
Symmetric Molecular Dynamics
Sam Cox and Andrew D. White*

Cite This: J. Chem. Theory Comput. 2022, 18, 4077−4081 Read Online

ACCESS Metrics & More Article Recommendations

ABSTRACT: We derive a formulation of molecular dynamics that
generates only symmetric configurations. We implement it for all
2D planar and 3D space groups. An atlas of 2D Lennard-Jones
crystals under all planar groups is created with symmetric molecular
dynamics.

Molecular dynamics has long been proposed as a method for
predicting or understanding crystal structures.1 However, any
practitioner will confess it is near impossible to observe point
group symmetries in molecular dynamics. Here, we derive a
constraint formulation of molecular dynamics where the
symmetry group is an input. There is a finite number of
symmetry groups. We simply simulate under all symmetry
groups to generate symmetric structures.
There are two key ideas to our formulation that correspond

to the two components of a space group: the point group
symmetry and the Bravais lattice. The point group symmetry is
treated as a holonomic constraint. The constraint equation is a
function of positions that is zero when the positions are
symmetric. Holonomic constraints are a relatively solved
problem, and we follow previous approaches.2−7 The Bravais
lattice is a constraint on the simulation lattice vectors that
ensures the point group will tile space. Namely, the Bravais
lattice specifies the relative lattice vector magnitudes and
directions. We ensure our simulations are consistent by
working in an unconstrained lattice vector space that is
mapped to the correct Bravais lattice via a precomputed tensor.
This frees us to use any NPT method in the unconstrained
lattice vector space while still matching the Bravais lattice.
The concept of directly simulating under a symmetry group

is unknown to us. The closest examples are methods like
symmetry restraints.8 These harmonic restraints generally keep
the system close to symmetric, but unlike the method we
propose here, no single configuration is actually symmetric.
Symmetry has certainly been considered as a measure of
molecular configurations. For example, Zabrodsky et al.9

proposed a continuous symmetry measure, which is used to
quantify the symmetry of atoms. This has been used to directly

optimize Lennard-Jones clusters with symmetry.10 Of course,
the direct use of symmetry for crystal structure prediction with
Monte Carlo is common,11,12 and generative models with
explicitly included symmetry are common.13 There are no
molecular dynamics methods though that can directly sample
space groups, which would be useful for crystal structure
prediction and modeling biological assemblies.14 Symmetric
molecular dynamics may also be viewed as a special case of
objective molecular dynamics, which is a general method that
encompasses any infinite or finite periodic tiling of a
simulation.15,16 Similarly, others have explored generalizing
periodic boundary conditions to other tilings.17−20

Below we derive our equations of motion and discuss
implementation details. To assess the method, we show that it
conserves energy and is capable of working in arbitrary space
groups. Then we demonstrate its use to enumerate crystal
structures of the Lennard-Jones potential under all planar
groups with NPT simulations.

I. THEORY

A. Equation of Motion. Consider the dynamics of N
indistinguishable particles in D dimensions under a Hamil-
tonian H(p(t), q(t)). We wish to constrain H so that q(t) is
symmetric at all times. Symmetry is a property of q(t) and a
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specific symmetry group of position transformations G, like
mirrors along the x axis. q(t) is point group symmetric if
applying any element of the group results in no change to the
positions (ignoring ordering of particles)

g t t g Gq q( ) ( ),· ∼ ∀ ∈ (1)

where g· means applying the group element to each particle
individually, ∼ means row equivalence, and G is a finite group.
Group elements are represented as affine matrices in space and
planar groups.
Eq 1 may hold trivially. For example, all particles are at the

origin. Such special positions that are invariant to group
elements are known as special Wyckoff positions.21 We remove
this assumption in Section IIC, but for now additionally
assume

g t t g Iq q( ) ( ) iffi i· = = (2)

where I is the identity transformation.
Assuming eqs 1 and 2 hold at t = 0, the particles can be

partitioned into N/|G| = n group orbits. A group orbit is the set
generated by applying all elements of group G to positions
qi(t)

G t g t g Gq q( ) ( ),i j i j[ ] = { · ∈ } (3)

One member of all orbits will be qi(t) itself, because G
contains the identity element. We can label the particles as
qij(t) where i indicates the orbit and j indicates the group
element. In crystallography, the qi0 particles are called the
asymmetric unit. We can satisfy eq 1 at all t by specifying the
following holonomic constraint:

gq q q 0( )ij j i ij0σ = · − = (4)

There are |G| − 1 of these constraints per group orbit, and
each removes D degrees of freedom. This means the degrees of
freedom of the dynamics is D × (n − 1). We can simulate
dynamics under the holonomic constraints by simply only
modeling the asymmetric unitthey are the generalized
coordinates.22

