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Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during
spaceflight, where microgravity prevents normal muscle loading. In vitromodeling is an important step in understanding atrophy
mechanisms and testing countermeasures before animal trials. The most ideal environment for modeling must be empirically
determined to best mimic known responses in vivo. To simulate microgravity conditions, murine C2C12 myoblasts were cultured
in a rotary cell culture system (RCCS). Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate
for culturing these adherent muscle cells. Changes after culture under simulated microgravity were characterized by assessing
mRNA expression of MuRF1, MAFbx, Caspase 3, Akt2, mTOR, Ankrd1, and Foxo3. Protein concentration of myosin heavy
chain 4 (Myh4) was used as a differentiation marker. Cell morphology and substrate structure were evaluated with brightfield
and fluorescent imaging. Differentiated C2C12 cells encapsulated in alginate had a significant increase in MuRF1 only following
simulated microgravity culture and were morphologically dissimilar to normal cultured muscle tissue. On the other hand, C2C12
cells cultured on polystyrene microcarriers had significantly increased expression of MuRF1, Caspase 3, and Foxo3 and easily
identifiablemultinucleatedmyotubes.The extent of differentiationwas higher in simulatedmicrogravity and protein synthesismore
active with increased Myh4, Akt2, and mTOR. The in vitromicrocarrier model described herein significantly increases expression
of several of the same atrophymarkers as in vivomodels. However, unlike animalmodels,MAFbx andAnkrd1 were not significantly
increased and the fold change in MuRF1 and Foxo3 was lower than expected. Using a standard commercially available RCCS, the
substrates and culture methods described only partially model changes in mRNAs associated with atrophy in vivo.

1. Introduction

Muscle loss from disuse negatively affects quality of life in
patients on Earth and remains a significant risk factor to
astronaut health despite rigorous exercise programs onboard
the International Space Station [1, 2]. Approximately 40-
50% of total body mass is skeletal muscle and its loss
can induce numerous detrimental physiological changes,
including reduced power, lower endurance, and atypical
reflex responses [3, 4]. Disuse, reduced protein synthesis, and
reducedmotor neuron activity all contribute to losing muscle
tissue and strength in spaceflight [3]. Atrophy severity varies
with microgravity exposure time and anatomical region.
Muscle mass loss for short duration missions ranges from
10 to 20%, compared to 30-50% for long duration missions
[5, 6]. To reduce these risks, flight protocol at the National

Aeronautics and Space Administration (NASA) mandates
that crew members exercise on missions lasting over 10 days;
however, loss of strength and muscle mass has been reported
after only 5 days [7, 8]. Preserving astronaut strength and
endurance by limiting muscle atrophy is critical for enabling
long duration space travel and exploration. To this end,
ground-based modeling of microgravity is a critical step in
developing atrophy countermeasures.

Three key mRNAs in muscle loss are muscle RING
finger-1 (MuRF1, also called Trim63), muscle atrophy F-box
(MAFbx, also called Fbxo32 andAtrogin-1), andCaspase 3, all
upregulated in numerous rodent models of muscular atrophy
including disease, immobilization, hind limb unloading, and
spaceflight [9–22]. MuRF1 and MAFbx are key E3 ubiquitin
ligases involved in recycling ofmuscle proteins [14]. However,
intact muscle fibers cannot be degraded by the ubiquitin
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proteasome system and must be broken down before MuRF1
andMAFbx can act.This breakdown is induced by Caspase 3,
upregulated during muscular atrophy and responsible for the
degradation of actomyosin complexes in the muscle tissue [4,
23]. Following hind limb unloading, knockout mice lacking
MuRF1 and MAFbx display significantly less atrophy than
wild type mice, highlighting the importance of those ligases
in the mechanisms underlying muscle loss [10, 14].

Additional mRNAs important for monitoring muscle
health include Akt2, Foxo3, mTOR, and Ankrd1. Akt2 (also
called Protein Kinase B 𝛽) is a serine/threonine-protein
kinase and a downstream target of insulin-like growth factor
(IGF) induced muscle differentiation [24]. Upregulated sig-
nificantly in differentiated skeletal muscle, the absence of
Akt2 leads to a substantial reduction in myotube diameter
[25]. Forkhead Box O3 (Foxo3), another downstream target
of the IGF signaling pathway, is also upregulated during
muscle atrophy in vitro and in vivo [26–28]. Foxo3 is respon-
sible for activation of multiple atrophy-related transcription
factors, including the ubiquitin ligase MAFbx [28]. A third
component of the IGF signaling pathway is mammalian
target of rapamycin (mTOR), a regulator of protein synthesis
and muscle hypertrophy that is increased by mechanical
stimulation and in the presence of nutrients and growth
factors [29, 30]. Unlike the previously discussed mRNAs,
mTOR expression decreases during muscle atrophy as the
ubiquitin proteasome system becomes more active.

