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Abstract: Lysosomal storage diseases (LSDs) are a heterogeneous group of inherited metabolic dis-
eases caused by mutations in genes encoding for proteins involved in the lysosomal degradation of
macromolecules. They occur in approximately 1 in 5000 live births and pose a lifelong risk. Therefore,
to achieve the maximum benefit from LSDs therapies, a fast and early diagnosis of the disease is
required. In this framework, biomarker discovery is a significant factor in disease diagnosis and in
predicting its outcomes. On the other hand, the dried blood spot (DBS) based metabolomics platform
can open up new pathways for studying non-directional hypothesis approaches to biomarker discov-
ery. This study aims to increase the efficiency of the developed methods for biomarker development
in the context of rare diseases, with an improved impact on the reliability of the detected compounds.
Thereby, we conducted two independent experiments and integrated them into the screening of the
human blood metabolome: (1) comparison of EDTA blood and filter cards in terms of their suitability
for metabolomics studies; (2) optimization of the extraction method: a side-by-side comparison
of a series of buffers to the best utility to the disease of interest. The findings were compared to
previous studies across parameters such as metabolite coverage, sample type suitability, and stability.
The results indicate that measurements of metabolites are susceptible to differences in pre-analytical
conditions and extraction solvents. This proposed approach can increase the positive rate of the
future development of biomarkers. Altogether, the procedure can be easily adapted and applied to
other studies, where the limited number of samples is a common barrier.

Keywords: mass spectrometry; metabolomics; biomarkers; lysosomal storage diseases (LSD); dried
blood spot (DBS)

1. Introduction

After five decades of comprehensive research on the sample quality in metabolomics
study, the criteria needed for quality sampling and their influence on the research outcome
are still not resolved to complete satisfaction [1]. Hundreds of scientific publications pro-
vide a set of guidelines to help select the sample types for different studies [2]. Since there is
no universal approach, a clear understanding of patient samples’ characteristics is essential
to select the appropriate sample matrix that derives meaningful findings [3]. Over the
past decades, dried blood spot (DBS) technology has become a convenient tool in both
qualitative and quantitative laboratory analysis [4]. Its applicability saw a significant
expansion in recent decades, with a shift from basic to clinical research and medicine [5].
The advantage of DBS technology over other sampling techniques has been extensively
tested and published [6]. There are a number of characteristics that make DBS “easy”: it is
easy to prepare, easy to receive, easy to use, and easy to store. These key elements made
them the method of choice in research [7].
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To date, over 6000 distinct types of rare diseases have been described in the literature [8,9],
and the number is updated every year with 250–280 new conditions [10]. Of these, lyso-
somal storage diseases, also referred to herein as LSDs, are a group of more than 70
different inborn metabolic errors with a combined occurrence of around 1 in 5000 live
births [11]. This research focused on LSDs due to their monogenic origins, as the majority of
metabolic defects are detectable in the metabolomic profile. Novel analytical technologies
are needed [12] to advance knowledge and speed up progress towards treatment options
for rare diseases [13]. The field of translational metabolomics helps to boost biomarker de-
velopment [14]. Biomarkers play a pivotal role in preclinical studies [15] as key indicators
that allow for the early diagnosis and monitoring of disease [16,17].

The need for disease-specific biomarkers is high [18], and many putative biomarkers
are identified in publications every year [19]. Nonetheless, only a few of them have made
their transition from bench to bedside [20], and the approval rate remains too low [21].
Successful biomarker discovery requires extensive research, yet the process is slow [18],
and some shortages occur at various stages of discovery [22]. There are several reasons
for the shortfall in the biomarker pipeline [23], and lack of standardized methodology was
cited as the number one purported reason.

Numerous studies have linked the sample selection and extraction protocols as factors
that provide the best outcomes [24]. However, there is no consensus on the optimal experi-
mental design, and the approaches are usually correlated with immediate availability and
depend on personal aims, triggering deviating results [25,26]. Here, we report the estab-
lishment of a proper stratification of the samples used in metabolomics studies to identify
the processing methods that bring accurate results in the field of biomarker discovery. This
approach helped to minimize the extraneous variable disunity and reduced the errors of
analytical experiments to acquire specificity.

2. Results
2.1. Stability Study

The stability study was divided into (1) study evaluating the stability of the metabolites
in DBS samples; (2) study testing the stability of the metabolites in DBS cards prepared
from fresh and frozen blood.