Thus, our algorithm is to only integrate the asymmetric unit
and explicitly consider the remaining (N − n) particles only
when computing forces. This is similar to Dayal et al.15

Practically this is done by setting these constrained particles’
positions just before computing forces. Similar to work on
periodic boundary conditions, these equations of motion may
lead to linear momentum conservation problems.23,24

One feature of nearly all potentials used in molecular
dynamics is that they are G-invariant, where G is any planar,
space, or permutation group: U(g·q) = U(q). That makes the
forces, F(q), G-equivariant

F g g Uq q( ) ( )· = − ·∇ (5)

because the potentials are composed of angles and distances,
which are invariant to rotations, mirrors, and permutations.25,26

For a pairwise potential, we can use eqs 3 and 5 to rewrite the
potential as
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where the |G| factor accounts for intragroup orbit interactions
that are not explicitly computed. This translates an algorithm
of an outer loop over the asymmetric unit and an inner loop
over all particles.

B. Bravais Lattice. A space group consists of both a point
group and a Bravais lattice. The Bravais lattice is specified with
D D-dimensional unit cell vectors. Particles always remain in
one cell among the lattice cells, which are called images. For
example, we could simulate the “root” cell and its 26
neighboring cells in 3 dimensions. We follow the approach
above and treat each image of the system with virtual particles
while only integrating the root cell. This means all images of
the system are explicit, and we can violate the minimum image
convention. We were not signatories of the minimum image
convention anyway. This approach allows the cell vectors to
shrink well below the distance cutoff of the potential, provided
we have enough virtual particles to populate past the cutoff of
the asymmetric unit of the origin cell. You can simulate 3aD

images to allow the cells to shrink to at least 1/a the cutoff
distance.
We need to convert between the fractional coordinates,

which are used to tile the particles and apply the point group
symmetry, to the Cartesian coordinates, which are used for
integration and computed potentials. Given the box vectors in
row-form B, we can transform between the representations via

t B t t B ts q q s( ) ( ), ( ) ( )1= =−
(7)

where s(t) is the fraction of each lattice vector (i.e., fractional
coordinates). Wrapping is trivial with fractional coordinates:
s(t) fmod 1.0 will wrap the coordinates. All point group
transformations are applied in s(t); however, a B−1 term should
be added to eq 3 so that it operates on fractional coordinates.
Bravais lattices include more than just the usual cubic and

triclinic lattices commonly seen in molecular dynamics
barostats. To ensure the cell vectors are consistent with the
Bravais lattice while changing box size, we define a tensor L of
shape D × D × D × D that maps from a triclinic box vector to
the proper Bravais lattice box vectors of the space group. For
example, L2011 is the contribution to Bravais lattice vector 2’s x
component from triclinic box vector 1’s y component. There
are many choices that could be made for L. For example, to
make a cubic Bravais lattice from a triclinic box vector, we
require a single parameter a to define the three lattice vectors
(a, 0, 0),(0, a, 0),(0, 0, a). We could set a by averaging all the
vector lengths, averaging all vector components, or selecting a
to be the first element of the first vector. Each of these choices
gives a different L, and some have large null spaces. NPT is
then accomplished via scaling Monte Carlo moves in the
triclinic box vectors (B′) following Frenkel and Eppenga,27 and
the proper Bravais lattice is computed via B = LB′.

C. Wyckoff Positions. It is possible to have particles that
violate eq 2 while still satisfying eq 1 if qi0 is in a special
position called a Wyckoff positionlike the origin.21 To
perform constrained molecular dynamics of particle qi0(t)
occupying a Wyckoff position, we define a subgroup G′ that
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contains the elements of G which do not leave qi0(t) invariant
plus an identity group element. The identity of this subgroup is
not the identity transform but instead a transform that projects
from a general position into the Wyckoff position. For
example, the Wyckoff position may be the vertical line x = 0,
and the identity group element would be the transform x′ = 0,
y′ = y. We will denote this group element as P to hint it is a
projection.
The group orbit is similarly defined on the subgroup, and

the other procedures above apply. However, qi0(t) must stay in
a Wyckoff position at all times to satisfy eq 1. This can be
accomplished via traditional constrained molecular dynamics
of Lagrange multipliers.28 Omitting the indices on qi0(t), our
holonomic constraint is

t P t tq q q 0( ) ( ) ( )σ[ ] = − = (8)

and the force from the constraint will be

J P IF ( )c λ σ λ= [ ] = − (9)

where J[σ] is the Jacobian of σ with respect to constraint
dimension and element of q(t). We can solve for λ by knowing
that σ[q(t + Δt)] = 0

t
m

P I t tq( ) ( )
2

2 1λ σ= Δ [ − ] [ ′ + Δ ]−
(10)

where Δt is the time step, m is the mass of the particle, and
q′(t + Δt) is q(t) integrated without the constraint force by Δt.
All terms are constant except σ[q′(t + Δt)], which simplifies
computation.

