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Abstract

We present a mathematical model that explains and interprets a novel form of short-term potentiation, which was found to
be use-, but not time-dependent, in experiments done on Lymnaea neurons. The high degree of potentiation is explained
using a model of synaptic metaplasticity, while the use-dependence (which is critically reliant on the presence of kinase in
the experiment) is explained using a model of a stochastic and bistable biological switch.
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Introduction

All brain functions, ranging from simple reflexes to complex

motor patterns, learning and memory, rely upon synaptic

transmission between neurons through specialized structures

termed synapses. These synaptic connections are, however, not

static in nature; in fact, they exhibit a high degree of synaptic

plasticity, enabling a network to generate behaviorally relevant

and functionally meaningful outputs. These changes in synaptic

strength can either be short- or long-term, and may form the basis

for both short- and long-term memory, respectively.

Synaptic plasticity is neither restricted to any select group of

neurons nor to a particular species – rather it is a universal

trademark of all neurons that have been investigated to date.

When a nervous system is unable to exhibit modulatory changes

associated with short- and long-term synaptic plasticity, it is

rendered dysfunctional. Therefore, defining the mechanisms

underlying synaptic plasticity is not only pivotal for our

understanding of how the brain functions but also for managing

the behavioral, learning, memory and cognitive defects that are

met in clinical practice. However, despite recent advances in our

understanding of various modes of neuronal communication, the

cellular and molecular mechanisms underlying synaptic plasticity

remain poorly defined. Moreover, the data generated from

experimental studies has often been inadequate to garner

mathematical modeling predictions that may aid future research

in this area, or to provide insights into the mechanisms of synaptic

plasticity. This field could however benefit from a paradigm shift

where modeling approaches could be used to predict elements of

synaptic plasticity and to facilitate future research in the area of

metaplasticity.

In a recent study [1], two of the authors of this paper observed a

form of short-term potentiation induced by tetanic stimulation,

whose time-frame exceeded conventional forms of short-term

potentiation. While the induction of potentiation was similar to

previous forms of short-term potentiation, the time frame of the

potentiated response was characteristic of long-term potentiation

(, 5 hrs).

More specifically, using well-defined, excitatory cholinergic

synapses between Lymnaea pre- and postsynaptic neurons, specif-

ically visceral dorsal 4 (VD4) and left pedal dorsal 1 (LPeD1-

Excitatory), they provided evidence for a novel form of short-term

potentiation, which was use-, but not time-dependent. They found

that following a tetanic stimulation (, 10 Hz) in the presynaptic

neuron with a minimum of seven action potentials, the synapse

became potentiated, whereby a subsequent action potential

triggered in the presynaptic neuron resulted in an enhanced

postsynaptic potential (see Figure 1). Further, if an inducing tetanic

stimulation was activated but a subsequent action potential was

not triggered, the synapse was shown to remain potentiated for as

long as 5 hours. However, once this action potential was triggered,

the authors found that the synaptic strength rapidly returned to

baseline levels. It was also shown that this form of synaptic

plasticity relied on the presynaptic neuron, and required pre- but

not postsynaptic Ca2+/calmodulin dependent kinase II (CaMKII)

activity. Hence, this form of potentiation shares induction and de-

potentiation characteristics similar to other forms of short-term

potentiation, but exhibits a time-frame analogous to that of long-

term potentiation. The model of metaplastic synapses [2] reviewed

below allows us to reproduce these long timescales, and forms the

basis of our explanation of the experimental results reported in [1].

In the model of metaplastic synapses, incoming signals are

stored as memories at progressively deeper levels of a synapse,

leading to a clear temporal separation between long- and short-

term memory. The upper levels are more vulnerable to ‘noise’, i.e.,

the regular influx of (usually irrelevant) information which is

responsible for the phenomenon of forgetting; only short-term

memories can be stored here. (For a review of noise in neural

systems, see [3]). Deeper synaptic levels are more protected from

this noise, and thus able to retain the memory of applied signals for

a much longer time. Drawing on these structural ideas first

proposed by Fusi et al. [4], the model of [2] provides a theoretical
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framework for the dynamics of signal propagation within the

metaplastic synapse. It suggests that random signals are typically

stored in the upper levels of the synapse for relatively short times,

and then lost to noise: non-random signals, on the other hand, are

stored as long-term memories in the deepest synaptic levels and

forgotten much more slowly.

