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Abstract
Wool growth and fineness regulation is influenced by some factors such as genetics and environment. At the 
same time, lncRNA participates in numerous biological processes in animal production. In this research, we 
conducted a thorough analysis and characterization of the microstructure of wool, along with long non-coding 
RNAs (lncRNAs), their target genes, associated pathways, and Gene Ontology terms pertinent to the wool fineness 
development. The investigation utilized scanning electron microscopy and transcriptomic technology, focusing on 
two distinct types in Gansu alpine fine-wool sheep: coarse type (group C, MFD = 22.26 ± 0.69 μm, n = 6) and fine 
type (group F, MFD = 16.91 ± 0.29 μm, n = 6), which exhibit differing wool fiber diameters. The results showed that 
fine type wool fiber scales were more regularly distributed in rings with large scale spacing and smooth edges, 
while coarse type wool fiber scales were more irregularly arranged in tiles with relatively rougher edges, and the 
density of wool scales was greater than that of fine type wool. Furthermore, a comprehensive analysis revealed 
164 differentially expressed lncRNAs along with 146 potential target genes linked to these lncRNAs in the skin 
tissues from groups C and F. Utilizing functional enrichment analysis on the target genes, we successfully identified 
a number of target genes might be associated with the improvement of wool fineness, such as FOXN1, LIPK, 
LOC101116068, LOC101106296, KRTAP5.4, KRT71, KRT82, DNASE1L2, which are related to hair follicle development, 
histidine metabolism, epidermal cell differentiation, oxidative phosphorylation and hair cycle process. Additionally, 
the interoperability network involving lncRNAs-mRNAs indicated lncRNAs (MSTRG.17445.2, XR_006060725.1, 
MSTRG.871.1, MSTRG.10907.4) might play a significant role in the wool growth development and fineness 
improvement process. In conclusion, the research enlarges the current lncRNAs database, providing a new insight 
for the investigation of wool fineness development in fine-wool sheep.
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Introduction
As a natural renewable resource [1], wool is widely uti-
lized in textile [2], construction [3, 4], agriculture [5] 
and cosmetics industries [6]. In the textile industry, wool 
could mainly be classified into coarse and fine wool based 
on its fineness [7]. Coarse wool can be employed for the 
production of carpets, blankets and coarse felts, while 
fine wool is used for the manufacturing of wool sweaters 
and wool quilts. The finer the wool, the greater its qual-
ity and the higher economic value it could bring [8, 9]. 
In addition to environmental influences, the regulation of 
wool characteristics is primarily determined by genetic 
factors. Hence, identifying the essential genes that influ-
ence wool fineness is of paramount importance. Studies 
have indicated that PLCB2, GNAI3, EFNA5 and PDGFD 
genes may contribute to the wool fineness development 
in fine-wool sheep [10]. Comprehensive analysis via 
MeRIP-seq and RNA-Seq disclosed that EDAR, FGF5, 
TCHH, and KRT2 may be instrumental in the regulation 
of wool fineness in Chinese Merino sheep [11]. Neverthe-
less, beyond protein-coding genes, non-coding RNAs are 
likely to have a regulatory function in numerous biologi-
cal processes within animal systems [12–14].

LncRNAs represent a category of RNA molecules that 
are greater than 200 nucleotides in length. These mole-
cules primarily interact with RNA, DNA and proteins to 
modulate the target genes expression and influence the 
activity of downstream signaling pathways [15]. They can 
regulate gene expression through chromatin remodeling, 
transcriptional or translational regulation, RNA edit-
ing, RNA degradation and RNA splicing to participate in 
mediating various biological processes [16–18]. At pres-
ent, lncRNAs have been the subject of extensive research 
across a variety of tissues, including cardiac tissue [19], 
liver [20], lung [21], skin [22] and others tissues. Previ-
ous research has indicated lncRNAs (MSTRG.42054.1, 
MSTRG.18602.3, and MSTRG.2199.13) may be involved 

in the cashmere fineness indicators improvement in 
Jiangnan cashmere goats [23]. LncRNA MSTRG1410 has 
the potential to influence the traits associated with cash-
mere fineness through the modulation of the expression 
of specific target genes such as TCHH, KRT35, and JUNB 
[24]. In the course of the study, a total of 30 differentially 
expressed (DE) lncRNAs were identified, which may play 
a role in the regulatory mechanisms associated with wool 
fineness in Tibetan sheep [25]. While certain lncRNAs 
have been identified in particular breeds of sheep and 
cashmere goats, a significant number of highly tissue-
specific lncRNAs remain to be characterized. Addi-
tionally, the roles of lncRNAs in the processes of wool 
development in Gansu alpine fine-wool sheep are not yet 
well understood. Therefore, we investigated the expres-
sion profiles of lncRNAs in skin tissues of Gansu alpine 
fine-wool sheep.

