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Introduction
Epigenetics refers to regulatory mechanisms that 
lead to heritable changes in gene expression that 
are not due to a change in the DNA coding 
sequence. Differentiation in normal hematopoie-
sis is dependent on tightly regulated, ongoing epi-
genome remodeling.1,2 Dysregulation of epigenetic 
regulators such as direct-DNA modifications, his-
tone tail modifications and noncoding RNAs can 
lead to widespread alterations in the normal pat-
terns of gene expression.3 These alterations of 
genes regulating the cellular epigenome are known 
offenders in tumorigenesis and occur frequently in 
a spectrum of hematologic malignancy diseases. 
For example, in the landmark The Cancer 
Genome Atlas (TCGA) study analyzing the 
genome of 200 adult cases of de novo acute mye-
loid leukemia (AML) identified mutations in 44% 
of DNA methylation-related genes and 30% of 

chromatin-modifying genes.4 Owing to the preva-
lence of epigenetic dysregulation and inherent 
plasticity of the epigenome, several classes of can-
cer therapeutics targeting epigenetic aberrations 
have emerged.

In mammalian cells, genomic DNA is packaged 
into condensed complexes of DNA and histone 
proteins known as nucleosomes that are units of 
chromatin that protect DNA structure and 
sequence, as well as regulating gene expression 
and DNA replication.5 Nucleosomes are repeat-
ing units of chromatin that are composed of 147 
base pairs of DNA wrapped around eight histone 
proteins that are very stable protein–DNA com-
plexes, but remain dynamic and are tightly regu-
lated.5 Chromatin can be reversibly altered in 
many ways (addition or removal of epigenetic 
marks on DNA or chromatin and RNA silencing) 
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that lead to changes in gene activity and cellular 
phenotypes, and it reorganizes to regulate tran-
scriptional activity at a particular locus based on 
intrinsic and extrinsic stimuli.6 Alterations in the 
epigenetic program of the cell are common in 
many human cancers and therefore are an attrac-
tive therapeutic target.7

In this review, we discuss both established and 
emerging epigenetic therapies in hematologic 
malignancies.

DNA methylation: targeting DNA 
methyltransferases, TET, and IDH mutations
Alteration in DNA methylation status is a charac-
teristic epigenetic change in many cancers includ-
ing hematological malignancies. DNA methylation 
is the addition of a methyl group to DNA, usually 
at the 5’ position of the cytosine ring within CpG 
(cytosine preceding guanine) dinucleotides that 
often modifies genes and noncoding genomic 
regions, affecting gene expression. Tightly regu-
lated DNA methylation plays a key role in embry-
onic development, cellular differentiation, and 
genome stability, and disruption of methylation 
affects the expression of protein coding genes and 
noncoding RNAs resulting in tumorigenesis.8–10 
Mutations in the DNA methylation regulators 
DNMT3A, TET1/2, and IDH1/2 are recurrent in 
hematologic malignancies.

DNA methyltransferases
DNA methylation is catalyzed by a group of 
enzymes known as DNA methyltransferases 
(DNMTs).8,11 The main DNMTs include 
DNMT1, which is responsible for the mainte-
nance of existing methylation patterns by repli-
cating CpG methylation patterns from the mother 
to daughter strand during DNA replication and 
antagonizing DNA demethylation, and DNMT3A 
and DNMT3B that are essential for de novo 
methyltransferase activity, targeting previously 
unmethylated CpG dinucleotides.12

Although mutations in all the above methyltrans-
ferases have been noted in cancer, recurrent muta-
tions in DNMT3A are most prevalent by far, and 
have been noted in approximately 22% of patients 
with AML, 13% of patients with myelodysplastic 
syndrome (MDS), 9% of patients with myelopro-
liferative neoplasms (MPN), and 11% of patients 

