel HR-3,4,5 columns connected in
series. The instrument was calibrated with 10 PMMA standards, and chromatograms were processed
with Waters Empower software (Version 3, Waters Ireland, Dublin, Ireland). The isolated low molecular
weight samples were analyzed by matrix-assisted laser desorption/ionization time-of-flight mass
spectroscopy (MALDI-TOF MS); the experiment was performed on an Shimadzu Biotech Axima
Performance MALDI-TOF mass spectrometer (Kyoto, Japan) operated in positive ion reflector mode
using an Nd:YAG laser at 355 nm and a 25 kV accelerating voltage. A thin layer of a 1% NaI solution
was first deposited on the target plate, followed by 0.6 µL of both sample and matrix (dithranol,
10 mg/mL in 50% ACN, 0.1% TFA). External calibration was done using a peptide calibration mixture
(4–6 peptides) on a spot adjacent to the sample.

4. Conclusions

In summary, we have established an effective strategy for controlled and efficient Lewis
pair polymerizations of conjugated polar alkenes including MMA, nBuMA, and γMMBL under
mild conditions. Success is attributable to the judicious selection of cooperative LAs and LBs:
the introduction of sterically demanding Al(BHT)2Me as an LA can completely shut down
intramolecular backbiting termination, and the utilization of a strong nucleophile NHC as an LB
ensures high activity and acceptable initiation efficiency. Investigation into the scope of LAs showed
that an Al(BHT)2Me-based LA is unique for such LPP, while the other less sterically hindered LAs,
such as Al(C6F5)3, B(C6F5)3, AlMe3, AlEt3, and AliBu3, did not lead to any polymer formation or
resulted in uncontrolled/low active polymerization. In this study, compared to the iPrNHC and
tBuNHC, the (Ph)EtNHC-based LP coupled with Al(BHT)2Me, which showed a fine balance between the
ability to attack monomers and the propensity to dissociate from CLPs, exhibited the highest activity
(TOF up to 3000 h−1) and an initiation efficiency up to 60.6%. Note that the (Ph)EtNHC/Al(BHT)2Me
and iPrNHC/Al(BHT)2Me LP systems have good control over the polymerization of MMA with a living
characteristic, as evidenced by chain-extension experiments and chain-end analysis. The controlled
characteristic can also be extended to nBuMA and MMBL polymerizations and enable the synthesis of
well-defined diblock copolymers.
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