Finally, cardiac ankyrin repeat protein (Ankrd1, also
called CARP) is upregulated in both unloading and den-
ervation models in vivo [27, 31]. The increase in Ankrd1
expression during muscular atrophy has been reported as up
to an order of magnitude higher than that of other markers
such as MAFbx andMuRF1 [31]. Furthermore, the aforemen-
tioned proteasome-related markers may only be temporarily
upregulated during the initial stages of muscle atrophy, where
Ankrd1 is persistently expressed at high levels [31]. The large,
easily detected increase inAnkrd1makes it an attractive target
for evaluating muscular atrophy models.

A classicmethod for simulating weightlessness is the hind
limb unloading rodent model, developed at NASA in the
1970’s [32]. In this model, the rodent is affixed in a harness
or tail traction device such that the hind limbs are elevated
at a 30∘ angle [32]. The resulting unloading induces muscle
atrophy in the hind limbs and cephalic fluid shift similar
to real microgravity conditions [32]. However, ground-based
animal models differ from human physiology, are more time
consuming and more expensive, and are subject to more reg-
ulation than cell culture models, providing strong motivation
to develop other methods. Newly developed therapeutics can
be effectively screened with smaller quantities in cell culture
models and safe dose ranges established prior to testing in
vivo. Highly tissue-specific effects can be elucidated without
confounding variables introduced by other systems in the
organism. Additionally, cell culture models enable use of
primary human cell lines, increasing biological relevance to
humans.

In vitro modeling of microgravity can be conducted with
rotary cell culture systems (RCCS) and three-dimensional
random positioning machines or clinostats [33, 34]. Here,

we employ the RCCS, developed by Synthecon Inc. in
conjunction with NASA, to simulate microgravity [33]. In the
RCCS, microgravity is mimicked by the rotational motion of
the vessel maintaining cells at their terminal settling velocity,
similar to what astronauts experience in orbit around Earth.
The RCCS has been used to simulate microgravity in a
variety of cell types, such as lymphocytes, osteoblasts, and
myoblasts, including the C2C12 mouse myoblast cell line
used herein [35–40]. The C2C12 cell line differentiates into
contractile skeletal muscle fibers and produces many of the
same proteins and mRNAs as human muscle tissue [41].
Use of a mouse cell line for in vitro model development
and extension also benefits from a large body of literature
available on mRNA expression in live mouse microgravity
models, providing information for evaluating the model’s
similarity to in vivo studies. Previously published work with
muscle cells, including C2C12s, in simulated microgravity
focused on changes in differentiation induced by culture in
the RCCS [37–39]. To the best of the authors’ knowledge,
no previously published work has investigated changes in
atrophy-specific mRNAs with muscle cell culture in the
RCCS.

Standard culture methods for adherent cells in the RCCS
employ a substrate to support growth. Two substrates com-
monly used in three-dimensional cell culture are microcar-
rier beads and alginate encapsulation. Microcarriers are an
attractive substrate due to ease of scalability for producing
large quantities of cells for therapeutic applications [42, 43].
As in standard tissue culture flasks, C2C12 cells differentiate
on microcarriers in vitro. The beads are available in a wide
variety of surface chemistries tailored to specific cell types
and culture conditions [42].

Alternatively, adherent cells can be encapsulated within
several synthetic or naturally occurring hydrogels [44]. Nat-
urally occurring alginate hydrogel has well established uses
for mammalian cell encapsulation due to its low toxicity
and gentle gelling conditions [44–49]. Additionally, the high
porosity of alginate hydrogels is advantageous formaximizing
diffusion rates and ensuring adequate exchange of nutrients
and waste products with the surrounding culture media
[45]. In contrast with microcarrier beads, which can only
be seeded with undifferentiated cells, alginate encapsulation
can be performed on both undifferentiated and differentiated
muscle cells. The percentage alginate used for encapsulation
can be varied between 1.5 and 3% (w/v) depending on the cell
type and desired mechanical properties [46–50]. To preserve
bead integrity in the dynamic RCCS environment, we elected
to encapsulate cells at the upper end of this range tomaximize
mechanical strength of the beads [45].

Here, we propose a ground-based protocol using C2C12
cells and a RCCS to induce expression of the atrophy-related
mRNAs MuRF1, Caspase 3, and Foxo3. Additionally, the
model induces significant changes inAkt2 andmTORexpres-
sion. Themodel is limited by a lack of significant MAFbx and
Ankrd1 expression and low fold changes inMuRF1 and Foxo3.
While not currently suitable for these purposes, with further
development we expect that the RCCS can be improved to
more closely match the expression changes of animal hind
limb unloading models.
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Table 1: Experimental conditions. All cultures had a total duration of 15 days.

Substrate Cell State at Seeding Culture Vessel
Alginate Undifferentiated Standard T25 (Control)
Alginate Undifferentiated RCCS
Alginate Differentiated Standard T25 (Control)
Alginate Differentiated RCCS
Microcarrier Undifferentiated ULA T25 (Control)
Microcarrier Undifferentiated RCCS
Microcarrier Undifferentiated Horizontally orientated RCCS (Control)
Microcarrier Undifferentiated ULA T25 Days 1-12, RCCS Days 13-15

Table 2: The RCCS rotation rate necessary to maintain the substrates in suspension varies with diameter. Times Earth gravity (𝑋𝑔) varies
with substrate density. aMicrocarrier initial diameter at seeding. bMicrocarrier cluster diameter at harvest. Data displayed as mean ± CV,
n=10.

