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INTRODUCTION 
 

Alzheimer’s disease (AD), accounting for 60-80% of all 

dementia cases [1], is an irreversible neurodegenerative 

disease that causes progressive problems with memory, 

judgment, and orientation, among other functions. It  

has been reported that every 65 seconds, someone in  

the United States is diagnosed as AD, and the number  

 

of people age 65 and older with AD may grow to a 

projected 13.8 million by 2050 (https://www.alz.org).  

It is worse for AD patients over the age of 70 since  

61% are expected to die before 80 years old 

(https://www.alz.org). However, as there is currently no 

treatment to prevent, cure, or slow the progression of 

AD, its early diagnosis is significantly important. At 

present, it is generally considered that mild cognitive 
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ABSTRACT 
 

Numerous studies have investigated the differences in the mean functional connectivity (FC) strength between 
amnestic mild cognitive impairment (aMCI) patients and normal subjects using resting-state functional 
magnetic resonance imaging. However, whether the mean FC is increased, decreased or unchanged in aMCI 
patients compared to normal controls remains unclear. Two factors might lead to inconsistent results: the 
determination of regions of interest and the reliability of the FC.  
We explored differences in FC and the degree centrality (Dc) constructed by the bootstrap method, between 
and within networks (default-mode network (DN), frontoparietal control network (CN), dorsal attention 
network (AN)), and resulting from a hierarchical-clustering algorithm.  
The mean FC within the DN and CN was significantly increased (P < 0.05, uncorrected) in patients. Significant 
increases (P < 0.05, uncorrected) in the mean FC were found in patients between DN and CN and between DN 
and AN. Five pairs of FC (false discovery rate corrected) and the Dc of six regions (Bonferroni corrected) 
displayed a significant increase in patients. Lower cognitive ability was significantly associated with a greater 
increase in the Dc of the left superior temporal sulcus. 
Our results demonstrate that the early dysfunctions in aMCI disease are mainly compensatory impairments. 

https://www.alz.org/
https://www.alz.org/
mailto:96125007@sina.com
mailto:xhzhao999@263.net
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impairment (MCI) could be the transitional state 

between normal cognitive functioning and dementia, 

which might progress to dementia, maintain stable 

cognitive status, and even reverse to normal [2–5]. 

Clinically, according to whether there is impaired 

memory function, two MCI subtypes have been 

proposed, amnestic MCI (aMCI) and non-amnestic 

MCI. aMCI, as one of the important forms of MCI, is 

mainly characterized by impaired memory function and 

a high risk of conversion to AD [2, 6]. Petersen and his 

colleagues found that aMCI is associated with an annual 

conversion rate to AD of 10–15% [6]. One study 

followed 1,265 subjects 6 years in a large sample 

longitudinal study, and found that 33.9% of the 

participants with aMCI at baseline progressed to AD [2]. 

Therefore, early diagnosis of aMCI and timely 

intervention are very important in clinical practice. 

 

Resting-state functional magnetic resonance imaging 

(fMRI) is a type of noninvasive measure that enables 

the detection of intrinsic activity in the human brain in 

the nontask state. The identification of significant 

spatial or temporal patterns in brain activity is 

instrumental in the identification of neural substrates 

of cognition [7], which depend on dynamic 

interactions of distributed brain regions operating in 

large-scale networks [8]. The functional network 

represents a complex system as sets of discrete 

elements (nodes) and their mutual relationships 

(edges), which can be summarized in the form of a 

functional connection matrix [7]. Functional 

connectivity (FC), which examines spontaneous 

fluctuations in the blood oxygen level-dependent 

(BOLD) signal of fMRI [9], is an index that shows 

alterations before neuronal loss and structural atrophy 

in patients [10]. To date, a coincident observation in 

aMCI patients is that the mean FC strength of the 

default-mode network (DN) is impaired compared to 

that in normal control (NC) subjects [11–16]. 

However, whether the mean FC strength of the DN in 

aMCI patients is increased, decreased or unchanged is 

still controversial. Wang [11] and Binnewijzend [16] 

did not find any significant differences in resting state 

FC strength within the DN when comparing aMCI 

patients with NC subjects. Li [13] demonstrated that 

the mean FC strength of DN was reduced in aMCI 

patients, whereas Gardini [15] indicated that this value 

was higher in aMCI patients. Despite the different 

conditions of aMCI patients, the analysis of FC is 

subject to a limitation in the definition of regions of 

interest (ROIs) [7] and reliable edges. 