A selection was conducted based on the mean fiber 
diameter (MFD) of wool from a cohort of seventy-three 
Gansu alpine fine-wool sheep belonging to the same 
group in our research. From this group, 12 individual 
fine-wool sheep were selected, representing two distinct 
categories, coarse type and fine type. Utilizing scan-
ning electron microscopy and RNA-Seq technology, the 
microstructural characteristics of the wool from these 
two fineness types of fine wool sheep were examined. 
Subsequently, DE lncRNAs expression profiles were ana-
lyzed, with the aim of identifying key lncRNAs associated 
wool growth and fineness improvement.

Materials and methods
Animals and sample collection
In the current study, wool samples were collected from 
seventy-three one years old foundation ewes during the 
hair follicle growth phase (July). All samples were sourced 
from a single flock of Gansu alpine fine-wool sheep. All 
experimental animals were from the same farm in Tian-
zhu Tibetan Autonomous County, ensuring a uniform 
nutritional intake across the subjects. The animals were 
primarily maintained on a grazing diet, supplemented 
moderately. Wool specimens were obtained from trailing 
edge of the left scapula of sheep to evaluate various eco-
nomic attributes, including wool fineness. The evaluation 
of these wool characteristics was carried out by the Fiber 
Quality Monitoring Center located in the Inner Mongolia 
Autonomous Region of China.

Based on the results of MFD of wool, a total of 12 
individuals exhibiting extreme fine wool characteristics 
were selected from a cohort of 73 fine wool sheep. This 
cohort included both coarse wool sheep, with an MFD of 
22.26 ± 0.69 μm (n = 6), and fine wool sheep, with an MFD 
of 16.91 ± 0.29 μm (n = 6) (Table 1).

We collected 5 cm² of skin specimens from the poste-
rior edge of the left scapula of each ewe. These samples 

Table 1  Measurements of mean fiber diameter in experimental 
animal
Group Sample name Mean fiber diam-

eter (µm)
Mean 
value (µm)

Fine(F) F1 16.45 16.91 ± 0.29
F2 16.83
F3 16.87
F4 16.93
F5 17.01
F6 17.34

Coarse(C) C1 21.50 22.26 ± 0.69
C2 21.55
C3 21.89
C4 22.59
C5 22.94
C6 23.06
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were subsequently rinsed with phosphate buffered saline 
(1x PBS). Following this, the skin specimen was rap-
idly frozen in liquid nitrogen to facilitate transcriptome 
sequencing and Real-time quantitative polymerase chain 
reaction (RT-qPCR) analysis (Biological replicates = 6). 
Furthermore, during the process of skin tissue sampling, 
a 2% lidocaine solution was administered for local anes-
thesia at the posterior border of the scapula in sheep. 
After sampling is completed, the wounds were treated 
with penicillin (Hebei Cheng Sheng Tang Animal Phar-
maceutical Co., Ltd., Shijiazhuang, China) to further 
reduce the risk of infection.

Wool fineness measurement
The evaluation of these wool characteristics was car-
ried out by the Fiber Quality Monitoring Center located 
in the Inner Mongolia Autonomous Region of China. 
Wool samples were collated for sampling, washed and 
dried, and then the wool fineness of 73 fine-wool sheep 
was measured using an optical fibre diameter analyser 
(OFDA).

Scanning electron microscopy analysis of wool
Firstly, the wool surface was washed with ultrapure water 
to get rid of adherents, mucus and impurities. The resid-
ual fat was completely removed by soaking in 70% etha-
nol solution for 2 min, and then dried on filter paper. A 
layer of conductive adhesive was pasted on the sample 
holder, and then the washed wool samples were adhered 
to the conductive adhesive and spray-plated on the wool 
with an ion sputtering apparatus (E-1045, Japan). A scan-
ning electron microscope (JSM-IT700HR, Japan) was uti-
lized to take images of the coarse type and fine type wool 
samples, and the area to be observed was selected to take 
pictures and observe specific alterations.

Total RNA extraction, RNA library construction and 
sequencing
Total RNA was extracted from tissue samples utilizing 
the Trizol reagent kit (Invitrogen, Carlsbad, CA, USA). 
The integrity of the RNA was evaluated using an Agilent 
2100 Bioanalyzer (Agilent Technologies, Palo Alto, CA, 
USA) and further validated through RNase-free agarose 
gel electrophoresis. Following the extraction of total 
RNA, ribosomal RNAs (rRNAs) were removed to iso-
late messenger RNAs (mRNAs) and non-coding RNAs 
(ncRNAs). The resulting enriched mRNAs and ncRNAs 
were subsequently fragmented into shorter sequences 
using a fragmentation buffer and reverse transcribed into 
complementary DNA (cDNA) with random primers. The 
synthesis of the second-strand cDNA was facilitated by 
DNA polymerase I, RNase H, deoxynucleotide triphos-
phates (dNTPs) incorporating dUTP in place of dTTP, 
and a suitable buffer. The cDNA fragments were then 

purified using the QiaQuick PCR extraction kit (Qia-
gen, Venlo, The Netherlands), underwent end repair, had 
poly(A) tails added, and were ligated to Illumina sequenc-
ing adapters. Subsequently, Uracil-N-Glycosylase (UNG) 
was employed to digest the second-strand cDNA. The 
resulting digested products were size-selected via aga-
rose gel electrophoresis, amplified through polymerase 
chain reaction (PCR), and sequenced analysis using the 
Illumina HiSeq TM 4000 platform (Illumina, CA, USA) 
in collaboration with Gene Denovo Biotechnology Co. 
(Guangzhou, China).