The link between this theory and the experiment reported in [1]

relies on the fact that the output signal in the latter was amplified

after a process of tetanic stimulation. This suggested the following

scenario: the initial action potentials, interpreted as a non-random

signal, cumulatively built up a long-term memory of the signal in

the deepest synaptic levels. The synapse dynamics were then

frozen so that further discharge was prevented. When a further

action potential was applied, the synaptic dynamics restarted

(‘use’-dependence): the release of the accumulated memory from

the deepest levels of the synapse constituted the observed

enhancement of the output signal described in [1]. While this

enhancement is plausibly accounted for by the model of

metaplastic synapses [2], the explanation of the freezing of the

synaptic dynamics and its subsequent use-dependence needs the

introduction of a biological switch. The stochastic and bistable

switch presented in this paper meets this need, and models the role

of kinase (CaMKII) in the actual experiment [1].

In the following, we first review the basics of the model of a

metaplastic synapse [2]. We then provide a full theoretical

framework for the explanation of the experimental results, with

an emphasis on the dynamics of the biological switch. We close by

discussing our results.

Results

A Model of a Metaplastic Synapse
If synapses are highly plastic, signals are quickly stored:

however, high plasticity also means that more and more signals

are stored, generating enough ‘noise’ so that ‘memories’ of earlier

signals soon become irretrievable. Clearly, this is at variance with

the fact that long-term memories are ubiquitous in human

experience; it was to resolve this paradox that models of

metaplastic synapses were formulated [4]. The idea behind such

models was that the introduction of ‘hidden states’ for a synapse

would enable the delinking of memory lifetimes from instanta-

neous signal response: while maintaining quick learning, this

mechanism would also be able to allow slow forgetting. This was

implemented by the storage of memories at different ‘levels’: the

relaxation times for the memories increased as a function of depth.

This hierarchy of time scales models the phenomenon of

metaplasticity [5,6].

In [2] these ideas were put into a new framework, with the

dynamics of signal processing playing a central role. Also, two

different internal synaptic structures were investigated: the first

(Model I) was very similar to Fusi’s original model [4], while the

second (Model II) had a different architecture. In the following, we

focus on the second model. We start by reviewing its essential

features.

The dynamics of the model are defined in Figure 2. At every

discrete time step t, the synapse is subjected either to a potentiating

pulse (PP) (encoded as e(t)~z1) or to a depressing pulse (DP)

(encoded as e(t)~{1), where e(t)~+1 is the instantaneous value

of the input signal at time t. There are three outcomes of the

application of a PP signal:

N 3 pt If the synapse is in its 2 state at depth n, it may climb one

level (n?n{1) with probability an.

N 3 pt If it is in its 2 state at depth n, it may alternatively cross

over to the + state at the same level with probability bn.

N 3 pt If it is already in its + state at depth n, it may fall one level

(n?nz1) with probability cn.

The level-resolved output signal of level n at time t:

Dn(t)~Qn(t){Pn(t) ð1Þ

and the total output signal at time t:

D(t)~
X
n§0

Dn(t) ð2Þ

can be expressed in terms of the probabilities Pn(t) (resp. Qn(t)) for

Figure 1. A representative electrophysiology trace showing the potentiation of the VD4/LPeD1 synapse following tetanic
stimulation and its subsequent depotentiation. A tetanic stimulation of presynaptic neuron VD4 (at thin arrow) results in a compound
excitatory postsynaptic potential (EPSP) in postsynaptic neuron LPeD1. A subsequently triggered action potential in VD4 (asterisk) results in an EPSP
of greater amplitude than pre-tetanic stimulation (thick arrow).
doi:10.1371/journal.pone.0078056.g001
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the synapse to be in the 2 state (resp. in the + state) at level

n~0,1, . . . at time t~0,1, . . . The dynamical equations obeyed by

the latter probabilities are reviewed in the Methods section, along

with other details for the mathematically inclined reader.

Before any meaningful signal is applied, the synapse is assumed

to be in its default state. The latter state is defined as the stationary

state reached by the synapse if subjected to a long random input

signal. It is described in detail in the Methods section (see

equations (16) to (21)). When a single potentiating pulse signal is

applied at time t~1 (that is, e(1)~z1) to the synapse in its default

state, the synapse will get polarized in response, and thus ‘learn’

the signal. Later on, under the influence of a random input signal

for times t§2, it will ‘forget’ the PP signal, and return to its default

state. Figure 3 shows plots of the reduced output signal D(t)=D(1)
against time t for several values of the control parameter b. All

subsequent figures refer to the parameter values b~0:2, c~0:5,

and js~jd~5 (see Methods section). From here on, we will refer

to times where the synapse is subjected to a significant signal

(e(t)~+1) as learning phases, and to times where the synapse is

subjected to random input (e(t)~0) as forgetting phases.