 

Previous studies have strongly demonstrated that 

activity increases during rest in DN regions, which are 

dysfunctional in AD and aMCI. However, the regions 

within the DN will sometimes move to another network 

in different participants. For example, the precuneus 

(PCu), belonging to the DN in one study [17], drifted to 

the frontoparietal control network (CN) in another study 

[18]. Therefore, a single atlas preset for the default 

network cannot match all subjects, and reorganizing the 

ROIs into their correct affiliations is of great importance 

for each investigation. In the present study, a 

hierarchical-clustering algorithm was applied to ROIs 

defined by more reliable task-based activation [18, 19] 

rather than an anatomical parcellation. Not only DN 

was considered but also the CN and the dorsal attention 

network (AN) were taken into account, because it has 

been demonstrated that the DN has a close relationship 

with the AN and the CN [17]. 

 

Another significant cause is the spurious functional 

connections that unquestionably hamper our analysis. 

Fully connected time-courses of ROIs, without any 

restrictions of setting a threshold value (for example, 

setting a threshold correlation coefficient larger than 0.2 

[13]) or choosing a connection density (for example, 

20% connection density [20]), will result in undesirable 

noise that forms spurious functional connections. Some 

weak but relatively reliable FC that may play a 

significant role in a brain network will be lost, whatever 

threshold value or connection density is selected. In 

fact, one region predominantly interacts only with a 

small number of regions [21]. To construct a more 

reliable human brain network model, a method should 

be introduced to hold these weak but reliable FC. In the 

present study, a bootstrap method was applied to the 

fMRI data of aMCI and normal controls. The bootstrap 

method, introduced by Efron in 1979 [22], is a 

sampling-based approach which is used to generate a 

huge number of bootstrap samples though randomly 

resampling with replacement. The statistic of interest 

will be estimated according to these bootstrap samples. 

It has an advantage of a relatively high accuracy of the 

parameter estimation [23], especially for those small 

size samples. 

 

In addition to the focus on the FC between regions, the 

node metric, degree centrality (Dc), was also observed. 

Dc quantifies the importance or centrality of a node 

through the strength of connections to all of the other 

nodes in a weighted network. It has been adopted over 

other nodal centrality approaches because it has been 

proven to be more robust [24, 25]. 

 

In this study, for the first time, we explored the 

difference in FC and Dc constructed by the bootstrap 

method, between and within networks resulting from a 

hierarchical-clustering algorithm for the aMCI and 

normal subjects. In addition, we also investigated the 

relationship between the Mini Mental State 

Examination (MMSE) scores and FC as well as Dc. 
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RESULTS 
 

The three networks (DN, CN and AN) of both NC 

subjects and aMCI patients are shown in Figure 1A and 

1B, respectively. Figure 1C and 1D separately show the 

spatial distributions of the normal and patient groups. 

The green, red and blue regions express the DN, CN 

and AN, respectively. The number of overlapped 

regions between the networks obtained by the 

hierarchical-clustering algorithm and the task-defined 

networks were that 14 (14/16) for DN, 12 (12/14) for 

CN, and 13 (13/13) for AN in the normal group, and 16 

(16/16) for DN, 12 (12/14) for CN, and 12 (12/13) for 

AN in the patient group, respectively. The graphs were 

visualized with the BrainNet Viewer (http://www. 

nitrc.org/project/bnv/) [26]. Compared with the normal 

group, the patient group revealed that 3 regions 

(bilateral anterior insula (aINS) and the right 

dorsolateral prefrontal cortex (dlPFC)) shifted in their 

network affiliation and are marked with black circles in 

Figure 1D. Bilateral aINS shifted from DN to CN, and 

the right dlPFC belonging to CN transferred to AN.