Quality assurance, alignment with reference genomes, 
analysis of differential gene expression
To achieve higher quality clean reads, fastp [26] (version 
0.18.0) was utilized to perform quality control on the 
downstream raw reads, and the screening criteria com-
prised removal of adapter-containing reads, reads with 
> 10% N, reads with all A bases, and low-quality reads 
(Q ≤ 20% of bases in the entire read). Bowtie2 [27] (ver-
sion 2.2.8) was employed to compare the filtered clean 
reads to the ribosomal database and remove ribosomal 
RNA (rRNA). Secondly, HISAT2 [28] (v2.1.0) software 
was employed to align the filtered clean reads with the 
reference genome of sheep (GCF_016772045.1_ARS-UI_
Ramb_v2.0). In combination with the HISAT2 screen-
ing results, transcripts were reconstructed for transcript 
assembly by means of stringtie [29] (version 1.3.4) soft-
ware, which in turn predicted novel lncRNAs. The 
screening criteria included eliminating transcripts with 
uncertain strand orientations, and retaining those with 
lengths of ≥ 200 bp and exon number ≥ 2. The coding abil-
ity of the novel transcripts was predicted by using three 
software packages, CPC2 [30], CNCI [31], and FEELNC 
[32], and the overlap of these transcripts that lack cod-
ing potential was considered the novel lncRNA. Gene 
expression levels measured using fragments per kilobase 
of transcript sequence per million base pairs sequenced 
(FPKM) values. The lncRNAs were then statistically ana-
lyzed for basic characteristics such as exon number, tran-
script length, protein coding potential and open reading 
frame length. The identified lncRNAs were subjected 
to differential expression analysis by means of DESeq2 
[33] (version 1.20.0) with a screening criterion of Fold 
change > 1.5, P-value < 0.05.

Prediction of target genes and analysis of functional 
enrichment for differentially expressed lncRNAs
The target genes of DE lncRNAs identified using both cis 
and trans approaches. The cis approach involved select-
ing genes located within 10 kb upstream or downstream 
of the lncRNA. The trans approach entailed examining 
the expression correlation between the lncRNAs and the 
protein-coding genes using Pearson correlation analysis, 
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which facilitated the prediction of trans target genes. Fol-
lowing the identification of the target genes associated 
with DE lncRNAs, enrichment analyses were conducted 
utilizing Gene Ontology (GO) and the Kyoto Encyclope-
dia of Genes and Genomes (KEGG) to further character-
ize these target genes.

Differentially expressed lncRNAs-mRNAs regulatory 
networks
In order to investigate the regulation mechanisms by 
which lncRNAs influence wool growth development of 
Gansu alpine fine-wool sheep, we identified target genes 
of prominent functional relevance. This selection was 
informed by the findings of Gene Ontology (GO) and 
Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analyses conducted in this study, as well as 
pertinent literature. The resulting regulatory network 
of lncRNAs and mRNAs visualized utilizing Cytoscape 
(version 3.7.1) [34].

RT-qPCR analysis
We randomly selected 11 DE lncRNAs for validation 
through RT-qPCR to assess the reliability of the RNA-
Seqs outcomes. The primers for PCR were designed 
using Primer 5.0 software. Subsequently, the specificity 
of these primers evaluated by the NCBI Primer-BLAST 
tool (Table 2). The RNA specimens employed underwent 

reverse transcription to cDNA utilizing SuperScriptT-
MII reverse transcriptase (Invitrogen, CA, USA). Sheep 
β-actin and GAPDH were selected as internal reference 
genes. In addition, the RT-qPCR reactions were per-
formed using the 2 × ChamQ SYBR qPCR Master sys-
tem (Vazyme, Nanjing, China) kit. The lncRNAs relative 
expression were calculated using the 2−(∆∆Ct) methodolo-
gies [35].

Statistical analysis
Independent samples t-test was performed on wool 
fineness measurements using SPSS 22.0. The results are 
presented as mean ± standard deviation (SD), with a sig-
nificance level set at P < 0.05. Data visualization was con-
ducted using GraphPad Prism version 8.0.1.