2.1.1. Stability Study 1
Storage at −20 ◦C over an Extended Period Has a Major Impact on Metabolite Stability

For the samples used in the stability study, the extraction was carried out using
the method described by Cozma et al. 2017 [27]. First, metabolite variation was studied
using samples collected from the same individuals (n = 6) over six years and stored at
−20 ◦C. Figure 1a shows that a low coefficient of variation (<5%) was present in only 1%
of the metabolites, whereas more than 40% of them had a coefficient of variation in the
range of 20% to 50%. Additionally, Figure 1b exemplifies the year-to-year variation of the
metabolites in DBS stored at −20 ◦C. These findings indicate that filter cards, even when
kept at low temperatures (−20 ◦C), are unstable from one year to the next.

The Stability of the Metabolites Is Affected by Short-Term Storage in Various Conditions

To validate the prior findings, another test was performed to evaluate the inter-day
variation of metabolite yield. This test required the analysis of fresh blood samples stored
at RT and −20 ◦C. Blood was drawn from the same control subjects as in the previous
experiment. Following blood collection, duplicate filter cards were prepared. For three
days, one duplicate was kept at room temperature (RT), while the other was stored in
the freezer (−20 ◦C). The samples were prepared, extracted, and analyzed in a batch to
exclude any deviations. The results showed that three-day storage was sufficient to detect
variations in the stability of the analytes when comparing DBS samples stored at RT to
those stored at −20 ◦C (Figure 2).
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Figure 1. Investigation of the DBS stability. (a) The effect of six years of storage on the stability of DBS cards. Per year, 
blood was drawn from the same individuals (six controls), dripped onto DBS cards within two hours of collection, and 
stored at −20 °C. As seen in the figure, the optimal variation (5%) was present in few metabolites, while most of them had 
variations of up to 50%. (b) Box plots show an example of a random compound (7.30_439.3416m/z) in DBS samples from 
the six control subjects collected from 2014 to 2019 and its variation in abundance throughout the years. Box = 25th and 
75th percentiles; bars = min and max values. 

Figure 1. Investigation of the DBS stability. (a) The effect of six years of storage on the stability of DBS
cards. Per year, blood was drawn from the same individuals (six controls), dripped onto DBS cards
within two hours of collection, and stored at −20 ◦C. As seen in the figure, the optimal variation (5%)
was present in few metabolites, while most of them had variations of up to 50%. (b) Box plots show
an example of a random compound (7.30_439.3416 m/z) in DBS samples from the six control subjects
collected from 2014 to 2019 and its variation in abundance throughout the years. Box = 25th and 75th
percentiles; bars = min and max values.
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Figure 2. Inter-day influence (three days) of the storage conditions on the human blood metabolome.
When DBS samples stored at room temperature were compared to DBS samples maintained at
−20 ◦C, majority of the compounds showed a CV ranging from 20% to 50%.

2.1.2. Stability Study 2
Metabolite Yield Is Influenced by Storage Conditions, Sample Types, and Card Age

The next approach was to compare the DBS samples obtained by spotting fresh
EDTA whole blood and frozen blood, after long and short-term storage. Here, the cohort
comprised subjects with different types of LSDs, and the patients selected were the ones
from whom we received both DBS and EDTA whole blood samples for analysis (Figure 3a).
From the EDTA blood, the cards were prepared in duplicates at separate points in time.
Therefore, one set of DBS cards was prepared within one day of receiving the blood (fresh
whole blood), and the other set was prepared after the storage of the EDTA blood at
−20 ◦C for a long period of time (frozen blood). Figure 3b represents a detailed overview
of the sample selection and preparation before the analytical study. The results once
again revealed a high fluctuation of metabolites (Figure 4). These findings reiterate the
importance of sample storage conditions, sample age, and type regarding their suitability
for metabolomics studies. These parameters accounted for the differences in the metabolite
yield when the assessed batch was made up of heterogeneous samples.

2.2. Optimization of Extraction Solvent
2.2.1. The Extraction Solvent Methanol: Acetonitrile Produced Metabolites with the
Highest Peak Intensity

Four different buffers were tested and compared for the LC-qTOF/MS-based metabolomics
analysis. These were as follows: dimethyl sulfoxide: water, methanol: acetonitrile, iso-
propanol: acetonitrile: water, and ammonium acetate: water (Table 1a). The data were
evaluated based on the total number of metabolites and their abundances.
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Figure 3. Overview of sample selection, storage and DBS preparation. (a) Type of samples received from physician per
patient. The samples received from each patient were in the form of either DBS card, or whole EDTA blood, or DBS and
EDTA. Stability study 2 comprised only patients with DBS and EDTA samples combined. (b) Three different categories of
samples were used in stability study 2.

Table 1. Summary of the amount and type of solvent used and its performance on DBS extraction.