with T cell lymphomas.13–19 In AML, the 
DNMT3A mutations usually involve the p.882 
codon, and are an early event in clonal hemat-
opoiesis.20,21 Mutations in the p.882 codon of 
DNMT3A produces a hypomorphic protein that 
inhibits the remaining wild-type (WT) DNMT3A, 
thereby markedly reducing cellular DNMT activ-
ity, leading to global hypomethylation.20,22 
Numerous studies agree that DNMT3A-mutant 
AML patients have a significantly lower overall 
survival (OS) compared with those with WT 
DNMT3A regardless of age, even though there is 
no statistically significant difference between com-
plete remission (CR) and relapse-free survival 
(RFS) between the patients with or without the 
DNMT3A mutations.15,23–26 Poor clinical out-
comes of patients with DNMT3A-mutations are 
primarily due to relative anthracycline resistance; 
patients who received standard-dose daunoru-
bicin-based induction therapy have poor out-
comes, however the adverse prognostic impact of 
DNMT3A mutations is mitigated by daunoru-
bicin dose intensification.26–30 Patients with 
DNMT3A mutations have increased likelihood 
of CR in patients with MDS or previously 
untreated AML who receive hypomethylating 
agents (HMAs).31,32

Mutations in DNMT3A enzymes cannot be 
directly targeted at present, primarily due to the 
detrimental role of DNMT3A loss in hemat-
opoiesis. However, the antineoplastic activity of 
HMAs azacitidine (AZA) and decitabine (DEC) 
in all patients with AML and MDS (regardless of 
mutational status) is clear.33 The exact mecha-
nism of action of these HMAs is unclear, but the 
antileukemic effects are thought to be secondary 
to degradation of DNMTs that lead to global 
DNA hypomethylation, gene reactivation, DNA 
damage, and eventual cell death.34 AZA and DEC 
are US Food and Drug Administration (FDA) 
and European Medicines Agency (EMA) 
approved for the treatment of MDS, chronic 
myelomonocytic leukemia (CMML), and AML, 
with slight variations in specific approvals in 
Europe and the United States.35 For example, 
DEC has FDA, but not EMA, approval in the 
setting of MDS. In the setting of AML, DEC has 
EMA, but not FDA, approval.

Novel formulations of HMAs.  Although the role of 
HMAs is well established in myeloid malignan-
cies, advances in the field have come from new 

https://journals.sagepub.com/home/tah


NS Chandhok and T Prebet 

journals.sagepub.com/home/tah	 3

formulations that are designed to improve patient 
comfort and improve benefits by prolonging drug 
exposure that are now in clinical trials. These 
include oral AZA (CC-486), oral DEC with ceda-
zuridine, a novel cytidine deaminase inhibitor 
(ASTX727) and subcutaneous guadecitabine 
(GDAC, SGI-110), a next-generation hypometh-
ylating drug that has a longer half-life than its 
active metabolite DEC.

All these agents (GDAC (SGI-110), oral AZA 
(CC-486), and ASTX727) are in phase III assess-
ment as single-agent therapy (ClinicalTrials.gov 
identifiers: NCT03306264, NCT02920008, and 
NCT01757535) in MDS, CMML and MDS in 
the treatment naïve setting, and are also being 
assessed after relapse with traditional HMA ther-
apy. In the case of GDAC, the results of the rand-
omized phase III study of GDAC [ASTRAL-1 
(ClinicalTrials.gov identifier: NCT02348489] in 
treatment- naïve unfit patients did not meet its 
coprimary endpoints of superior CR rate and OS 
when compared with HMA or cytarabine.36 
However, a recently published phase II study that 
included intermediate- and high-risk MDS and 
CMML both in the treatment-naïve of HMA 
relapsed or refractory setting demonstrated a  
40–55% overall response rate (ORR) in all sub-
groups.37 Of the 53 HMA refractory patients 
included on this study, there were 2 complete 
responses to GDAC.37 Although toxicity was con-
sidered acceptable, 12% of patients withdrew 
from the study based on serious adverse events; 
the overall adverse event profile was similar to tra-
ditional HMA therapy.37–39 ASTX727 is a fixed-
dose combination of DEC and cedazuridine, a 
novel cytidine deaminase inhibitor. Phase I stud-
ies with previously treated or newly diagnosed 
MDS and CMML were published recently; 
ASTX727 was confirmed to have a safety profile 
similar to that of DEC.40 Phase II dose confirma-
tion was presented at the 2017 ASH and EHA 
meetings, and a multicenter, phase III rand-
omized, study of ASTX727 versus IV DEC for 
patients with MDS and CMML is currently active 
(ClinicalTrials.gov identifier: NCT03306264). 
Finally, the oral formulation of AZA, CC-486, has 
been evaluated in phase I and has been generally 
well tolerated even with extended dosing in 
patients with treatment-naïve and refractory AML 
and MDS.41–43 It has also been evaluated in the 
post-transplant maintenance in AML and 
MDS.44 This agent is currently in later phase 

evaluation in studies such as QUAZAR AML-
001 (ClinicalTrials.gov identifier: NCT01757535).