 

 
 

Figure 1. Dendrogram of the hierarchical cluster analysis of the correlations and spatial distribution of the three networks. 
(A) and (B) separately represent the NC group and aMCI group, and the colors indicate the magnitude of correlation. (C) and (D) separately 
represent the NC group and aMCI group. The green, red and blue regions indicate the DN, CN and AN, respectively. 

http://www.nitrc.org/project/bnv/
http://www.nitrc.org/project/bnv/
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The mean FC values within the DN (P = 2.82 × 10-5) 

and CN (P = 2.98 × 10-2) showed significant increases 

in the patient group (Figure 2). For the internetwork 

pairs, significant changes were found in DN between 

CN (P = 5.31 × 10-5) and DN between AN (P = 1.97 × 

10-4) (Figure 2). The statistical comparison of pairwise 

FC is shown in Figure 3. In Figure 3A, the colored line 

indicates the T value, and the bar graph displays the 

statistical differences (false discovery rate (FDR) 

corrected) in FC between the two groups. 

 

The Dc values of the 6 regions were significantly 

increased in the patient group, and panels (A) and (B) of 

Figure 4 illustrate the T values and the significant 

alterations (Bonferroni corrected) between the two 

groups, respectively. 

 

The Dc of the left superior temporal sulcus (STS) was 

significantly (R = 0.3795, P = 0.0026) correlated with 

MMSE, as shown in Figure 5. Lower cognitive ability 

(lower MMSE scores) was significantly associated with 

a greater increase in the Dc of the left STS. No 

significant relationship between FC and MMSE was 

detected. 

 

DISCUSSION 
 

The mean FC strengths of the default and control 

networks were significantly increased in the aMCI 

patients and significantly grew between the DN and 

AN, DN and CN for the patients. Further research 

suggested that five stronger pairs of FC strength were 

discovered in the patient group (left posterior 

cingulated cortex (L.pCC) and left anterior temporal 

lobe (L.aTL), L.pCC and L.STS, right hippocampal 

formation (R.HF) and L.STS, left rostrolateral 

prefrontal cortex (L.rlPFC) and right superior frontal 

gyrus (R.SFG), left posterior inferior parietal lobule 

(L.pIPL) and right inferior precentral sulcus (R.iPCS)). 

Meanwhile, six regions (left anterior medial prefrontal 

cortex (L.amPFC), L.aTL, R.HF, L.pCC, L.pIPL, 

L.STS) located in the default network showed 

significantly higher Dc for the patients, and one of the 

regions (L.STS) displayed a significantly negative 

relationship with MMSE. 

 

Methodological improvements 
 

The hierarchical-clustering algorithm might be an 

optional way of classifying brain networks. It might 

be inappropriate to classify regions into different 

networks only according to previous research, 

neglecting the characteristics of a study’s own 

samples, such as age and health. For example, middle 

frontal gyrus (MFG) was defined as one region of DN 

across three subject groups (young controls, elderly 

controls and AD patients) [27], whereas MFG was 

determined to be one of the regions of CN during 

every condition (i.e., rest state and task state) [17]. A 

possible approach is to reorganize brain regions by 

utilizing the hierarchical-clustering algorithm. 

Meanwhile, it has been demonstrated that the 

hierarchical clustering method has a high accuracy for 

the analysis FC patterns [28]. The results obtained by 

these means were essentially in line with previous 

studies [17, 18, 29]. 

 

 
 

Figure 2. Comparisons of mean FC within- and internetwork. Patients and the normal persons are colored in Indian red and dark 
orchid, respectively. * P < 0.05 (uncorrected). 
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Spurious functional connections existing in fully 

connected correlation coefficient matrices must be 

removed to obtain a more realistic model. However, 

most scientists construct these matrices without any 

filtration. Of note, we also compared the two groups, as 

most researchers, but no significant differences (P = 

0.05, uncorrected) were found. Clearly, investigators are 

eager to discover even a slight difference between early 

patients and normal persons for the purpose of early 

diagnosis and treatment. The bootstrap method might be  

a feasible approach for exploring slight changes since it 

could retain weak but reliable functional connections. In 

the current study, for the first time, we adopted a 

bootstrap resampling procedure to dispose the fMRI

 

 
 

Figure 3. Comparisons of pairwise FC. (A) The colored line indicates the T values. (B) The bar graph displays statistical differences (FDR 
corrected) in FC between the two groups. 
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data of normal subjects and aMCI patients from the 

aspect of emphasizing the reliability of FC. Interesting, 

the significant difference (P < 0.05, FDR corrected) in 

FC with relatively low magnitude (mean FC < 0.2, as 

shown in Figure 3) of a single pair (left pIPL and right 

iPCS) was detected. The left pIPL and the right iPCS 

belonged to the default network and the attention 

network, respectively. The appearance of a change in 

FC between these two regions should be given attention 

because the relationship between the default network 

and the attention network is modulated by the control 

network in healthy persons, and is not correlated with 

 

 
 

Figure 4. Comparisons of Dc. (A) and (B) illustrate the T values and significant alterations (Bonferroni corrected) between the two groups, 
respectively. 