The late stages of the forgetting process are characterized by a

universal power-law decay of the output signal:

D(t)*t{h: ð3Þ

This is known as power-law forgetting [7–9]. The forgetting

exponent

h~1z
jd

js

ð4Þ

is always larger than unity and depends on the ratio of the

dynamical and static lengths jd and js. If the synapse were finite

rather than infinite, and consisted of N levels, the power-law decay

(3) would be exponentially cut off at a time

tN* exp (N=jd) ð5Þ

which grows exponentially fast with the ratio of the number N of

levels to the dynamical length jd.

We now describe the effect of a sustained input of potentiating

pulses lasting for T consecutive time steps (e(t)~z1 for 1ƒtƒT )

on the model synapse: in the following, this will be referred to as a

long-term potentiating (LTP) signal. The synapse is again assumed

to be initially in its default state. The learning and forgetting

processes are qualitatively similar to the PP case described above,

while novel qualitative features emerge when the duration of the

signal is long enough (bT&1). In this regime, the synapse gets

almost totally polarized under the persistent action of the input

signal. This saturation phenomenon is illustrated in Figure 4,

which shows the output signal D(t) for several durations T of the

LTP signal.

The synapse slowly builds up a long-term memory in the

presence of a long enough LTP signal, as the memorized signal

moves to deeper and deeper levels. At the end of the learning

Figure 2. Schematic representation of the model of the internal
synaptic structure. Arrows denote possible transitions in the
presence of a potentiating pulse (PP, e~z1, left panel) and of a
depressing pulse (DP, e~{1, right panel). Corresponding transition
probabilities are indicated. In each panel, the left (resp. right) column
corresponds to the 2 (resp. +) state. The model studied in this work is
actually infinitely deep. After [2].
doi:10.1371/journal.pone.0078056.g002

Figure 3. Plot of the reduced output signal D(t)=D(1) after a
single PP input signal, against time t, for several b. After [2].
doi:10.1371/journal.pone.0078056.g003

Figure 4. Plot of the output signal D(t) against time t, for
several durations T of the LTP signal. After [2].
doi:10.1371/journal.pone.0078056.g004

Synaptic Metaplasticity and Tetanic Potentiation

PLOS ONE | www.plosone.org 3 October 2013 | Volume 8 | Issue 10 | e78056



phase (t~T ), the polarisation profile will have the form of a

sharply peaked traveling wave, around a typical depth which

grows according to the logarithmic law

n(T)&jd ln cT : ð6Þ

The total output signal then decays according to the universal

power law (3), irrespective of the duration of the learning phase,

driving home the universality of power-law forgetting.

The above model provides a mechanism for the long-term

memory storage due to use dependence in the Lymnaea synapse

examined in [1]. With the tetanic stimulation acting as an LTP

signal, this model shows that the synapse becomes fully polarized,

the memory of the stimulating pulses being ‘stored’ in a deep level.

However, another concept is needed to model the subsequent

freezing of the synaptic dynamics: a major clue is provided by the

fact that it is suggested in [1] that the activation of CaMKII in the

presynaptic cell acts like a ‘molecular switch’. Accordingly, we

present a theoretical model of a stochastic and bistable switch in the

following section.

The Effect of Use-dependent Synaptic Potentiation:
Coupling to a Stochastic and Bistable Switch

In this section, we present a model of a biological switch to

describe the role of CaMKII in the experiment reported in [1].

The switch can exist in two states, ‘on’ or ‘off’, which we label by

the binary variable s(t)~1 or 0. Since natural processes are

usually stochastic rather than deterministic, we incorporate this by

postulating that the switch is on with probability P(t), and off with

the complementary probability 1{P(t). Thus:

s(t)

~ 1 with probability P(t), 0 with probability 1{P(t):f
ð7Þ

The main effect of this switch is to freeze the synaptic dynamics

after adequate potentiation: we accordingly refer to the probability

P(t) as the freezing probability. Thus:

N 3 pt If the switch is off (s(t)~0), the synapse evolves as usual.

This occurs with probability 1{P(t).

N 3 pt If the switch is on (s(t)~1), the forgetting process

(‘discharge’) is frozen. This occurs with probability P(t).