IDH mutations
Isocitrate dehydrogenase-1 and −2 (IDH1/2) 
mutations occur in ~20% of AML, and up to 12% 
of patients with MDS. IDH enzymes catalyze the 
conversion of isocitrate to α-ketoglutarate (aKG) 
in the citric acid cycle.45 There are three con-
served mutational hotspots in the IDH enzymes 
that alter their function and lead to the produc-
tion of (R)-2-hydroxyglutarate (2HG), an onco-
metabolite with numerous downstream effects, 
including impairment of normal TET catalytic 
activity, and histone lysine demethylases, both of 
which are crucial to epigenetic regulation.46–48

Mutant IDH inhibitors.  Recently 2-IDH inhibi-
tors, enasidenib for mutant IDH2 and ivosidenib 
for mutant IDH1 were approved by the FDA for 
relapsed/refractory AML. The mIDH1 inhibitor 
ivosidenib gained FDA approval for the treat-
ment of patients with relapsed/refractory IDH1 
mutant AML based on the phase I, multicenter, 
open-label, dose-escalation, and dose-expansion 
study.49 In this study, that was most recently 
updated at ASCO annual meeting in 2018, 179 
patients with IDH1-positive relapsed/refractory 
AML were treated 500 mg oral ivosidenib that 
resulted in CR in 24.7% (n = 43; 95% CI 18.5–
31.8) and CR with partial hematologic improve-
ment (CRi) rate in 8% (n = 14; 95% CI 4.5–13.1). 
The median duration of CR + CRi was 
8.2 months (range, 5.6–12). The ORR was 41.9% 
(95% CI 34.6–49.5%) and median time to best 
response was 2.0 months (range, 0.9–5.6).Of the 
patients treated with ivosidenib, 21 patients were 
eventually received hematopoietic stem cell 
transplantation (HSCT).49 The most serious 
adverse effects included QT prolongation, and 
the potentially fatal differentiation syndrome 
that led to a boxed warning for the drug.49,50 
This expansion cohort is ongoing (ClinicalTri-
als.gov identifier: NCT02074839) and based on 
the early success with this agent, ivosidenib is 
being examined in the upfront setting in AML 
who are candidates for nonintensive treatment 
[AGILE trial (ClinicalTrials.gov identifier: 
NCT03173248)], in high-risk MDS (Clinical-
Trials.gov identifier: NCT03503409), and in 
numerous combination studies primarily in 
myeloid malignancies.
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The IDH2 inhibitor enasidanib was the first in 
class IDH2 mutation-specific inhibitor. Similar 
to ivosidenib, in a phase I/II study of enasidenib 
in patients with relapsed/refractory AML with 
IDH2 mutations, 40.3% of patients responded to 
therapy, 19.3% achieved CR and the median OS 
was 9.3 months for all study participants, but 
19.7 months for patients who achieved CR.51 
Ivosidenib, the recently approved IDH1 muta-
tion-specific inhibitor, demonstrated similar 
results with a 41.6% ORR, 30.4% CR/CRi rate 
including a 21.6% CR rate.49 IDHENTIFY 
(ClinicalTrials.gov identifier: NCT02577406), a 
phase III randomized, open-label study compar-
ing single-agent enasidenib with conventional 
care regimens (CCR) in older patients relapsed or 
refractory IDH2 mutant AML is currently enroll-
ing.52 This agent is also being examined in the 
upfront AML setting (ClinicalTrials.gov identi-
fier: NCT02632708), MDS as a single agent 
(ClinicalTrials.gov identifiers: NCT03744390 
and NCT03383575), in combination with other 
drugs such as AZA or venetoclax (ClinicalTrials.
gov identifier: NCT02677922), and in the post-
transplant setting as a maintenance agent 
(ClinicalTrials.gov identifier: NCT03728335). 
Although the above agents were the first in class to 
receive FDA approval, there are numerous others 
mutant IDH inhibitors such as FT-2102 (mIDH1), 
BAY 1436032 (pan mIDH1), and the combined 
IDH1 and IDH2 inhibitor AG-881 currently in 
clinical trials. Interestingly, recent publications 
have determined that patients who relapse almost 
uniformly develop either resistance mutations that 
impede IDH inhibitor binding or isoform switch 
from one IDH enzyme to the other.53,54