Results
Observation of wool fiber microstructure
The results indicated that the scales of fine type wool 
fiber were more regularly distributed in rings, having 
large scale spacing and smooth edges, whereas the scales 
of coarse type wool fiber were more irregularly arrayed in 
tiles, with relatively rougher edges, and the density of the 
wool scales was higher than that of group F (Fig. 1A, B).

Data quality control
A total of 75,157,421 raw reads were obtained from the 
Gansu alpine fine-wool sheep the skin tissues in group C, 
while group F yielded 71,913,428 raw reads. After getting 
rid of some low-quality sequences and splice sequences, 
66,838,825 and 70,732,108 high-quality sequences (clean 
reads) were respectively obtained. When these high-
quality clean reads were aligned to the sheep reference 
genome (GCF_016772045.1_ARS-UI_Ramb_v2.0), the 
mapping rates respectively reached 88.85% and 88.26%. 
This suggests that the sequencing depth and cover-
age of the samples satisfy the necessary testing criteria 
and could be suitable for further sequencing analysis 
(Table 3).

Identification and characterization of lncRNAs
In accordance with the lncRNA screening prediction cri-
teria, a total of 6669 lncRNAs were recognized within the 
Gansu alpine fine-wool sheep skin tissues, among which 
there were 6033 known lncRNAs and 636 novel lncRNAs 
(Fig. 2A). Additionally, in accordance with the position of 
lncRNAs in relation to protein-coding genes, these mol-
ecules could be categorized into five primary classifica-
tions: sense lncRNAs (146), antisense lncRNAs (1267), 
intronic lncRNAs (109), bidirectional lncRNAs (811) 
and intergenic lncRNAs (3934), with intergenic lncRNAs 
being the most numerous (Fig. 2B).

To explore the characteristics of novel lncRNAs in 
Gansu alpine fine-wool sheep, we made a comparative 

Table 2  Validation primer of RT-qPCR
lncRNAs Forward (5′ → 3′) Reverse (5′ → 3′)
MSTRG.10190.8 ​A​G​T​G​G​T​G​T​T​A​T​A​C​A​A​G​A​A​G​C​

T​T​G​A
​T​G​C​T​G​C​A​A​T​G​A​A​A​
A​G​G​G​C​T​G

MSTRG.10907.4 ​G​G​A​A​A​T​A​A​G​C​G​T​G​G​T​G​C​G​A​C ​G​C​A​A​A​A​T​G​A​A​C​G​
G​A​C​C​C​C​A​C

MSTRG.7452.1 ​C​G​C​A​T​T​C​A​T​T​G​A​T​C​T​C​C​C​A​G​C ​T​A​C​G​T​C​T​C​G​G​C​A​A​
A​T​G​T​G​G​G

MSTRG.3616.1 ​G​T​T​T​C​C​A​G​G​T​T​G​T​C​T​C​T​G​G​C​G ​A​T​A​C​G​A​G​T​G​T​C​T​G​
G​A​C​T​T​C​C​T​C​A

XR_006057691.1 ​G​T​T​G​T​C​A​A​G​C​A​G​C​G​A​G​T​G​T​G ​G​T​G​G​T​T​G​T​A​A​T​T​G​
G​G​G​G​C​C​T

MSTRG.871.1 ​T​T​G​C​C​T​C​C​C​T​G​C​A​A​A​G​C​T​A​A ​C​A​G​A​C​A​G​C​A​A​A​G​
T​C​C​A​C​C​C​A

MSTRG.7452.3 ​A​G​G​A​T​C​C​A​A​C​A​A​C​C​C​C​A​C​A​G ​T​C​T​C​C​G​A​G​T​A​A​G​T​
C​A​G​G​C​G​T

MSTRG.15575.2 ​C​A​G​A​C​C​G​G​A​G​C​T​A​A​G​C​A​G​T​T ​G​C​G​T​A​C​G​G​C​A​A​A​
C​T​A​C​G​A​A​A

MSTRG.17057.1 ​C​T​G​T​G​C​A​T​G​G​G​T​T​C​C​T​T​T​T​G​C ​C​A​G​C​A​C​A​C​C​T​A​G​
A​A​G​A​T​G​C​C​A

MSTRG.17445.2 ​T​C​T​A​G​C​C​A​C​A​G​A​C​C​C​A​T​G​T​C ​G​C​T​C​T​A​T​G​C​C​C​A​A​
C​T​C​T​G​G​A

MSTRG.7452.2 ​C​G​C​C​T​G​A​C​C​C​C​C​T​A​T​A​T​A​A​A​C​C ​C​G​G​A​G​G​A​T​T​T​T​C​T​
G​T​T​C​T​C​C​G

β-actin ​A​G​C​C​T​T​C​C​T​T​C​C​T​G​G​G​C​A​T​G​G​A ​G​G​A​C​A​G​C​A​C​C​G​T​
G​T​T​G​G​C​G​T​A​A

GAPDH ​G​T​C​G​G​A​G​T​G​A​A​C​G​G​A​T​T​T​G​G ​A​C​G​A​T​G​T​C​C​A​C​T​T​
T​G​C​C​A​G​T
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analysis of the transcript lengths, exon numbers, open 
reading frame lengths and protein coding potentials 