Substrate Density (g cm−3) 𝑋𝑔 Diameter (𝜇m) RPM
Microcarriers 1.02 0.02 160±18.7%a to 698±10.5%b 10-20
Alginate 1.07 0.07 3252±3.2% 35

2. Materials and Methods

2.1. Cell Culture. C2C12 (ATCC CRL-1772, Manassas, VA,
USA) cell stocks were maintained in their undifferentiated
state with Dulbecco’s Modified Eagles Medium (DMEM) and
10% fetal bovine serum (FBS) from HyClone, GE Healthcare
(Logan, UT, USA). Stocks were passaged at 60-70% conflu-
ency during scale-up. Cell counting prior to seeding was per-
formed with a Beckman Coulter Vi-Cell (Indianapolis, IN,
USA), which uses a trypan blue exclusion assay. The experi-
mental conditions consisted of four replicated vessels per run
for each condition described in Table 1. Controls consisted of
standard T25 tissue culture flasks for alginate encapsulated
conditions and ultra-low attachment (ULA) tissue culture
flasks (Corning, NY, USA) for microcarrier conditions.

The use of ultra-low attachment flasks for microcarrier
cultures was necessary to prevent cells from growing on the
flask surface, forcing adherence on the microcarrier beads
and ensuring the available surface area for cell growth was
identical to the RCCS vessels. Cells were seeded into each
experimental condition of Table 1 at 2.5x105 cells mL−1 with a
total volume of 10mL. Culture conditions were maintained
at 37∘C and 5% CO2. Every 3 days, the culture media was
changed for freshmedia. On day 6, the media was changed to
DMEM 2% FBS to promote differentiation of the myocytes
into myotubes. All cultures were maintained for a total of
15 days. The 15-day culture time was selected to maximize
exposure to the simulated microgravity environment while
preventing loss of cell attachment from microcarriers, previ-
ously reported for longer duration cultures [51]. For the final
condition in Table 1, the cells were moved from ULA T25s to
the RCCS for the final 3 days of the culture period.

2.2.Microgravity Simulation. A Synthecon RCCS-4H (Hous-
ton, TX, USA) with four 10mL high-aspect-ratio vessels
(HARVs) was used to generate simulated microgravity con-
ditions. Sterilization and operation of the Synthecon RCCS-
4H were carried out in accordance with the manufacturer’s

instructions. Vessel rotation was adjusted empirically to
maintain the majority of the substrate in suspension, as
described in Table 2. The horizontally orientated RCCS,
investigated as a normal gravity control, was maintained
at the mean RPM of 15. When the substrates are main-
tained at their terminal settling velocity, the force of gravity
𝐹𝑔 is described by Stoke’s Law (Equation (1)). Consid-
er

𝐹𝑔 = (𝜌𝑎 − 𝜌) 𝑔
4

3
𝜋𝑅3 (1)

In (1), 𝜌𝑎 is the density of the cell aggregate, 𝜌 is the density
of the culture media, 𝑅 is the radius of the cell aggregate, and
𝑔 is the force of gravity. The resulting 𝐹𝑔 is balanced by the
drag force from the rotating fluid, resulting in a net force of
zero. Since 𝑔 and 𝑅 are constant at any given moment, the
ratio of 𝐹𝑔 in the RCCS to the normal force of gravity can be
simplified to express how many times Earth’s gravity (𝑋𝑔) is
produced within the system, as described by (2) and detailed
in Table 2.

𝑋𝑔 =
𝐹𝑔𝑅𝐶𝐶𝑆
𝐹𝑔𝑁𝑜𝑟𝑚𝑎𝑙

=
𝜌𝑎 − 𝜌

𝜌𝑎
(2)

2.3. Microcarriers. Undifferentiated C2C12 cells were cul-
tured on 5mg mL−1 of HyClone HyQ Sphere Pplus 102-L
microcarrier beads. These polystyrene beads have a cationic
surface charge and are well suited for culturing cells in
agitated vessels with serum-containing media [42]. Rotation
of the culture vessels was initiated at 10 RPM and increased
up to 20 RPMas the culture age increased and amalgamations
of beads formed. Vessel RPM was adjusted empirically to
prevent settling and maintain the beads suspended at their
terminal settling velocity. Microcarrier beads in static ULA
T25 tissue culture flasks provided a normal-gravity control
and produced microcarrier cluster sizes similar to those in
the RCCS.
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2.4. Alginate Encapsulation. Undifferentiated C2C12 cells
were mixed with 3% (w/v) solution of high viscosity alginate
(MP Biomedicals, Santa Ana, CA, USA) at a density of 10x106

cells mL−1. Beads were formed by dripping the alginate-cell
mixture into 200mM CaCl2 10mM HEPES at pH 7 through
a 19-gauge syringe needle at a flow rate of 2mL min−1. The
beadswere cured inCaCl2 buffer for 20minutes at 37∘C.Once
cured, the average bead diameter was 3252±103𝜇m with a
volumeof approximately 18 𝜇L, yielding 1.8x105 cells per bead.
To match the seed density of the microcarriers, 14 alginate
beads were used per 10mL vessel. The beads were rinsed
once with DPBS and transferred to their respective culture
conditions in DMEM 10% FBS.