Histone modifications
In addition to changes in DNA methylation, 
modifications of the core of eight histone proteins 
play an important role in genetic expression and, 
thus, genomic regulation. There are several his-
tone modifying processes including methylation, 
acetylation, ubiquitination, phosphorylation, 
sumoylation, and glycosylation that are involved 
in cancer pathogenesis.54 Histones themselves 
have an accessible lysine rich amino-terminal that 
can be both acetylated and methylated.

Histone methylation and demethylation
Histone methylation status is a dynamic process 
that is essential to the transcriptional program of 

a cell. Similar to DNA methylation, histone meth-
ylation is a process by which methyl groups are 
transferred to histones leading to structural modi-
fication of chromatin, transcriptional modifica-
tion, and eventually alteration in gene expression. 
Histone methyltransferases are a class of catalytic 
enzymes responsible for the transfer of methyl 
groups from S-adenosyl methionine onto the 
lysine (lysine methyltransferase or KMTs) or 
arginine residues [protein arginine methyltrans-
ferases (PRMTs)] leading to transcriptional acti-
vation or repression depending on the degree and 
sites of methylation.55 Aberrations in histone 
methyltransferases have been noted in several 
hematological malignancies including myeloid 
malignancies as well as B and T cell lympho-
mas.56–59 Conversely, histone demethylases 
remove methyl groups from histones and belong 
to two families of proteins: the lysine-specific 
demethylase (LSD) family and the JumonjiC 
(JMJC) family of histone demethylases.60

Histone methyltransferase (KMT) inhibitors: EZH2 
inhibitors.  Enhancer of zeste homolog 2 (EZH2) 
is the catalytic subunit of the Polycomb repressive 
complex 2 (PRC2) that is responsible for tran-
scriptional repression of target genes by trimeth-
ylation of lysine 27 on histone H3 (H3K27me3).61 
In hematopoiesis EZH2 is a regulator of adult 
hematopoietic stem cell (HSC) differentiation, 
proliferation and apoptosis.62,63 It regulates these 
pathways by repression of negative cell cycle regu-
lators (such as CDKN2A), repression of differen-
tiation transcription factors (such as BLIMP and 
IRF4), and repression of pro-apoptotic genes 
(such as NOX and p21).62,64,65

The fact that changes in expression, gain of func-
tion, and loss of function mutations in EZH2 
contribute may contribute to the development of 
hematologic malignancies suggests that EZH2 
can act not only as an oncogene, but also as a 
tumor suppressor, depending on the cell context. 
Gain of function mutations, or overexpression of 
EZH2, is frequently seen in patients with Burkitt 
lymphoma, high-grade follicular lymphomas, dif-
fuse large B cell lymphomas (DLBCL), and mul-
tiple myeloma with 4;14 translocations.57,66,67 
Loss of function mutations have been reported 
more frequently in myeloid malignancies such as 
MDS, atypical chronic myelogenous leukemia 
(CML) and myelofibrosis, and are generally asso-
ciated with a poorer prognosis with shorter OS 
and event-free survival.68,69 Loss of function and 
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deletions EZH2 mutations were also noted in up 
to a quarter of patients with T cell acute lympho-
blastic leukemia (T-ALL).70