of lncRNAs and mRNAs. The results demonstrated 
that the novel lncRNAs exhibited a reduced number of 
exons, as well as shorter transcript and open reading 
frame lengths, when compared to mRNAs (Fig. 3A, B, C). 
LncRNAs exhibited lower expression levels compared to 
mRNAs (P < 0.05). Furthermore, the expression levels of 
novel lncRNAs, as measured by fragments per kilobase of 
transcript per million mapped reads (FPKM), were found 
to be significantly greater than those of known lncRNAs 
(P < 0.001) (Fig.  3D, E). Additionally, the protein-coding 
capacity of both novel and established lncRNAs was 

Table 3  Results of clean reads and alignment to the reference 
genome
Sample Average 

raw reads
Average 
remain-
ing clean 
reads

Average un-
mapped reads 
(%)

Average 
mapped 
reads (%)

C 75,157,421 66,838,825 7,433,202 (11.15%) 59,405,622 
(88.85%)

F 71,913,428 70,732,108 8,281,271 (11.74%) 62,450,837 
(88.26%)

Fig. 2  Identification of lncRNAs in Gansu alpine fine-wool sheep skin tissues. (A) Evaluation of novel lncRNAs (B) Statistics on lncRNA types

 

Fig. 1  Microstructure of wool fibers of Gansu alpine fine-wool sheep exhibiting varying degrees of wool fineness. (A) Fine type Gansu alpine fine-wool 
sheep wool microstructure; (B) Coarse type Gansu alpine fine-wool sheep wool microstructure
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Fig. 3  Analysis of lncRNAs in Gansu alpine fine-wool sheep skin tissues. (A) The variation in the number of lncRNAs and mRNAs. (B) The variation in 
lengths of transcripts for lncRNAs and mRNAs. (C) The variation in lengths of open reading frames for lncRNAs and mRNAs. (D) The expression levels (log10 
(FPKM + 1)) of lncRNA and mRNA in Gansu alpine fine-wool sheep. (E) The levels of expression among known lncRNAs, mRNA, and novel lncRNAs. (F) The 
analysis of the coding potential scores across known lncRNAs, mRNAs and novel lncRNAs. *** indicates P < 0.001
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found to be considerably lower in comparison to that of 
mRNAs (P < 0.001) (Fig. 3F).

Differential expression lncRNA screening
The present study was undertaken to identify lncRNAs 
associated with wool development and fineness regula-
tion by analyzing the expression levels of lncRNAs in the 
skin tissues of fine-wool sheep exhibiting varying degrees 
of wool fineness. 164 DE lncRNAs were identified in the 
skin tissues categorized into groups F and C. When com-
paring to group C, it was observed that 87 lncRNAs were 
up-regulated, while 77 lncRNAs were down-regulated in 
the sheep skin tissues of group F (Fig. 4A, B, Table S1).

Analysis of predictions and functional enrichment 
for target genes of lncRNAs related to wool fineness 
differences
To investigate the function of lncRNAs in the wool 
development and fineness improvement in Gansu alpine 
fine-wool sheep, we carried out corresponding predic-
tion analyses of the lncRNAs target genes, and identi-
fied 11 potential target genes from the cis-acting DE 
lncRNAs and 146 from the trans-acting DE lncRNAs. 
Then, KEGG and GO enrichment analyses were con-
ducted for the trans-acting DE lncRNAs target genes. 
The KEGG results indicated that the DE lncRNAs tar-
get genes were significantly enriched in 11 pathways 
(P < 0.05), including histidine metabolism (ko00340) 
and oxidative phosphorylation (ko00190) (Fig.  5A). The 
analysis of GO enrichment identified 358 GO terms that 
were significantly enriched (P < 0.05), with 40 related to 
cellular components, 68 to molecular functions, and 
250 to biological processes. Among the GO terms that 

showed significant enrichment, the highest number was 
found in biological processes, which also included several 
significant GO terms associated with the wool develop-
ment and fineness regulation, including keratinocyte dif-
ferentiation (GO:0030216), epidermal cell differentiation 
(GO: 0009913), epidermis development (GO:0008544), 
hair cycle process (GO:0022405) and hair follicle devel-
opment (GO:0001942) (Fig. 5B). Among these important 
KEGG pathways and GO terms, we also found some DE 
lncRNA target genes overlapping with some DEGs. These 
specific genes could be essential in the biological pro-
cesses involved wool quality regulation of Gansu alpine 
fine-wool sheep (Table 4).