Differentiated cells were encapsulated following 9 days of
growth in standard tissue culture flasks. The myotubes were
removed from the flask with a cell scraper and resuspended
at a density of 75 cm2 culture area per mL of alginate.
Subsequent alginate encapsulation methods were performed
as described for undifferentiated cells.

Upon harvest, the alginate beads were dissolved with
100mM sodium citrate, 150mM NaCl, 30mM EDTA at pH
7.0, and 37∘C. The cells were pelleted via centrifugation and
rinsed with DPBS before proceeding with RNA extraction, as
described in the following section.

2.5. Atrophy Marker Expression. Relative expression of the
atrophy markers MuRF1, MAFbx, and Caspase 3 was deter-
mined using RT2 qPCR primer assays from Qiagen (Hilden,
Germany). Akt2, mTOR, Foxo3, and Ankrd1 primers were
purchased from Bio Rad (Hercules, CA, USA). RNA extrac-
tion was carried out immediately upon culture harvest using
the illustra RNAspin Mini Kit according to the manu-
facturer’s instructions (GE Healthcare, Marlborough, MA,
USA). Extracted RNA was quantified with a NanoDrop
(Thermo Fisher Scientific, Waltham, MA, USA) and con-
verted into cDNAwith the RT2 First-Strand Kit fromQiagen.
All PCR reactions were loaded with 5 ng of cDNA and SYBR
Green ROXqPCRMastermix fromQiagen. Fluorescence was
read with an Eppendorf Mastercycler realplex4 (Hamburg,
Germany). Cycle settings were 95∘C for 10 minutes, followed
by 40 cycles of 95∘C for 15 seconds and then 60∘C for 1
minute. Analysis was performed using the default noise band
threshold with drift correction applied in Eppendorf Mas-
tercycler realplex 2.2 software. All results were normalized
to glyceraldehyde 3-phosphate dehydrogenase (GAPDH), a
suitable housekeeping gene for atrophying muscle tissue in
vitro and in vivo [52–57]. GAPDH expression in our samples
was stable, with a CV of 2.5% for all microcarrier samples and
3.7% for all alginate samples. Normalization was calculated
with the 2ΔΔCt method [58].

2.6. Microscopy. Brightfield microscopy was performed
using an AMG EVOS xl from Thermo Fisher Scientific to
assess encapsulated cell distribution and alginate bead size
and shape. The beads were then fixed in cold methanol
for 30 minutes at −20∘C, transferred to a solution of 30%
sucrose 0.1 M CaCl2 overnight at 4

∘C and then frozen in
Tissue-Plus O.C.T. compound (Fisher Scientific, Pittsburg,

PA, USA) at −20∘C until sectioning [59]. Using a Leica
CM1850 cryomicrotome (Wetzlar, Germany), the beads were
sliced into 30 𝜇m sections andmounted on Fisher SuperFrost
Plus slides, treated with 1 𝜇M Hoechst 33342 (Invitrogen,
Carlsbad, CA, USA) to visualize the nuclei and imaged with
an Observer Z1 confocal microscope (Zeiss, Oberkochen,
Germany).

Cell morphology for microcarriers was also evaluated via
fluorescent imaging with the Observer Z1 confocal micro-
scope. Microcarrier-cell clusters were first rinsed with DPBS
and then incubated with 1 𝜇M Hoechst 33342 and 50 nM
MitoTracker CMX-Ros (Invitrogen, Carlsbad, CA, USA) for
1 hour at 37∘C.The clusters were rinsed again with DPBS and
z-stack images were acquired with a 3𝜇m step size. Diameter
of multinucleated muscle fibers growing on themicrocarriers
was determined with ImageJ.

2.7. Protein Assay. Extent of terminal differentiation was
quantified by ELISA formouse myosin heavy chain 4 (Myh4)
(Biomatik, Wilmington, DE, USA), present in high levels in
fused myotubes [60]. Cells were rinsed with PBS and lysed
using a urea-based lysis buffer containing 8M urea, 300mM
NaCl, 5mL L−1 Triton X-100, 50mM sodium phosphate
dibasic, and 50mM Tris-HCl. A protease inhibitor cocktail
consisting of 1mM PMSF and 0.1 mg mL−1 of pepstatin,
antipain, and leupeptin was added to the lysis buffer.The cells
were lysed on the microcarriers and the lysate was isolated by
centrifugation. Lysate protein contentwas determined using a
BCAprotein assay kit (Pierce, Rockford, IL, USA) and a Spec-
traMax i3x (Molecular Devices, San Jose, CA, USA). Lysates
were diluted to 1𝜇g mL−1 total protein with PBS and the
ELISA kit ran according to the manufacturer’s instructions.
Quantitation was performed using the Spectramax i3x.