Several EZH2 inhibitors have been developed and 
a few are in early phase clinical trials, primarily 
for high grade lymphomas. Phase I studies were 
recently completed on tazemetostat (EPZ-6438), 
a potent and highly selective EZH2 inhibitor that 
had previously shown antiproliferative/antitumor 
activity in in vitro and in B cell non-Hodgkin 
lymphoma xenograph models bearing EZH2 
activating mutations.71,72 The open-label, multi-
center, dose-escalation, phase I study that 
included both solid tumors and relapsed/refrac-
tory B cell non-Hodgkin lymphoma that was 
recently published established the recommended 
phase II dose of 800 mg twice daily and demon-
strated durable objective responses, including 
complete responses, were observed in 8/21 
patients with B cell non-Hodgkin lymphoma.73 
Phase II data in epithelioid sarcoma was pre-
sented at ASCO 2017, but is immature in the 
lymphoid malignancies. Studies with this drug 
were recently paused by the FDA based on a 
patient with a solid tumor malignancy enrolled in 
a phase I trial who developed a secondary T cell 
lymphoma but resumed as of September 2018. 
Other EZH inhibitors in clinical trial are listed in 
Table 1. Of note, recent work has demonstrated 
that dual inactivation of both EZH1 and EZH2, 
leading to complete inactivation disruption of 
PRC2 was effective at eliminating aggressive qui-
escent leukemic stem cells in MLL-AF9 leuke-
mia.74 This has led to the development of novel 
EZH1/2 inhibitors that has shown promise in 
preclinical studies.75

Histone methyltransferase (KMT) inhibitors: DOT1L 
inhibitors.  Disruptor of telomeric silencing 1-like 
(DOT1L) is the only known a methyltransferase 
that triggers histone H3 lysine 79 (H3K79) meth-
ylation. H3K79 methylation is the only known 
histone lysine methylation without at least one 
known corresponding histone demethylase to 
date and increasing H3K79 methylation has been 
noted as a part of aging. DOT1L also has known 
roles in DNA-repair mechanisms, cell-cycle regu-
lation, and maintenance of genome stability.76 
H3K79 methylation is implicated in several pro-
cesses, including transcription elongation by 
RNA polymerase II, the DNA damage response, 
and cell cycle checkpoint activation.77–79

Approximately 10% of all leukemias harbor MLL1 
translocations, and these translocations are partic-
ularly enriched in pediatric leukemia and therapy-
related leukemia secondary to etoposide. MML 
rearranged leukemias have with distinct clinical 
features and portend a poor prognosis. The major-
ity of MLL translocations result in oncogenic 
fusion proteins in which the native methyltrans-
ferase domain is replaced by sequences that inter-
act with DOT1L directly or indirectly.80,81 
MLL-rearranged leukemia is dependent on aber-
rant H3K79 methylation by DOT1L, which 
make DOT1L inhibitors an attractive target.82 
Pinometostat (EPZ-5676) was the first-in-class, 
small-molecule inhibitor of the histone methyl-
transferase DOT1L, is currently in clinical testing. 
Results from a phase I study with 51 patients with 
relapsed/refractory MLL leukemia of pinometostat 
were modest, with only 2/51 patients achieving CR 
with 9/51 experiencing grade 3 or higher drug-
related events.83 Based on these data, it seems 
unlikely that DOT1L inhibition will be sufficient 
for management of MLL leukemia as a single 
agent, but may be incorporated into rational com-
bination therapy.

Histone demethylase inhibitors targeting LSD1.  His-
tone modifications are reversible and epigenetic 
marks, such as methylation or acetylation, can be 
removed. Enzymes capable of reversing methyla-
tion come in two classes: LSD1/LSD2 or KDM1A/
KDM1B; and the larger family of JMJC domain-
containing histone demethylases.81,84

LSD1 is a key regulator of self-renewal and dif-
ferentiation in human embryonic stem cells, is 
pivotal to maintenance of hematopoietic stem 
cells and differentiation of granulopoiesis.85,86 It 
causes transcriptional repression by demethylat-
ing mono- or di-methylated H3K4, but can also 
stimulate transcription upon interactions with the 
androgen receptor.87 LSD1 can also demethylate 
many nonhistone substrates such as p53, 
DNMT1, and STAT3.88,89 LSD1 is overex-
pressed in a several malignancies including solid 
tumors (gastric, esophageal, breast, lung, colon, 
etc.), as well as hematopoietic and lymphoid neo-
plasms including AML, ALL, MPNs, CMML, 
and MDS.90 LSD1 inactivation inhibited cancer 
cell differentiation, proliferation, invasion and 
migration, and tumor growth in animal models 
and demonstrated the therapeutic potential of 
LSD1 inhibitors.91–93
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Table 1.  Selected trials of novel emerging epitherapies.