(a)

Extraction Ratio v/v Features Detected
Metabolites

Abundance >
10.000

Metabolome
Coverage

Metabolites
Abundance

dimethyl sulphoxide: water 3:2 9867 16 ++++ +
isopropanol: acetonitrile: water 3:3:2 9290 49 +++ ++

methanol: acetonitrile 3:1 7759 70 ++ +++
ammonium acetate: water 2 mM 5970 95 + ++++

(b)

Methanol Mixtures Ratio v/v Features Detected
Metabolites

Abundance >
10.000

Metabolome
Coverage

Metabolites
Abundance

methanol: acetonitrile 3:1 7759 70 + ++++
methanol 100% 9120 39 +++ +++

methanol: acetonitrile 1:1 9964 29 ++++ ++
methanol: water 3:1 7833 25 ++ +

(+) indicates the solvents performance ranking from weakest + to strongest ++++.
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Figure 4. The heatmaps show differences in the abundance of identified compounds across various types of samples.
Only the 50 most significant compounds were selected. The colors indicate the abundance of the metabolites: brown
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The raw abundances detected by untargeted MS were normalized in Progenesis using
the default parameters. It is important to note that a filter was applied for the selection of
compounds. This means that specific values for m/z, retention time, charge, fold change,
coefficient of variation, and compound abundance were chosen. Only the compounds that
passed the filter were considered trustworthy for further investigations.

The results revealed that dimethyl sulfoxide: water was the most effective extraction
buffer in terms of metabolome coverage (Figure 5), whereas the mixture of methanol and
acetonitrile (3:1, v/v) provided the highest number of metabolites with intensities exceeding
one thousand (Figure 6).
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Figure 6. Dotted lines represent the number of features detected and their abundances across the
four different extraction solvents. Each dot represents a solvent type.

Extraction with 2 mM ammonium acetate in water (pH = 8) produced metabolites with
high concentrations, but the global metabolome coverage was the lowest of the four solvents
studied. The isopropanol: acetonitrile: water ranked second in the metabolome coverage,
but the number of compounds with high intensity was lower than the other mixtures.

Given the preliminary results, we assume that methanol is a better complement for
detecting high-abundance metabolites (Figure 7). Furthermore, this study demonstrated
that the extraction solvent for LC-MS-based metabolomics has a visible effect on biomarker
discovery projects (Figure 8).
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2.2.2. Methanol–Acetonitrile (3:1) Ranks Well in Terms of Metabolome Coverage and
Metabolite Intensity

The next step was a comparative study of methanol–acetonitrile (3:1, v/v) with other
methanol mixtures at various ratios, such as methanol 100%, methanol–water (1:1, v/v),
and methanol–acetonitrile (1:1, v/v). The results were evaluated based on the total number
of features and their abundances. Methanol–acetonitrile (3:1, v/v) proved to be the most
effective mixture for extracting metabolites with high intensity. Table 1a shows the subtle
but significant differences among the four different extraction solvents and the comparison
of the various methanol mixtures. The considerable overlap between methanol 100% and
methanol: acetonitrile (1:1, v/v), Table 1b, is noteworthy in terms of metabolome coverage
and the number of features with high intensity.

2.2.3. The Application of Learned Principles to the CLN6 Metabolomics Study Helps in the
Discovery of Disease-Specific Metabolites

The reliability of the selected buffer, namely methanol–acetonitrile (3:1, v/v), was assessed
on a full batch of 95 samples performed on the LC-MS QToF Vion. The batch included,
among the CLN6 and the control group, a group made of eight types of neuronal ceroid
lipofuscinoses diseases (CLN2, CLN3, CLN5, CLN7, CLN8, CLN12, and CLN14), and one
that comprised ten types of LSDs (Mucopolysaccharidosis type I, Mucopolysaccharidosis
type II, Mucopolysaccharidosis type IIIa, Mucopolysaccharidosis type IV, Spinal muscular
atrophy, Fabry disease, Gaucher disease, Krabbe disease, Metachromatic leukodystrophy,
and GM1 gangliosidosis disease). Due to the utility of this extraction, we were able to
retrieve a larger number of metabolites with high intensity (over 1000), as well as identify
compounds that differentiated between diseases and could be used in later stages of the
discovery phase (Figure 9).
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3. Discussion

There are numerous studies conducted on the factors that contribute to the stability
of the metabolites in human samples [3]. Still, there is a big gap between the number of
stability studies performed on DBS samples and non-DBS samples, such as serum, plasma,
urine, and tissue [28].