2.8. Statistics. Graphical data are presented as the means ±
standard deviation. Significance was determined by compar-
ing data setswith Student’s t-test. Differenceswere considered
significant at p<0.05.

3. Results

3.1. Microcarrier Substrate Structure and Cell Morphology.
When cultured on HyQSphere Pplus 102-L microcarri-
ers, C2C12 cells form monolayers over the bead surface
(Figure 1). Differentiated, multinucleated myotubes were
observed spanning across beads (Figures 1(a) and 1(c)). No
significant difference was observed in differentiation or num-
ber of multinucleated myotubes between simulated micro-
gravity and normal gravity controls. The irregular three-
dimensional structure of the bead amalgamations was best
visualized with brightfield microscopy (Figures 1(b) and
1(d)). Microcarrier bead cluster size increased with culture
age in both normal gravity controls and simulatedmicrograv-
ity conditions. Due to the lack of agitation, maximum cluster
size was larger in normal gravity controls than in the RCCS.
Additionally, bead clusters formed in normal gravity had
widely varying, irregular shapes compared to consistently
rounded bead clusters formed in the RCCS (Figures 1(a) and
1(b) versus Figures 1(c) and 1(d)). Despite variations in cluster
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(a) (b)

(c) (d)

Figure 1: Microcarrier bead clusters after 15 days of culture, imaged at 10x magnification. Nuclei are stained blue with Hoechst 33342.
Mitochondria are stained red with MitoTracker CMX-Ros. Normal gravity (a, b) and simulated microgravity (c, d) bead clusters both have
differentiated, multinucleated myotubes spanning across bead gaps (white arrows). Scale bar = 100𝜇m.

size and shape, no significant differences in cell morphology
were observed. Muscle fiber diameter was 12.7±6.0𝜇m and
9.5±1.7𝜇m for normal gravity controls and simulated micro-
gravity conditions, respectively. Fiber diameters were more
consistent in theRCCS, but the difference between conditions
was not significant (p>0.05, n=10).

3.2. Alginate Substrate Structure and Cell Morphology. Undif-
ferentiated cells encapsulated in alginate were evenly dis-
tributed throughout the bead (Figure 2(a)), where encapsu-
lation of differentiated cells resulted in irregular sheets with
uneven distribution (Figure 2(b)). A section of an alginate
bead containing differentiated cells reveals the encapsulation
process forces the harvested muscle fibers into atypical
configurations (Figure 2(c)), compared to the regular, par-
allel orientation common in standard tissue culture flasks
(Figure 2(d)). For cells encapsulated in their undifferentiated
state, minimal differentiation was observed after 15 days of
culture. No differences in cell morphology were observed

between the RCCS and normal gravity controls. Alginate
bead degradation was minimal, as more than 90% of the
beads were intact when they were harvested at the end of the
culture period.

3.3. Atrophy Marker Expression. Alginate-encapsulated dif-
ferentiated cells in the RCCS expressed significantly more
MuRF1 than those in T25s, but the difference in MAFbx
and Caspase 3 expression was not significant (Figure 3).
Encapsulated undifferentiated cells in the RCCS expressed
significantly less MuRF1, MAFbx, and Caspase 3 than those
in T25s, contrary to the hypothesized response (Figure 3).

When cultured on microcarriers, expression of MuRF1
and Caspase 3 was significantly elevated after 12 days in ULA
T25s, followed by 3 days in the RCCS, relative to ULA T25
control flasks (Figure 3). Cultures that remained in the RCCS
for 15 days also expressed significantly more MuRF1 and
Caspase 3 than the ULA T25 control. The change in MAFbx
was not significant for either simulated microgravity culture
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(a) (b)

(c) (d)

Figure 2: Alginate encapsulated undifferentiated (a) and differentiated cells (b) imaged at 2x magnification, scale bar = 1000𝜇m. Interior
morphology of encapsulated differentiated cells in a 30𝜇m section of an alginate bead (c) compared to a standard T25 (d), scale bar = 100𝜇m.
Nuclei are stained blue with Hoechst 33342 ((c) & (d)). Mitochondria are stained red with MitoTracker CMX-Ros ((d) only).
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Figure 3: Average ± s.d. fold change in expression of mRNAs for alginate and microcarrier cultures, relative to their respective normal
gravity controls (alginate N=4, microcarrier N=20) and normalized by GAPDH. ∗ p<0.05, ∗∗ p<0.01, and ∗ ∗ ∗ p<0.001. No marker = not
significant. N=4 (alginate differentiated), N=4 (alginate undifferentiated), N=16 (RCCS), and N=8 (ULA T25 + RCCS). All replicates are
biological replicates and significance was determined by t-test.
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Table 3: Significance of microcarrier culture mRNA expression changes, as determined by Student’s t-test. N=20 for ULA T25, N=16 for
RCCS, N=8 for ULA T25 + RCCS, and N=4 for Horizontal RCCS. ns = not significant, ∗ p<0.05, ∗∗ p<0.01, and ∗∗∗ p<0.001. All replicates
are biological replicates.