Select trials targeting DNA modification

Drug Target ClinicalTrials.gov identifier Malignancy

Guadecitabine (SGI-110) DNMT NCT02907359
NCT02920008
NCT03075826
NCT02131597
NCT03075826

MDS, AML, CMML, MPN

Oral Azacitidine (CC-486) DNMT NCT03723135
NCT03703375
NCT03450343

MDS, AML, T cell lymphoma, 
DLBCL

Select trials targeting Histone modification

Drug Target NCT Malignancy

Tazemetostat (EPZ-6438) EZH2 NCT03456726
NCT03603951
NCT01897571
NCT03213665
NCT02875548

DLBCL, HL, NHL, histiocytic 
disorders

CPI-1205 EZH2 NCT02395601 B cell lymphoma

PF-06821497 EZH2 NCT03460977 Follicular lymphoma

MAK683 EZH2 NCT02900651 DLBCL

Pinometostat (EPZ-5676) DOT1L NCT03724084 AML-MLL

GSK2879552 LSD1 NCT02929498 MDS

Tranylcypromine LSD1 NCT02273102 AML
MDS

IMG-7289 LSD1 NCT03136185
NCT02842827

Myelofibrosis
AML
MDS

INCB059872 LSD1 NCT02712905 Hematologic malignancies

4SC-202 HDAC NCT01344707 Hematologic malignancies

Abexinostat (PCI24781) HDAC NCT01149668
NCT03600441
NCT00724984
NCT00473577

B cell lymphomas, any 
hematologic malignancy

Givinostat HDAC NCT01901432
NCT01761968

MPN

Mocetinostat HDAC NCT00431873 CLL

Resminostat HDAC NCT02953301 T cell lymphoma,

Rocilinostat HDAC NCT02091063
NCT01583283

Lymphoma, multiple 
myeloma

ABBV-075 BET NCT02391480 AML, NHL, multiple myeloma

(Continued)
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Numerous LSD inhibitors [trans-2-phenylcyclo-
propylamine derivatives, monoamine oxidase 
(MAO) inactivators, peptide-based, polyamine-
based, and others] have been developed and fall 
into two categories: reversible or irreversible inhi-
bition.91,94 Some of these inhibitors are currently 
in early phase clinical trials and there is no mature 
trial data. Myelosuppression from LSD1 inhibi-
tors at therapeutic doses may prohibit their use in 
myeloid malignancies, owing to the role in nor-
mal hematopoiesis and terminal myeloid differen-
tiation, but this remains to be seen. JMJC 
domain-containing histone demethylases, a much 
larger class of histone demethylation agents, are 
still being explored in the lab and although inhibi-
tors are being developed, they have not entered 
the clinical realm.

Histone acetylation and deacetylation
Similar to methylation, histone acetylation sta-
tus is an important mechanism that regulate of 
chromatin structure, transcription, and DNA 
repair. Histone lysine acetyltransferases (HATs) 
are responsible for acetylation of histones that 
relax chromatin structures, exposed promoter 
regions, and increased transcription. Mutations 
in HATS that affect their catalytic activity are 
frequent in lymphoid malignancies, occurring in 
up to 40% of DLBL, 60% of follicular lym-
phoma (FL), and less frequently in B cell ALL, 
T cell ALL, and cutaneous T cell lymphoma 
(CTCL).95–99 HAT mutations are also notable 

in some myeloid malignancies, specifically with 
CBP mutations or translocations, however 
effectively targeting HAT activity remains in the 
laboratory for now.4,100,101