II. METHODS
We use the BAOAB Langevin dynamics integrator described in
refs 29 and 30. Eq 4 is applied during position updates, and eq
3 is applied before velocity updates (force computation).
Degrees of freedom is computed from number of asymmetric
unit particles and deducted degrees of freedom from Wyckoff
position restraints. All simulations are Lennard-Jones poten-
tials with cutoff 3.5 and in reduced units. NVE simulations are
conducted with the velocity-verlet integrator. A time step of
0.005 and a Langvin γ of 0.1 were used for all simulations.
Since images are explicit in our implementation, it is necessary
to specify the number. We use an image radius of 2−meaning
32D images are simulated where D is the dimension. To
generate starting configurations, points were randomly
generated and filtered to fit into the space group asymmetric
unit as specified by Aroyo.31 Point group generators and
Wyckoff sites were taken from the Bilbao crystallography
server.32−34

We define our results in reduced units, as defined in ref 35.
Specifically, energy (ϵ) is fundamental, and τ is a derived unit
of the form

L
mτ
ε

=
(11)

where L, m, and ϵ are the fundamental units of length, mass,
and energy, respectively.

III. RESULTS
We first consider if our implementation conserves energy.
Figure 1 shows the total energy of NVE simulations under a
subset of space groups with 5 particles in the asymmetric unit.
These were done at number densities of 0.2, with a starting

temperature 0.5, and for 30k timesteps. The bottom trace (P1)
has no symmetry constraints and shows good conservation.
There are more fluctuations at other symmetry groups because
there are more particles in their unit cells and thus higher
energy fluctuations. For example, space group 127 (P4/mbm)
has 80 particles in a unit cell when there are 5 in the
asymmetric unit, meaning the interaction potential felt has
more particles contributing to it.
Figure 2 shows an enumeration of crystal structures under

different symmetry groups for a 2D Lennard-Jones fluid. The
structures are generated in 2 steps. First, we simulate under a
symmetry group constraint in NPT (P = 0.25, T = 0.1) for 1 M
steps. Next, we do a constrained equilibration under NVT for
100k steps at T = 0.05. This structure is then the proposed
crystal structure for the given symmetry group. Figure 2 shows
the root mean square deviation (RMSD) if the resultant
structure is simulated under no symmetry constraint in NVE
for 5k steps. The assumption is that if the structure does not
collapse (RMSD rise), it is metastable. We indeed find that this
protocol under no symmetry constraints (p1) gives the correct
hexagonal packing.
To enumerate all planar groups in 2D, we simulate under

each group, with 4 choices of particle number (in unit cell) and
varying occupancy of Wyckoff sites. As expected, the planar
groups with hexagonal Bravais lattices (or permit them) have
stable structures: p1, p2, pg, p3, p6, and cmm.36 Some unusual
stable structures are seen without hexagonal close-packing like
p4m and p3m1. Metastable structures like these would be
nearly impossible to generate without symmetry constraints in
molecular dynamics. We find some symmetries have no
metastable structures: p6m and most square close-packing
(cm, cmm, p4g). Interestingly, voids seem to be the way to
stabilize these close-packing structures like in pmg.

Figure 1. Total energy from NVE simulations under different
symmetry groups in 3D. Groups are indicated with Hall numbers.
Four particles are in the asymmetric unit, and the simulations are at a
number density of 0.2 and a starting temperature of 0.5. The increase
in fluctuations is because the unit cell (total particles) increases with
the size of the symmetry group.
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IV. DISCUSSION

Here is our advice on implementing symmetric molecular
dynamics in a modern molecular dynamics engine. The
asymmetric unit should be integrated as usual. Make the
nonasymmetric unit particles (images) be ghost particles;
ghost particles are nonintegrated particles used in force-field
calculations. The ghost particles’ positions should be set using
affine matrices defining the group transformations in fractional
coordinates. These matrices can be obtained from our library
or crystallography tables.
Pressure computed for the asymmetric unit is not mean-

ingful, and NPT should be done using the algorithm described
above that does not require computing pressure from a virial.
The lattice vectors may be stored separately than the usual
lattice vectors and are only used to set the ghost particle
positions. The tensor transforms can be loaded from our
library. Periodic boundary conditions should be disabled
entirely if doing NPT.
The constraints for Wyckoff sites are implemented as

Lagrange multiplier constraints. The terms can be computed
analytically at each step using eq 10.

V. CONCLUSIONS

We have formulated a symmetric molecular dynamics
algorithm and implemented it. Results show that it can do
NPT to enumerate metastable crystal structures. A reference
implementation is available at https://github.com/whitead/
symd.
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