(a)

MuRF1 ULA T25 RCCS Horiz. RCCS ULA T25 + RCCS
ULA T25 — ∗ ∗ ∗ ∗ ∗ ∗ ∗∗

RCCS ∗ ∗ ∗ — ns ∗∗

Horiz. RCCS ∗ ∗ ∗ ns — ∗ ∗ ∗

ULA T25 + RCCS ∗∗ ∗∗ ∗ ∗ ∗ —

(b)

MAFbx ULA T25 RCCS Horiz. RCCS ULA T25 + RCCS
ULA T25 — ns ns ns
RCCS ns — ∗∗ ∗ ∗ ∗

Horiz. RCCS ns ∗∗ — ∗ ∗ ∗

ULA T25 + RCCS ns ∗ ∗ ∗ ∗ ∗ ∗ —

(c)

Caspase 3 ULA T25 RCCS Horiz. RCCS ULA T25 + RCCS
ULA T25 — ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

RCCS ∗ ∗ ∗ — ns ns
Horiz. RCCS ∗ ∗ ∗ ns — ∗

ULA T25 + RCCS ∗ ∗ ∗ ns ∗ —
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Figure 4: Average ± s.d. fold change in expression of mRNAs for ULA T25 + RCCS simulated microgravity cultures (N=8) relative to ULA
T25 normal gravity control (N=20) and normalized byGAPDH. ∗ p<0.05,∗∗ p<0.01, and∗∗∗ p<0.001. All replicates are biological replicates
and significance was determined by t-test. Change in MAFbx and Ankrd1 not significant.

method but was larger for the ULA T25 (12 days) + RCCS
(3 days) condition (p=0.1). Significance for all comparisons is
detailed in Table 3.

Cells cultured in the RCCS for 15 days and those cultured
in the RCCS for only 3 days following 12 days in ULA T25s
had similarly significant increases in the key atrophy markers
MuRF1 and Caspase 3. Due to the shorter duration of RCCS
culture, using the latter method allows for higher throughput
testing in a given timeframe, as subsequent cultures need only
be staggered by 3 days instead of 15. Therefore, the ULA T25

+ RCCS method was selected for further development of the
model and evaluation of Akt2, mTOR, Ankrd1, and Foxo3.
Akt2, mTOR, and Foxo3 increased significantly in simulated
microgravity, but the change in Ankrd1 was not significant
(Figure 4).

3.4. Protein Concentration. Myosin heavy chain 4 (Myh4)
was used to assess the extent of terminal differentiation. After
15 days of culture on microcarriers in ULA normal gravity
control flasks, Myh4 concentration was 1.22±0.26 ng 𝜇g−1
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Table 4: Fold change in gene expression of atrophy-indicating mRNAs from this in vitro study (ULA T25 12 days + RCCS 3 days) compared
to referenced work in vivo, as measured by qPCR. ns = not significant, ∗∗ p<0.01, ∗ ∗ ∗ p<0.001.

In Vitro In Vivo In Vivomethod
MuRF1 1.3∗∗ 1.9, 1.6 [22] Casting 3 days, tenotomy 3 days
MAFbx 1.3ns 2.7, 1.5 [22] Casting 3 days, tenotomy 3 days
Caspase 3 3.8∗ ∗ ∗ 1.0, 3.3 [22] Casting 3 days, tenotomy 3 days
Ankrd1 1.1ns 3.9 [27] Hind limb unloading 6 days
Foxo3 1.4∗∗ 1.6 [27] Hind limb unloading 6 days

total protein. Cells cultured in the RCCS for the final 3
days following 12 days in the ULA flasks had an Myh4
concentration of 2.13±0.48 ng 𝜇g−1 total protein. The differ-
ence between the normal gravity and simulated microgravity
conditions was significant (p<0.05, N=4).

4. Discussion

We hypothesized that alginate encapsulated cells would
exhibit more significant increases in atrophy marker expres-
sion than cells cultured on microcarriers, since an encapsu-
lated three-dimensional mass of differentiated muscle tissue
may be more similar to animal models than monolayers
on the exterior of microcarriers. However, the alginate-
encapsulated differentiated cells produced an increase in
MuRF1 only. Further, encapsulated undifferentiated cells
had significantly lower expression of MuRF1, MAFbx, and
Caspase 3 in simulated microgravity, which was the opposite
of expected results (Figure 3). Low expression of atrophy
markers for encapsulated undifferentiated cells may be due to
insufficient myotube formation. The solid alginate structure
limits cell-cell contact and morphology remained consistent
over the 15-day culture period (Figure 2(a)). On the other
hand, C2C12 cells cultured on polystyrenemicrocarrier beads
for 12 days in ULA T25 flasks followed by 3 days in the RCCS
significantly (p<0.05) express more MuRF1, Caspase 3, Akt2,
mTOR, and Foxo3 than the normal gravity control of cells
cultured in static ULA T25s for all 15 days, highlighting the
early upregulation of thesemarkers in simulatedmicrogravity
(Figure 4).