Analysis of regulatory network between lncRNAs and 
mRNAs associated with wool growth
To investigate the roles of lncRNAs and mRNAs in 
the regulation of wool growth and fineness improve-
ment in Gansu alpine fine-wool sheep, additional pre-
dictive analyses were performed on the potential DE 
lncRNAs target genes. In this study, we identified 13 
crucial DE lncRNAs and established a regulatory net-
work linking lncRNAs and mRNAs by integrating 
the findings from DE lncRNA target gene prediction 
(Fig. 6). The findings indicated lncRNAs had target con-
nections with some candidate genes associated with 
the regulation of wool growth development and fine-
ness (such as FOXN1, LOC101116068, KRTAP5.4, 
KRT71, KRT82, etc.). For instance, the down-regulation 
of XR_006060725.1 and MSTRG.871.1 targeting the 
FOXN1 gene and LOC101116068, and the up-regula-
tion of MSTRG.17445.2 targeting the KRT82 gene and 
KRTAP5.4 imply that the regulation of mRNA by lncRNA 

Fig. 4  Differentially expressed lncRNA analysis in skin tissues of Gansu alpine fine-wool sheep with varying wool fineness. (A) Differentially expressed ln-
cRNAs histogram corresponding to the various wool fineness levels. (B) Differentially expressed lncRNAs heat map associated with differing wool fineness
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Fig. 5  Analysis of functional enrichment for the target genes of lncRNAs in the skin tissues. (A) DE lncRNA target genes Kyoto Encyclopedia of Genes and 
Genomes (KEGG) enrichment analysis; (B) DE lncRNA target genes Gene ontology (GO) enrichment analysis
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Table 4  The distinction in lncRNA targets and mRNAs related to the wool growth and fineness improvement
KEGG: ko00340
Histidine metabolism

lncRNA 
targets

HDC; AOC1

mRNA HDC; AOC1
KEGG: ko00190
Oxidative phosphorylation

lncRNA 
targets

LOC101108663; NDUFA6; ATP12A; ND4L

mRNA ATP6V0A4; LOC101107153; ATP6V1B1; LOC101108663; NDUFA6; ATP12A; ND4L
GO: 0030216
Keratinocyte 
differentiation

lncRNA 
targets

KRT82; LOC101106296; KRT71; LOC101113003; DNASEL2; LIPK; IVL; FOXN1;

mRNA KRT82; PKP3; LOC101106296; KRT71; CTSL; FOXN1; TGM1; DNASE1L2; KRT20; LIPK; IVL; LOC101113003; 
LOC105614079; LORICRIN; FLG

GO: 0009913
Epidermal cell 
differentiation

lncRNA 
targets

KRT82; LOC101106296; MCOLN3; FOXN1; KRT71; DNASE1L2; LIPK; IVL; LOC101113003;

mRNA MCOLN3; CDH2; CTSL; KRT82; PTPRQ; PKP3; LOC101106296; KRT20; LOC101113003; TGM1; DNASE1L2; 
LIPK; KRT71; IVL; LOC105614079; FOXN1; LORICRIN; FLG

GO: 0001942
Hair follicle development

lncRNA 
targets

FOXN1; KRT71; DNASE1L2

mRNA FOXN1; KRT71; DNASE1L2
GO: 0005882
Intermediate filament

lncRNA 
targets

KRT82; PNN; LOC101106296; KRT71; LOC101112657; LOC101116068; MNS1; LOC105604748; 
LOC105610157; LOC105616373; LOC114116855; LOC114116996

mRNA KRTAP1-1; KRTAP1-3; KRTAP4.3; KRT82; LOC101104203; LOC101108536; LOC101108798; KRT71; 
LOC101112657; LOC10111315; LOC101114287; LOC101114537; LOC101115634; LOC101116068; 
LOC105604734; LOC105604740; LOC105604748; LOC105610157; LOC105616373; LOC105616374; 
LOC106991427; LOC114110483; LOC114110486; LOC114112036; LOC114116843; LOC114116844; LOC114116849; 
LOC114116850; LOC114116852; LOC114116854; LOC114116855; LOC114116996; LOC114118844

The genes highlighted in bold represent potential lncRNA targets involved related to the wool growth and fineness improvement, along with their corresponding 
mRNAs

Fig. 6  Construction of the lncRNA-mRNA regulatory network. Red denote lncRNAs that are up-regulated lncRNAs, light green indicates lncRNAs that are 
down-regulated lncRNAs, and dark green represent the target genes of DE lncRNAs

 



Page 10 of 15He et al. BMC Genomics            (2025) 26:8 

might also be implicated in the growth development and 
fineness improvement of wool in Gansu alpine fine-wool 
sheep. At the same time, the Sankey diagram could more 
effectively display the relationship between wool develop-
ment-related DE lncRNAs, target genes and GO terms in 
which the target genes are significantly enriched (Fig. 7).