More precisely, the synapse learns via (12)-(13) and forgets via

(18) when the switch is off. When the switch is on, the synapse still

learns via (12)-(13), but it does not forget at all.

In the experiment, a minimum of seven action potentials is

needed to activate the switch and freeze the dynamics: this suggests

that the switch somehow responds to the saturation of the synaptic

capacity, so that freezing never sets in for less than this number of

action potentials. Also, a further tetanic pulse after a period of

quietude is needed to restart the synaptic dynamics. We design the

evolution of the freezing probability P(t) accordingly:

N 3 pt If the synapse is within a learning phase (e(t)~+1 and

e(t{1)~+1), the freezing probability evolves according to

the quadratic rule

P(t)~1{c(1{P(t{1))2: ð8Þ

This rule ensures that the freezing probability increases with the

number of action potentials applied, saturating quickly to P~1
and freezing the synaptic dynamics after a threshold number of

these is reached. It is desirable that the fixed point of P~1 is

superstable (see below), and the quadratic law (8) is the simplest

non-linear law which ensures this.

N 3 pt If the synapse is in a forgetting phase (e(t)~0), the

freezing probability is itself frozen to its value inherited from

the past:

P(t)~P(t{1): ð9Þ

This rule ensures that once frozen, the dynamics stay frozen and

that the synapse stays potentiated, until a further action potential is

applied.

N 3 pt If the synapse is at the first step of a learning phase

(e(t)~+1 but e(t{1)~0), the freezing probability is instantly

reset to

P(t)~0: ð10Þ

This ensures that the synaptic dynamics restart, as soon as an

action potential is applied for the first time following a period of

forgetting.

Note that there is a ‘soft’ threshold in the experiment for the

switch to kick in, in that a minimum of seven action potentials is

required; as reported in [1], this phenomenon was usually seen to

occur across a range of 7 to 14 action potentials. The freezing

probability which models the switch dynamics needs to incorpo-

rate this soft threshold, for which superstability of the fixed point

P~1 is desirable. This ensures that at the end of a sustained LTP

signal of duration T , P(T) converges very rapidly to unity (more

rapidly than exponentially), as soon as T exceeds a characteristic

time T0, defined operationally by P(T0)~ 1
2
. The value of the

characteristic time fixes the parameter c. We have then

P(T)~1{ exp {
2T{1{1

2T0{1{1
ln 2

� �
: ð11Þ

Figure 5 shows a plot of the freezing probability P(T) at the end

of an LTP signal of duration T for several values of the

characteristic time T0 in the realistic range of 5ƒT0ƒ9. In

practice, as soon as P(T) is appreciably large, the switch kicks in

stochastically – and this can occur, as shown in Figure 5, over a

range of signal durations.

We now commence a global interpretation of the experiment.

The synapse is assumed to be initially in its default state, with

P(0)~0. It is then subjected to a sustained LTP signal of duration

T1 (i.e., the application of T1 action potentials), and to a single

action potential at a much later time (T2&T1). The synapse is

subjected to a random input at all the other instants of time

(e(t)~z1 for 1ƒtƒT1 and for t~T2, else e(t)~0).

Synaptic Metaplasticity and Tetanic Potentiation
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In the regime where the number of action potentials T1 of the

initial signal is larger than the characteristic time T0 of the switch,

the freezing probability P(T1) at the end of the LTP period is very

high, i.e., very close to unity (see Figure 5). During this learning

phase, the output signal D(t) grows progressively from D(0)~0 to

a large value D(T1). The high value of P(T1) at the end of this

phase typically freezes the synaptic dynamics, ensuring that this

enhanced output signal is not discharged. When the next action

potential is applied at time T2, the switch is turned off, and the

synapse then relaxes via the full discharge of the stored, enhanced

output signal.

We now compare theory with experiment. Figure 6 shows a

comparison between our theoretical predictions (upper panel) with

sharp-electrode electrophysiology recordings of a VD4/LPeD1

synaptic pair (two lower panels). The theoretical prediction is

meant to describe the average over many ensembles, while the

experimental data are assumed to be typical. Since the experi-

mental averages are well-behaved rather than subject to large

fluctuations [1], a typical experimental output is representative of

its average. On the theoretical side, the time unit for the discrete

updates is consistently chosen to be the time interval between two

successive applied APs, i.e., 100 ms. The black theoretical curve

corresponds to 3 APs triggered during tetanic stimulation, which

are insufficient to result in potentiation of a subsequent excitatory

postsynaptic potential (EPSP) in the LPeD1 neuron (T1~3%T0,

and so the switch remains off). The red theoretical curve

corresponds to 11 APs, resulting in a potentiated response

(T1~11&T0, so the switch is turned on and the synapse is

frozen). The predicted pattern of peak heights (symbols) is rather

robust, i.e., insensitive to model parameters, and provides a good

overall description of the experimental recordings.