The timing of maximum MAFbx and MuRF1 expression
in vivo remains under investigation. Elevated expression
has been reported at 3 days, 7 days, and 6 weeks, though
differences in animal line and immobilization methods may
be responsible [19, 21, 22]. Unlike MAFbx and MuRF1, in
vivo atrophy models produce consistent significant increases
in Caspase 3 over 5, 10, and 14 days [17, 18]. Our results
in vitro indicate that MuRF1 expression is higher in cells
cultured for 15 days in the RCCS, compared to 3 days in the
RCCS after 12 days in ULA flasks, while Caspase 3 expression
does not change significantly (Figure 3 and Table 3). We did
not observe a significant change in MAFbx at either 3 or 15
days in simulated microgravity, suggesting that the timing
of upregulation differs from its partner E3 ligase MuRF1.
In addition to the uncertain timing of peak upregulation,
this discrepancy in MuRF1 and MAFbx upregulation may be
due to the different roles of the two ligases. While MuRF1
and MAFbx both play an important part in the ubiquitin

proteasome system, MuRF1 is more closely associated with
degradation of myofibers, where MAFbx attenuates new
protein synthesis and is not correlated with atrophy in every
case [61, 62].

Increased expression of Akt2 and higher Myh4 con-
centrations in simulated microgravity indicate a higher
percentage of differentiated cells compared to the normal
gravity controls. mTOR, expected to be lower in simulated
microgravity, instead increased significantly after 3 days
in the RCCS (Figure 4). Additionally, while Foxo3 will
activate MAFbx, Foxo3 was significantly upregulated while
MAFbx—responsible for attenuating protein synthesis—was
not (Figure 4) [28, 61]. Taken together, these results indi-
cate that while the cells in simulated microgravity were
undergoing atrophy—indicated by MuRF1, Caspase 3, and
Foxo3—mTOR mediated protein synthesis and formation of
new myotubes had not yet ceased.

Compared to in vivo methods, including casting, teno-
tomy, and hind limb unloading, our in vitro model resulted
in a similar fold change in Caspase 3 and lower but still sta-
tistically significant increases in MuRF1 and Foxo3 (Table 4).
While Caspase 3 ismost strongly upregulated, apoptosis from
shear forces is not likely due to the low shear environment of
the RCCS [33]. The fold increase in MuRF1 after 12 days in
normal gravity and 3 days in the RCCS was closer to that of
3 days after tenotomy rather than 3 days after immobilization
via casting (Table 4). The in vitro model did not significantly
increase MAFbx, but again the fold change was closer to
that following tenotomy. In contrast to the large increase in
Ankrd1 seen in vivo, our in vitro model did not produce any
significant changes (Table 4). While Ankrd1 is expressed in
C2C12 cells, it was not significantly upregulated in this model
[63, 64].

Turning the RCCS horizontal was investigated as a
normal gravity control to account for the effects related to
vessel geometry and fluid motion not present in static ULA
tissue culture flasks. Despite these benefits, the horizontal
RCCS was not an ideal control due to significant differences
in microcarrier bead cluster morphology and higher MuRF1
expression levels compared with the simulated microgravity
conditions (RCCS, ULA T25 + RCCS) (not shown). Addi-
tionally, microcarrier beads in the horizontal RCCS adhered
to the silicone gas transfermembrane, resulting in large sheets
of cells not representative of the bead clusters in Figure 1.
Shear forces from fluid motion in the RCCS are minimal
and selecting a control with similar cluster morphology and
consistently significant differences in mRNA expression is
preferred [33].
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Microcarrier beads and alginate encapsulation each have
advantages and disadvantages in maximizing similarity with
in vivo hind limb unloading methods. The advantages of
microcarriers include ease of handling, live cell fluorescent
imaging capability, and, most importantly, that they support
atrophy marker changes in C2C12 cells. Culture procedures
withmicrocarrier beads are simpler andmore rapid than algi-
nate encapsulation. The small size of the beads allows them
to be transferred between containers via pipette. Harvest of
RNA can be accomplished by adding the cell-covered micro-
carriers directly to the lysis buffer, reducing process time
and opportunity for RNase activity. Most critically, simulated
microgravity culture of C2C12 cells on microcarriers resulted
in significant expression changes inmultiple atrophy markers
compared to the normal gravity control (Figure 4). However,
MAFbx and Ankrd1 were not significantly upregulated and
the fold increase in MuRF1 and Foxo3 was low, indicating
that this model is incomplete when compared to atrophy
modeling in vivo (Table 4).