Histone deacetylases (HDACs) oppose this 
action by catalyzing deacetylation that leads to 
chromatin condensation and resultant gene 
silencing.102–104 HDACs are a very diverse group 
of enzymes, that are subdivided into four classes 
(I, II, III, and IV) based on homology to yeast 
proteins, subcellular location, and enzymatic 
activities. They lead to tumorigenesis by repres-
sion of tumor suppressor gene expression or 
modification of oncogenic cell-signaling path-
ways.105–107 In line with variety of HDAC pro-
teins, HDAC inhibitors are a structurally varied 
class of medications that vary in their potency and 
specificity to different classes of HDACs includ-
ing hydroxamates, cyclic peptides, aliphatic acids, 
benzamides, and electrophilic ketones. HDAC 
inhibitors induce cancer cell cycle arrest, differen-
tiation, and cell death. They also reduce angio-
genesis and modulate immune response.108 
Although HATs have not yet proven themselves 
as druggable targets, the role of HDAC inhibition 
has been established in several hematologic malig-
nancies. FDA-approved HDAC inhibitors 
(HDACi) include vorinostat for the management 
of CTCL, romidepsin for CTCL and peripheral T 
cell lymphoma (PTCL), belinostat for PTCL, and 
panobinostat is FDA approved for the manage-
ment of multiple myeloma.109–112

CPI-0610 BET NCT02158858 Myelofibrosis

FT-1101 BET NCT02543879 Hematologic malignancies

GSK525762/I-BET762 BET NCT01943851 Hematologic malignancies

INCB054329 BET NCT02431260 Hematologic malignancies

PLX51107 BET NCT02683395 AML, MDS, NHL

RO6870810/TEN-010 BET NCT03068351
NCT03255096

Multiple myeloma, DLBCL

AML, acute myeloid leukemia; BET, bromodomain and extra-terminal domain; CLL, chronic lymphocytic leukemia; CMML, 
chronic myelomonocytic leukemia; DLBCL, diffuse large B cell lymphoma; EZH2, enhancer of zeste homolog 2; HDAC, 
histone deacetylase; HL, Hodgkin’s lymphoma; LSD, lysine-specific demethylase; MDS, myelodysplastic syndrome; MLL, 
mixed-lineage leukemia; MPN, myeloproliferative neoplasm; NHL, non-Hodgkin’s lymphoma.

Table 1. (Continued)

Select trials targeting Histone modification

Drug Target NCT Malignancy
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There are a plethora of other HDACis currently in 
early phase clinical trials, including the established 
agents mentioned above, as well as a whole host of 
newer agents (Abexinostat (PCI24781), AR42, 
Givinostat, Mocetinostat, Quisinostat (JNJ-
26481585), Resminostat (4SC201), Rocilinostat 
(ACY1215), Tacedinaline (CI994), as well as oth-
ers) in phase I and II clinical trials. Some ongoing 
trials of these novel agents are listed in Table 1. It 
is useful to note that although there are ongoing 
monotherapy trials in select hematologic malig-
nancies, most trials at present are focused on com-
bination therapy both for drug synergy and to 
overcome resistance to HDACi monotherapy.113

Epigenetic ‘readers’: bromodomain proteins
The previously described targets included epige-
netic ‘writers’ or ‘erasers’ in that they were involved 
in the addition or removal of chemical groups onto 
either histone tails or the DNA. The bromodo-
main and extra-terminal domain (BET) family of 
adaptor proteins are epigenetic ‘readers’, or chro-
matin regulators that possess specialized domains 
that survey the epigenetic landscape and dock at 
specific regions within the genome.114 These pro-
teins then serve as scaffolds for transcription fac-
tors and chromatin-modifying enzymes to assemble 
functional complexes onto specific loci and facili-
tate DNA-templated processes.

The BET family of epigenetic readers have two 
tandem bromodomains, an extra-terminal domain 
and a C-terminal domain.115 Bromodomains 
(BRDs) have acetyl–lysine binding pockets and 
bind to acetylated lysines on histone tails and 
recruit other chromatin factors and transcriptional 
machinery to regulate gene transcription.116 The 
BET family has four members, three of which 
(BRD2, BRD3, and BRD4) are expressed ubiqui-
tously, and germ cell specific BRDT.114 In addi-
tion to transcriptional regulation where it is 
important for both initiating and continuing tran-
scription, BET proteins also have an essential role 
in cell-cycle regulation.117