 

 
 

Figure 5. Relationship between Dc of the L.STS and MMSE. The patient group is indicated by the Indian red pentagrams and the 
normal group by dark orchid asterisks. 
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each other directly, according to a previous study [17]. 

The abnormal findings in FC between DN and AN in 

aMCI patients might be an early neuroimaging 

characteristic. However, this hypothesis needs more 

evidence to be proven. 

 

The functions of DN and its correlations with 

memory impairments in aMCI 
 

The main clinical feature of aMCI and AD patients is 

the impairment in the functions of cognition and 

memory, and these functions have a close relationship 

with the activity of the DN. To date, the impairment of 

the DN in aMCI patients has been confirmed, but the 

nature of this change is still under debate. Compared 

with the mean FC of the DN in normal persons, the 

value in MCI patients was increased [15], decreased [13, 

14], or unchanged [11]. These inconsistencies [11, 14] 

might derive from the spurious FC. Even though Li [13] 

set a threshold value for the correlation coefficient to 

eliminate the noise, the different stages of patients 

should be noted, according to the findings of Tao [30]. 

Judging only from the MMSE values in Table 1 of this 

article [30], our patients could roughly be determined to 

have mild aMCI, whereas their patients [13] had severe 

aMCI. Different variations in the mean FC of the 

default network for different stages of MCI patients 

should be addressed carefully. 

 

The higher mean FC of the default network in aMCI 

patients may reflect a compensatory mechanism. This 

mechanism often assumes that overactive regions are 

“working harder” to make up for functional declines 

elsewhere in the brain [31]. For example, the increased 

betweenness centrality of the left lingual gyrus 

represented a compensatory process for the reduced 

centrality in other regions [32]. However, the decreased 

FC of the default network in patients was not found in 

our results. On one hand, we speculated that the 

increased FC in patients at rest might be used to 

compensate the decreased FC during task. Of note, a 

higher mean FC of the default network in the rest state 

does not indicate better functions, such as episodic 

memory and autobiographical memory, during tasks. In 

contrast, it has been proven that higher FC is associated 

with poorer cognitive performance [33], and stronger 

compensation coupled with impairments suggests that a 

patient with worse MCI progresses to AD [34]. On the 

other hand, we hypothesized that this compensatory 

mechanism could alternatively be interpreted as the 

diminished ability of functional connectivity to decline. 

For normal controls, their great levels of deactivation, 

particularly in the default network during a nontask 

period, are associated with massive cognitive effort 

during tasks [35]. However, for aMCI patients, as the 

ability of FC to decline has decreased, the FC strength 

of patients is higher than that of normal controls, and 

the demanded cognitive energy is inadequate during 

tasks, ultimately resulting in poorer cognitive perfor-

mance. 

 

Conceptual meaning of Dc and its relationship with 

memory impairments in aMCI 
 

The Dc of a node is determined by the number and 

strength of functional connections and is adopted to 

indicate the relevance of this node for the information 

flow in the brain network [36, 37]. The greater the Dc, 

the more important it is. Higher Dc was found in 

patients, as shown in Figure 4, and the Dc of the left 

STS was inversely correlated with MMSE, as presented 

in Figure 5. The reason for the increased Dc of the DN 

in patients was probably to partially reorganize the brain 

for the adaptation of neurodegeneration. Furthermore, 

the high level of metabolism in the default network is 

conducive to the formation of pathology associated with 

AD [38]. 

 

Abnormal modulation between networks 
 

Early studies exploring MCI patients usually focused 

their attention on a single network, i.e., the default 

network, but we should always consider that functional 

connectivity works across multiple networks. This 

viewpoint has been proven in recent years, and the three 

networks (DN, CN, AN) are closely related to patients 

with MCI [39–41]. The CN also presented a higher 

mean FC in patients, possibly because the CN might 

flexibly mediate the default network in support of 

intrinsic activity during the resting state [18]. The mean 

FC of AN did not differ between the two groups, 

probably because of the strong anticorrelated and 

competitive relationship between DN and AN [38, 42]. 