Microcarriers carry some additional disadvantages
regarding the culture method and morphology. The
monolayer of tissue that forms over the bead surfaces does
not replicate three-dimensional mature tissue in vivo. Com-
pared to astronauts that begin with differentiated muscle
tissue, microcarriers are first seeded with undifferentiated
myoblasts which form multinucleated myotubes during
culture. Despite this difference, culture with undifferentiated
cells remains clinically relevant as fusion and differentiation
of muscle cells are important parts of myogenesis in adults
[65]. Another disadvantage of microcarriers is the large
variations in cluster diameter relative to alginate beads
(Table 2). As settling rate within the RCCS varies with
substrate diameter, a portion of the microcarrier clusters will
not be maintained at the optimal settling rate to simulate
microgravity. Additionally, bead cluster size increases over
time, requiring daily monitoring and RPM adjustment.

While alginate did not support the desired changes in
atrophy marker expression, it offers some beneficial prop-
erties compared to microcarriers. Alginate encapsulation
of differentiated cells in a three-dimensional conformation
improves morphological biosimilarity tomature tissue. How-
ever, the current implementation resulted in muscle fiber
conformations not typical in vivo (Figure 2(c)). Encapsula-
tion also protects cells from exposure to mechanical stress
within the RCCS. Fluid flow in the RCCS is designed to
provide a low shear environment [33]. Still, cells experience
mechanical stress from collisions of suspended substrates
due to the rotation of the system. While cells encapsulated
in alginate are protected from direct contact, the exposed
nature of cells cultured onmicrocarriersmeans that collisions
between beads will result in a direct impact to the cells.
Furthermore, alginate beads have a more consistent size than
microcarrier bead clusters and did not display the same
variations in settling rate or require changes in the RCCS’s
RPM (Table 2).

The downsides of alginate, in addition to the lack of
significant changes in atrophy marker expression, stem
from their density, size, and opacity. While the solid struc-
ture of alginate protects cells from mechanical stress, it

also limits the spreading of encapsulated cells, preventing
formation of intercellular junctions necessary for myoblast
fusion (Figure 2(a)). In contrast to the small and easy-to-
handle microcarriers, alginate beads, with a diameter of
3252±103𝜇m, were too large to be aspirated into a pipette.
Smaller alginate beads can be formed by using a higher gauge
needle, but narrower needles were clogged by the large sheets
of differentiated muscle tissue seen in Figure 2(b). The large
bead size also complicated imaging due to the opacity of
alginate, which scattered too much light to allow fluorescent
imaging of the interiorwithout fixation and sectioning.While
these issues are addressable with process modifications, the
most significant issue is that nutrient andwaste diffusion rates
are dependent on depth, such that beads with tissues closer
to the surface may behave differently than those with tissues
encapsulated in the center. As the position of tissues within
the bead is random, we attribute some of the variability in
encapsulated differentiated samples to uneven distribution of
tissues within the alginate beads.

Overall, culturing with microcarrier beads provides a
better platform than alginate encapsulation for modeling
muscular atrophy in C2C12 cells, though this model does
not completely mimic the mRNA changes seen in vivo.
Cultures on microcarrier beads resulted in irregular clusters
covered with a monolayer of cells and sporadic myotubes
(Figure 1) and appropriate atrophy marker expression to
mimic in vivo studies only with regard to MuRF1, Caspase
3, and Foxo3, albeit with lower—but still significant—fold
changes for MuRF1 and Foxo3 (Table 4). On the other hand,
cultures with encapsulated cells resulted in static, regularly
dispersed undifferentiated cells (Figure 2(a)) or unevenly
dispersed sheets of differentiated tissue (Figure 2(b)) without
consistent increases in expression of the selected atrophy
markers. Therefore, we conclude that an in vitro model of
microgravity-induced muscle atrophy using polystyrene
microcarrier beads is superior to alginate encapsulation for
cultured C2C12 cells, but not sufficient to mimic all of the
select atrophy markers as in animal studies. Of the cul-
ture methods evaluated, the most significant and consistent
increase in the selected atrophy markers, relative to GAPDH
(Figure 4), was achieved with microcarriers cultured in static
ULA flasks for 12 days and then moved to the RCCS for the
final 3 days.

Our verification that the RCCS can produce increases
in atrophy-specific mRNAs in cultured muscle cells is an
important step towards completing a comprehensive ground-
based in vitromodel for spaceflight atrophy. Due to the lower
number of atrophy markers upregulated and the lower fold
changes in expression, relative to animal models, we believe
the standard commercially available RCCS is not sufficient
for use in vitro atrophy modeling and it does not match
results in vivo. Nevertheless, our results in vitro are highly
significant for MuRF1 (p<0.01), Foxo3 (p<0.01), and Cas-
pase 3 (p<0.001), indicating that, with further development,
simulated microgravity systems may present a promising
platform for investigation of atrophy pathways and first-
step design and selection of novel therapeutics necessary to
ensure astronaut health and fitness during long-term space-
flight.
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