Verification of lncRNA expression by RT-qPCR
To confirm the reliability of the lncRNA sequencing 
results, we randomly selected 11 lncRNAs and assessed 
their expression levels by means of the RT-qPCR method. 
The results of all the experiments were in line with the 
sequencing data (Fig. 8).

Discussion
Hair follicles, as an important skin appendage, can 
be divided into primary and secondary hair follicles 
[36]. Primary hair follicles could generate coarse hairs, 
whereas secondary hair follicles could produce finer 
hairs. The structure of animal fibers consists of three 
main parts from outside to inside: the cuticular scale 
layer, the cortical layer and the medullary layer [37]. 
However, despite the similarity of the basic structural 
components of animal fibres, there are some differences 
in the morphology and chemical composition of these 
fibres, which in turn may lead to differences in hair fiber 
fineness, strength and crimp [38]. Depending on the 
presence or absence of a medullary layer, wool can be 
classified as medullated or unmedullated. Wool without 

Fig. 7  Sankey diagram illustrating the prominent enrichment GO terms for DE lncRNA target genes related to wool growth development and fineness 
improvement
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medulla is finer and more economically valuable and is 
produced only from secondary hair follicles [39]. The 
cortex is located in the middle part of the hair and it con-
tains cortical fibers, gels, interstitial material, and voids. 
It has been found that the morphology of the hair fiber 
cuticle scale layer is not fixed and varies with factors such 
as nutritional conditions, animal fiber productivity and 
animal body size [38, 40]. In the present study, we found 
that fine type wool fiber scales were mostly distributed in 
more regular rings, with large scale spacing and smooth 
edges, while coarse type wool fiber scales were mostly 

arranged in irregular tiles, with relatively rougher edges 
and relatively narrower spacing of wool scales, further 
suggesting that the morphological characteristics of the 
wool fiber scale layer have a significant impact on the 
fineness traits of wool.

Studies on lncRNAs associated with the growth of 
hair follicles and skin tissue in sheep and goats have 
been discussed. It has been demonstrated that lncRNA 
MSTRG.15931.1 may influence the hair follicle cycle 
of sheep by interacting with the PTPRM, ELMO1 and 
Pip5k1c genes [41]. lncRNA-599,554 could boost the 

Fig. 8  Comparison of the expression levels of lncRNA as measured by RNA-Seq and RT-qPCR. The RT-qPCR results were shown as mean ± SD, with 2 − (∆∆Ct) 
representing these findings. The RNA-Seq results are indicated by FPKM values
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inducibility of dermal papilla cells (DPCs) in cashmere 
goats by positively influencing the expression of Wnt3a 
gene, which in turn promotes secondary hair follicle 
regeneration, as well as the formation and growth of wool 
fiber [42]. Additionally, 256 DE lncRNAs were screened 
during the cyclic growth of cashmere, and they may have 
an important regulatory role in the growth and cycling 
of secondary hair follicles in the Jiangnan cashmere goat 
[43]. In the study involving Liaoning cashmere goat and 
Inner Mongolia cashmere goat with different fineness, 
170 DE lncRNAs were screened and might be involved in 
the process of cashmere fineness regulation in cashmere 
goats [24]. The aforementioned studies have established 
a foundational basis for understanding the mechanisms 
by which lncRNAs regulate hair follicle development 
and enhance the economic traits associated with wool 
production. Nevertheless, there is a paucity of research 
regarding the regulation of wool fiber diameter by 
lncRNA in fine wool sheep have scarcely been reported, 
especially in the context of Gansu alpine fine-wool sheep. 
In the current research, we identified and characterized 
164 DE lncRNAs along with 146 DE lncRNAs target 
genes, suggesting that these molecular entities may sig-
nificantly influence the wool fineness improvement in 
Gansu alpine fine-wool sheep.

Functional enrichment analysis of genes is an effective 
way to screen pathways that play significant functions in 
diverse biological activities of animals. Relevant studies 
have discovered that crucial signaling pathways includ-
ing WNT signaling pathway [44, 45], TGFβ signaling 
pathway [46], fibroblast growth factor (FGF) signaling 
pathway [47], and bone morphogenetic protein (BMP) 
signaling pathway [48] exert important regulatory roles in 
the process of cell differentiation and fiber formation. In 
this research, via the enrichment analysis of target genes, 
some significant GO terms and KEGG pathways associ-
ated with wool growth development and fineness regula-
tion were also sifted out, such hair follicle development, 
histidine metabolism, epidermal cell differentiation, oxi-
dative phosphorylation and hair cycle process. Histidine 
is a dietary essential amino acid that is requisite for pro-
tein synthesis and cannot be synthesized in animals. His-
tidine could play a particularly crucial role in the active 
site of enzymes such as serine proteases (e.g., trypsin), 
which are members of the catalytic triad [49]. Hence, 
histidine metabolism also has a role in skin development 
and wool synthesis. Additionally, oxidative phosphory-
lation is a biochemical process in which organic matter 
liberates energy during catabolism, which in turn leads 
to the synthesis of ATP [50]. As a high-energy phosphate 
compound, ATP could offer a dependable energy sup-
ply for various life activities of plants and animals [51]. 
Therefore, we surmise that oxidative phosphorylation 

may also play a major part in energy supply during wool 
growth development and fineness improvement.