The last part of this section reflects the ‘bistability’ of the switch,

i.e., its stability in one of two states. If the duration T1 of the initial

LTP signal is comparable to the characteristic time T0, the synapse

may exhibit two types of temporal behavior. It may behave as

above for T1~11, i.e., stay frozen until the subsequent action

potential unfreezes it at time T2. This occurs with probability

P(T1) (see Figure 5). The synapse may also remain unfrozen, so

that the output signal decays almost entirely before the subsequent

action potential sets in. This occurs with the complementary

probability 1{P(T1). This bistable behavior is illustrated in

Figure 7. We see from this figure that the difference between T1

and T0 provides a tunable parameter which determines how

frequently the phenomenon described in the experiment in [1] is

observed: in the upper panel the parameters are such that it is

almost always observed, whereas in the lower panel it makes a

much more random appearance. This parametrisation is useful,

since it can form the basis of future experiments. If we assume that

the characteristic time T0 is, say, inversely proportional to the

concentration of kinase, this suggests that a threshold concentra-

tion can be identified for which a given number of action

potentials will cause the short-term potentiation of the synapse.

Discussion

Our theoretical model of a biological switch coupled to a

metaplastic synapse is able to provide an interesting framework for

the interpretation of the experimental results of [1]. This novel

Figure 5. Plot of the freezing probability P(T) at the end of an
LTP signal, against its duration T , for three values of the
characteristic time T0. The threshold for freezing is least for the black
curve (T0~5), and most for the blue (T0~9): while, say, 8 action
potentials will definitely cause the onset of freezing for the black curve
(P(8)~0:997), it will only rarely do so for the blue one (P(8)~0:292).
doi:10.1371/journal.pone.0078056.g005

Figure 6. An integrative figure showing the good qualitative
agreement of theory and experiment. The two lower panels show
sharp-electrode electrophysiology recordings of a VD4/LPeD1 synaptic
pair. During the induction phase, three action potentials were triggered
at , 10 Hz. The synapse was allowed to remain quiescent for , 5 s and
when a subsequent action potential was triggered, the amplitude of the
postsynaptic potential was similar to pre-tetanic stimulation. However,
when eleven action potentials were triggered at , 10 Hz, a potentiated
response was observed after the same quiescent period of , 5 s after
stimulation. The upper panel shows the predictions of the theoretical
model, also for three and eleven action potentials.
doi:10.1371/journal.pone.0078056.g006
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form of synaptic potentiation exhibits characteristics of short-term

potentiation, but also exhibits characteristics of long-term poten-

tiation based on its time frame. While the enhanced output signal

observed in the latter is attributable to long-term potentiation of

the synapse via tetanic stimulation, the use-dependence of the

synapse is explainable by the biological switch.

We start with the depotentiated state of the synapse, where,

experimentally, single action potentials triggered in VD4 elicit

EPSP in LPeD1 of a non-potentiated amplitude. The application

of repeated action potentials in the pre-synaptic cell however

builds up long-term memory in the synapse, i.e., a potentiated

EPSP in LPeD1. Meanwhile, during the tetanic stimulation, the

freezing probability of the molecular switch (CaMKII) evolves

according to (8) in response to the growing saturation of the

synapse. If the number of action potentials is large enough, the

switch is activated and synaptic dynamics are fully frozen.

Synaptic dynamics are only restarted when the switch is turned

off: this happens when the synapse is next ‘used’, and leads to the

observed rapid decay back to a non-potentiated amplitude in

LPeD1. Thus, the critical dependence of the onset of the decay on

synapse use, rather than the time elapsed after priming, is explained

by the model presented in this paper.