In the current study, we explored the profile variation of the human metabolome
using DBS from two different angles: (1) assessing the stability of metabolites over time;
(2) investigating the extraction solvents suitable for metabolomics studies.

It is well known that storage conditions for a given biological material varies de-
pending on the type of sample and the predetermined storage time. Typically, one of
three temperatures is considered adequate to store blood samples: room temperature,
refrigerated storage (4 ◦C), or freezer storage (below −20 ◦C) [29].

Trifonova et al. 2019 [30] examined the stability of several types of single patient-based
filter cards stored for four weeks at room temperature. The obtained results showed no
significant impact on DBS stability during the four-week storage period. In contrast, the
study designed by Drolet et al. 2017 [22], namely a short-term stability study (maximum
two weeks) of DBS and urine, showed that DBS cards are unstable at room temperature.
According to our results, a limited storage time at −20 ◦C is crucial in maintaining the
reliability of metabolomics studies, while at room temperature even short-term storage can
affect the stability of the metabolites. This contradicts the study reported by Prentice et al.
2013 [31], who found that filter cards are stable for weeks at room temperature and up to a
year if kept at −20 ◦C.

Furthermore, we observed that sample types and the card age have an impact on
metabolite yield. To ensure the reliability of the data obtained from the metabolomics study,
using samples prepared in an identical way and under similar storage conditions is recom-
mended. Several studies reported on the tactics used to improve the extraction efficiencies
in metabolomics [32]. Nonetheless, relatively, very few attempted to examine the global
metabolome coverage of DBS, as most of them addressed either specific metabolites or
other biofluids [33]. Considering the chemical diversity of the human blood metabolome,
capturing all its features is challenging [34]. In principle, it is preferable to determine the
extraction method that best suits a purpose and optimize it to maximize the number of
metabolites. However, it is a daunting task to choose one that applies to such a large scale
and fits such a broad spectrum of diseases.
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Comparison of fourteen extraction methods on serum samples revealed that methanol
was the most effective extraction and provided the highest metabolome coverage [35].
Similar to our results and in agreement with the previous study done by Alshammari et al.
2015 [36], methanol is a better addition to identify high-intensity metabolites. Therefore,
our data highlighted the importance of the solvent on untargeted metabolomics and
demonstrated that the extraction solvent for LC-MS-based metabolomics has a visible effect
on biomarker-focused studies.

Although knowledge of the stability of the analytes in DBS is of crucial importance
for biomarker discovery, data available on the assessment of human DBS stability for
metabolomics analysis are still scarce. Existing publications on untargeted metabolomics
mention several protocols intended to improve the metabolome coverage [37,38]. Yet, few tar-
geted large cohorts of patients and, to our knowledge, none focused on disease-specific
metabolites. Moreover, due to the scarce data available on the assessment of DBS appli-
cability to metabolomics studies, the final goal is to incorporate this approach into future
studies in biomarker research.

4. Materials and Methods
4.1. Chemicals and Reagents

The solvents used in metabolite extraction, such as methanol, acetonitrile, isopropanol,
and formic acid 99% (eluent additive for LC-MS), were all UPLC-MS grades from Biosolve
(Dieuze, France). Water LC-MS grade was purchased from VWR (Darmstadt, Germany),
ammonium acetate was obtained from Sigma Aldrich (St. Louis, MO, USA), and ethanol
96% from ROTH.

4.2. Mass Spectrometric Analysis

The extract analysis was performed on Waters i-Class ACQUITY UPLC (Waters, Bore-
hamwood, UK) coupled with a Vion IMS-QToF mass spectrometer (Waters, Borehamwood,
UK) equipped with an ESI ion source. The chromatographic run was in the positive ion-
ization mode in the mass range of 100–1000 m/z. From each extract, 10 µL was injected
into a Kinetex EVO (C18, 2.1 × 150 mm, 5 µm) LC column (Phenomenex, Aschaffenburg,
Germany) preheated at 50 ◦C with a flow rate of 0.5 mL/min. The analytes were eluted by
using a linear gradient in a range from 1% to 100% B (50 mM formic acid in methanol: ace-
tonitrile vol. 1:1) and A (50 mM formic acid in water). The following parameters were used
for mass spectrometric acquisition: high-definition mass spectrometry (HDMSE), capillary
voltage 1.2 kV, source temperature 150 ◦C, desolvation temperature 600 ◦C, desolvation gas
1000 L/h, cone gas 50 L/h, low collision energy 6 eV, high collision energy ramp 20–40 eV,
scan mass 50–1000 m/z, scan time 0.5 s.