BET protein disruption is associated with cancer 
and the study of BET proteins, and BET inhibi-
tors, has been an area of robust research over the 
past decade. Early studies employing BET inhibi-
tors revealed the importance of BET in regulation 
of MYC an oncogenic driver.118 BET inhibition 
in the early studies led to downregulation of 
c-Myc, cell-cycle arrest and cellular senescence in 

myeloma models, and prolonged survival in 
Burkitt’s lymphoma and AML murine xenograft 
models.118,119 In lymphoma, BET proteins were 
found to preferentially bind in the proximity of 
critical lymphoma-related oncogenes.120 Early 
lymphoma cell line studies showed that although 
BET inhibitors were cytostatic in most cases, but 
induced apoptosis in a subgroup of cell lines.121 
Preclinical efficacy of BET inhibitors has been 
demonstrated in AML while several other papers 
have documented similar efficacy in several hema-
tologic malignancies.122–126

Early phase clinical trials of BET inhibitor mono-
therapy in hematologic malignancies have shown 
that BET inhibitors are tolerated at therapeutic 
doses and there is some signal of limited effi-
cacy.127–129 In the acute leukemia cohort of 41 
patients five patients demonstrated some degree 
of response to the BET inhibitor OTX015.128 
Limited antitumor activity was also noted in 
patients with relapsed or refractory lymphomas in 
a phase I study of the BET inhibitor CPI-0610.130 
Like with HDACis, thoughtful combinations uti-
lizing BET inhibitors are more likely to derive 
clinical benefit than BET inhibitor monotherapy. 
Combinations with agents such as cell-cycle 
inhibitors, DNA damage repair inhibitors, apop-
tosis inhibitors, checkpoint inhibitors, or other 
epitherapies such as HDACi have demonstrated 
preclinical efficacy.117 Combinations may induce 
cytotoxicity and help to overcome resistance to a 
single targeted agent. Numerous trials currently 
ongoing, some of which are listed in Table 1.

Micro-RNA
MicroRNAs (miRNAs) are evolutionarily con-
served 21–23-nucleotide single-stranded noncod-
ing RNAs that typically destabilize messenger 
RNA and are crucial to regulating gene expres-
sion.131 Alterations in miRNA mediate processes 
in tumorigenesis such as inflammation, cell-cycle 
regulation, stress response, differentiation, apop-
tosis, and invasion, and are implicated in the gen-
eration or maintenance of cancer.132 Significant 
differences have been noted in the miRNA 
expression between normal and cancer tissues, 
where miRNAs acting as tumor suppressors or 
oncogenes.133 These changes in miRNA expres-
sions may be due to mutations, translocations of 
other epigenetic changes, and are being assessed 
as prognostic markers in most hematologic 
malignancies.134
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There are two classes of miRNA-targeted thera-
peutics have also entered early phase clinical trials 
(e.g. ClinicalTrials.gov identifiers: NCT03713320 
and NCT02580552 for mycosis fungoides, 
chronic lymphocytic leukemia, DLBCL, or 
ATLL). MicroRNA mimics aim to restore lost 
miRNA expression (tumor suppressor miRNA) 
and miRNA inhibitors that bind to their target 
and inhibit the target oncogenic miRNA func-
tion.135 There have been early successes in pre-
clinical models with several miRNA therapies, 
however these agents are yet to make a splash in 
cancer therapy and are in the early staged of clini-
cal evaluation. We are likely to see these epithera-
pies in the future, potentially in combination with 
chemotherapy, as several miRNAs have been 
shown to be sensitive cancer cells to chemother-
apy.136,137 Improved understanding of the miRNA 
targetome will also help refine the development of 
these agents.

Conclusion
Although there has been a relative boom in the 
emergence of novel epigenetic therapies, opti-
mal implementation of these agents will require 
significant efforts. Targeting the cancer epige-
nome remains challenging because of several 
overlapping dependent and independent phe-
nomena such as DNA modifications, covalent 
post-translational modifications of histones, his-
tone variants, noncovalent remodeling of chro-
matin, and microRNA expression. Improved 
understanding of the epigenetic mechanisms in 
normal cells, and defective epigenetic mecha-
nisms in neoplastic cells, will help in designing 
optimal combinations while minimizing drug-
related toxicities in the future. Capitalizing on 
interdependent mechanisms in cancer, such as 
cancer epigenetics and cancer immunology or 
metabolism are also likely to lead to more sig-
nificant gains.
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