The establishment of lncRNA and mRNA interoper-
ability network is advantageous for identifying criti-
cal lncRNAs and corresponding target genes. In the 
present study, we combined the outcomes of the 
lncRNA-mRNA interaction network and Sankey dia-
gram (Figs.  6 and 7) to identify certain lncRNAs (such 
as MSTRG.17445.2, XR_006060725.1, MSTRG.871.1, 
MSTRG.10907.4) and DE lncRNA target genes (LIPK, 
LOC101116068, LOC101106296, FOXN1, KRTAP5.4, 
KRT71, KRT82, DNASE1L2, etc.) that might play crucial 
roles in the regulation of wool growth development and 
fineness improvement in Gansu alpine fine-wool sheep. 
Researches have demonstrated that Lipase family mem-
ber K (LIPK), as part of the lipase family, it may play a 
role in encoding epidermal lipase, which is associated 
with lipase activity and participates in lipolysis metabolic 
processes [52, 53]. Epidermal lipase is engaged in epider-
mal lipid metabolism, and the balance of epidermal lipid 
metabolism is closely related to epidermal permeability 
protective function of barriers [54].Moreover, the bar-
rier function of skin is essential and serves as a prerequi-
site for the hair follicles proper growth and development 
[55]. Additionally, Recombinant Deoxyribonuclease I 
Like Protein 2 (DNASE1L2) functions as an endonucle-
ase, which may play a prominent role in the process of 
nuclear DNA degradation in epidermal keratinocytes 
[56]. The epidermal stratum corneum could play a vital 
features in the skin’s barrier function, and the degrada-
tion of nuclear DNA within keratinocytes is an essential 
process in the development of a normal stratum corneum 
[57]. In this study, the DNASE1L2 and LIPK genes exhib-
ited significant enrichment in GO terms such skin devel-
opment, keratinocyte differentiation, and epidermal cell 
differentiation, which also further indicates their crucial 
roles in the normal keratogenesis of animal skin.

Wool is principally constituted by proteins of the kera-
tin family, encompassing keratin and keratin-associated 
proteins [58]. It has been discovered that polymorphisms 
and insertions/deletions in keratin and keratin-associated 
protein genes might have certain impacts on hair pro-
duction traits [59]. For instance, polymorphisms in the 
sheep KRTAP20-2 gene is associated with the crimp rate 
of wool fiber [60]. Insertions/deletions of bases in the 
coding region of sheep KRTAP6-1 are related to altera-
tions in wool fiber diameter [61]. In this research, kera-
tin-related genes like KRT82, KRT71 and LOC101106296 
(KRTAP 27 − 1) were screened and significantly enriched 
in GO terms including hair follicle and skin development. 
Concurrent research has suggested that the KRT71 gene 
are associated with the extent of hair curliness [62–64]. 
The KRT82 and LOC101106296 (KRTAP 27 − 1) genes 
also exert a regulatory function in fineness regulation 
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and wool development [65, 66]. In addition, based on 
the results of mRNA skin transcriptome analysis, we 
found that the mRNA expression levels of KRTAP6-1, 
LOC101116068, KRT82, KRT71, and LOC101106296 
genes in the skin of coarse type wool sheep (expression 
levels: 641.077, 13.293, 60.995, 576.917, 10.288, respec-
tively) were significantly lower than those in fine type 
wool sheep (expression levels: 1360.296, 55.776, 94.107, 
988.573, 24.394, respectively) (P < 0.05), indicating that 
the higher the expression levels of these gene mRNAs, 
the finer the wool. The results further suggest the signifi-
cant role of keratin and keratin-associated protein gene 
family members in the wool growth development and 
fineness improvement.

Conclusion
In the study, we discovered that the finer the wool, the 
more regular the circular distribution of wool fiber 
scales, and the greater the spacing between scales. At the 
same time, we also screened some DE lncRNAs (MSTRG. 
17445.2, XR_006060725.1, MSTRG. 871.1, MSTRG. 
10907.4) that may be related to wool development and 
fineness regulation, target genes of lncRNAs (FOXN1, 
LIPK, LOC101116068, LOC101106296, KRTAP5.4, 
KRT71, KRT82, DNASE1L2), GO terms (such as hair 
follicle development, hair cycle process and epidermal 
cell differentiation). The identification of these target 
genes results indicates that lncRNAs and associated tar-
get genes may have a significant character in the wool 
growth development and wool fineness improvement in 
Gansu alpine fine-wool sheep.
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