It is useful to discuss some of the key assumptions made here

before concluding. The level of description of our model is

sufficiently abstract that it does not claim to replicate intricate

biological detail; its description is limited to probing the unusually

long times of use-dependent synaptic potentiation in the Lymnaea

synapse. From this point of view, the use of a model of long-term

memory in metaplastic synapses is perfectly appropriate. This

model embodies the idea that forgetting takes place via the

exposure of the multi-level synapse to noise, from which the lowest

synaptic levels are protected. This noise could refer to fluctuations

in neural/synaptic activity or to background signals; what is clear

is that it is ubiquitous and unavoidable. The model of a biological

switch which we introduce depends both on the presynaptic cell

and on the state of the synapse: it is turned on when the synapse is

saturated in response to a series of action potentials, leading to the

freezing of synaptic dynamics. It is turned off when the synapse is

next ‘used’, i.e an activation potential is applied after an inert

period. An enhanced output signal results, because of the

discharge of accumulated memory at the synapse. The turning

on and off of the switch is stochastic, rather than deterministic,

given the nature of most natural processes: and it is bistable, since

it can lead to two kinds of temporal behaviour at the synapse (with

different probabilities, of course). Finally, since the experimental

recordings do not show strong fluctuations [1], the output of a

typical experiment can be meaningfully compared with the

average output signal given by theory.

While the intact brain is composed of a significantly greater

number of synapses with far more intricate connectivity patterns,

the current model has taken a reductionist approach to

understanding synaptic plasticity at the level of a single synapse.

While previous forms of synaptic potentiation have been modeled,

this novel form of use-dependent synaptic potentiation has not.

Therefore, this study may not only be an important step in

developing more complex models composed of multiple synapses,

but also be important in guiding further research in understanding

neuronal network function in intact Lymnaea brain.

Methods

The basic quantities used to describe the state of the synapse are

the probabilities Pn(t) (resp. Qn(t)) for the synapse to be in the 2

state (resp. in the + state) at level n~0,1, . . . at time t~0,1, . . .
These probabilities obey the following coupled linear equations,

whose form is characteristic of Markov chains [10]:

N e(tz1)~z1 (see Figure 2, left):

Pn(tz1)~(1{an{bn)Pn(t)zanz1Pnz1(t),Qn(tz1)~

(1{cn)Qn(t)zcn{1Qn{1(t)zbnPn(t):
ð12Þ

N e(tz1)~{1 (see Figure 2, right):

Pn(tz1)~(1{cn)Pn(t)zcn{1Pn{1(t)zbnQn(t),Qn(tz1)

~(1{an{bn)Qn(t)zanz1Qnz1(t):
ð13Þ

The transition probabilities of the model are assumed to decay

exponentially with level depth n:

an~ae{(n{1)md , bn~be{nmd , cn~ce{nmd , ð14Þ

where the dynamical length

jd~
1

md

ð15Þ

measures the number of fast levels at the top of the synapse.

Figure 7. Plot of the two possible kinds of output signals D(t) generated by the protocol described in the text, against time t (T0~5,
T2~50). Symbol sizes are proportional to the probabilities of each kind of behavior, i.e., P(T1) for the frozen one and 1{P(T1) for the unfrozen one.
Left: T1~7 is larger than T0~5, so that P(T1)~0:946 is very high. Right: T1~T0~5, so that P(T1)~ 1

2
.

doi:10.1371/journal.pone.0078056.g007
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The default state of the synapse is defined as its stationary state in

the presence of a random input signal, defined by choosing at each

time step

e(t)~
z1 with probability 1

2
,

{1 with probability 1
2
:

(
ð16Þ

The dynamics of the synapse subjected to such a random input,

referred to as a ‘white-noise’ random input in [2], is defined by

averaging the linear dynamical equations (12)-(13) over both

instances of e(t) at each time step. The resulting average dynamics

is formally labeled as e(t)~0. It has a simpler expression in terms

of the sums and differences

Sn(t)~Pn(t)zQn(t), Dn(t)~Pn(t){Qn(t), ð17Þ

namely

Sn(tz1)~Sn(t)z
1

2
(cn{1Sn{1(t){(anzcn)Sn(t)

zanz1Snz1(t)),Dn(tz1)~Dn(t)z
1

2
(cn{1Dn{1(t){

(anz2bnzcn)Dn(t)zanz1Dnz1(t)):

ð18Þ

The default state of the synapse, defined as the stationary state of

the above average dynamics, is characterized by the probabilities

Pst
n ~Qst

n ~
1

2
(1{e{ms )e{nms , ð19Þ

with

ms~ ln
a

c
: ð20Þ

The default state is appropriately featureless and unpolarized, as it

should be for a symmetric synapse. The corresponding static length

js~
1

ms

ð21Þ

gives a measure of the effective number of occupied levels in the

default state.
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