4.3. Data Acquisition and Analysis

The acquisition was carried out using the Unifi software v1.9 (Waters, Borehamwood,
UK), and the results were exported as Unify export packages (.uep). The file was imported
into the Progenesis QI software v2.3 (Nonlinear Dynamics, Newcastle upon Tyne, UK)
for normalization, metabolites filtering and exported as a .csv file for statistical analysis.
The analysis was conducted using MetaboAnalyst tool 4.0 [39], R version 3.6.2 [40], and
the figures were produced using the package ggplot2 [41].

4.4. Blood Sample Collection and Preparation

In the current study, the participants were divided into two groups: (i) a control
group with no LSD symptoms and DBS cards prepared in-house; (ii) an LSD group with
samples (DBS card and/or EDTA blood) shipped by the physician. Following that, the LSDs
samples were divided into two cohorts: one set of eighteen types of LSDs, and one of
NCL disorder with its nine types of ceroid-lipofuscinosis neuronal diseases, also known as
CLNs diseases (Supplementary Table S1). Blood samples derived from the control subjects
were initially collected for routine metabolic research and processed within two hours of
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blood withdrawal. For the DBS preparation, the EDTA blood tube was gently inverted
five times, and a 60 µL aliquot was spotted onto each spot of the CentoCard® (Centogene
GmbH, Rostock, Germany). After drying for at least four hours at room temperature, the
cards were sealed into plastic bags and stored at −20 ◦C until further processing. The DBS
samples from the LSD-affected patient were prepared by the physician and shipped to
us for routine diagnostic analysis. The samples were kept at room temperature after they
arrived, pending further analysis. Per analysis, five (3.2 mm diameter) center punches
were taken from each card. The spots were cut with the PerkinElmer puncher (PerkinElmer
LAS, Rodgau, Germany), which were then collected into a 96-well microtitration plate.

4.5. Dried Blood Spot Extraction

All samples were prepared under the same conditions. The extraction of the metabo-
lites for the stability study has previously been described [30]. Briefly, an extraction
mixture of 50 µL DMSO in water (3:2 v/v), and 100 µL internal standard 200 ng/mL (lyso-
Gb2, Matreya LLC, State College, PA, USA) dissolved in ethanol was added to each well.
The aforementioned protocol was modified solely for the extraction–optimization study.
Here, the extraction was performed by adding 50 µL of the extraction solution (Table 1)
and 100 µL internal standard solution 200 ng/mL dissolved in methanol. After adding the
corresponding buffer to the DBS punches, the plate was sonicated for 10 min (Sonoswiss
Ultrasonic Cleaner SW12H, Ramsen, Switzerland) and incubated for 60 min at 37 ◦C with
700 rpm (Heidolph, Schwabach, Germany). Following incubation, the samples were soni-
cated for 10 min then centrifuged for 5 min at 3500 rpm in a Hermle Z300 plate centrifuge
(Hermle Labortehnik, Wehingen, Germany).

4.6. Patients Inclusion

The samples varied in age (children and adults), sex, time of sampling, and stor-
age duration, thereby having considerable variations in factors that could influence the
metabolome. All samples analyzed were anonymized, so there is no overall breach of data
privacy. The study included 27 controls (13 male and 14 female) ranging in age from 23 to
65 years old, as well as 39 LSD patients (18 male and 21 female) ranging in age from 2 to 65
years old (Supplementary Table S2(a–c)). They were divided as follows: (1) stability study,
(2) extraction study, and (3) cumulative study (Table 2).

Table 2. Distribution of the individuals by experiments.

(1) Stability Study (2) Extraction Study (3) Cumulative Study

Subjects Control CLN6 LSD Control LSD Control NCL LSD

male/female 3/3 2/8 6/5 10/11 4/7 10/11 19/30 10/15

age (mean ± SD) 36.5 6.5 15.8 32 6 33 6 6.5

5. Conclusions

The sample grouping procedure was done based on three metrics: sample types,
sample age, and sample storage conditions. These key metrics are not commonly used in the
existing biomarker-focused metabolomic studies. According to our findings, differences in
these parameters have a considerable impact on the stability of the metabolites. In addition,
the use of different solvents for the extraction has shown variable results on metabolite
intensity and abundance scale. We conclude that the reliability of metabolites is higher if
the following conditions are met: similar sample types, similar sample age, and similar
storage conditions are obtained; methanol is used as the extraction solvent.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10
.3390/metabo11060382/s1. Table S1: Overview of lysosomal storage diseases (LSDs); Table S2(a–c):
List of the total number of patients and controls used in the study.

https://www.mdpi.com/article/10.3390/metabo11060382/s1
https://www.mdpi.com/article/10.3390/metabo11060382/s1
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