 

Increases in mean FC between DN and CN and between 

DN and AN were detected in the patients, while there 

was no difference in the mean FC between CN and AN, 

as seen in Figure 2. The impairment between networks 

revealed that the default network plays a critical role as 

a bridge linking the other two networks. 

 

Limitation 
 

There are 3 issues in need of improvement. First, the 

sample problem. It is generally known that aMCI 

subjects are divided into mild, moderate, and severe 

stages. Finer classifications of patients would be very 

beneficial for us to comprehensively understand this 

disease. Second, the faultiness of network selection. As 

more and more studies have demonstrated that 

neurological disease is associated with not only the 

three networks we investigated but also other networks, 
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Table 1. Demographics and clinical data of the aMCI patients and the NC group. 

 aMCI NC P value 

Age (year) 73.60 ± 7.26 70.67 ± 7.00 0.099a 

Education (year) 12.28 ± 3.12 12.57 ± 3.08 0.707a 

Gender (M/F) 17/8 26/25 0.160b 

MMSE 27.52 ± 1.44 28.33 ± 1.34 0.019a 

Head motion 0.12 ± 0.07 0.11 ± 0.07 0.697a 

Data: mean ± standard deviation (SD) 
aThe P value was obtained by a two-sample two-tailed t test 
bThe P value was obtained by a two-tailed Pearson chi-square test 
 

such as the salience network and the sensorimotor 

network, more related networks should be involved in 

future studies. Third, a defect in the bootstrapping 

procedure. This method overemphasizes the reliability 

of the FC, but overlooks the number of edges. 

Specifically, a different number of edges could 

confound between-group comparisons [43]. 

 

CONCLUSIONS 
 

The novel finding of the present study is that for the 

first time, we explored the difference in FC and Dc 

constructed by the bootstrap method, between and 

within networks, resulting from a hierarchical-clustering 

algorithm for aMCI and normal subjects. Increases in 

mean FC within and between networks, FC between 

regions, and Dc were discovered in aMCI patients, 

indicating the early dysfunctions of this illness and this 

approach opens the doors for investigations into other 

brain diseases. 

 

MATERIALS AND METHODS 
 

Subjects 
 

Eighty-four volunteers were recruited in this study, 

including 27 aMCI and 57 NC subjects. The neurologic 

examination and neuropsychological measurements 

completed by neurologist and certified study 

psychometrists from Institute of Neurology, Huashan 

Hospital, Fudan University, Shanghai, China [44]. The 

criteria are based on the diagnostic criteria proposed by 

Petersen [45]: (1) memory complaints usually 

corroborated by an informant; (2) objective memory 

impairment for age; (3) essentially preserved general 

cognitive function; (4) largely intact functional 

activities; and (5) not demented [46]. The exclusion 

criteria were as follows: (1) a history of neurological or 

psychiatric or head injury; (2) current treatment with 

vasoactive or psychotropic medication; (3) any physical 

or intellectual disability; (4) any contraindication to 

MRI. All participants provided written consent. 

Ultimately, 25 aMCI and 51 NC persons were selected 

for the research study after excluding 8 subjects due to 

excessive head motion (see data preprocessing). Table 1 

shows the details of the clinical and demographic data 

of the remaining subjects in the two groups. 

 

Data acquisition 

 

The MRI scans were performed at the Shanghai Tongji 

Hospital, China, with a Siemens scanner. Foam padding 

and headphones were used to limit head motion and 

reduce scanner noise. fMRI data were acquired using 

echo planar imaging (EPI) with repetition time (TR) = 2 

s, echo time (TE) = 30 ms, flip angle (FA) = 90 °, 

matrix = 64 × 64, voxel size = 3.44 × 3.44 × 4.29 mm3, 

number of slices = 31, and slice thickness = 3.8 mm. 

T1-weighted anatomical images were scanned with the 

following parameters: TR = 2.53 s, TE = 2.34 ms, FA = 

7 °, inversion time (TI) = 1.1 s, and slice thickness = 1 

mm. During the fMRI scans, subjects were instructed to 

hold still, remain motionless, and think of nothing in 

particular. 

 

Data preprocessing 
 

All images were preprocessed using the Statistical 

Parametric Mapping (SPM12, http://www.fil.ion. 

ucl.ac.uk/spm/) software package and Data Processing 

and Analysis for (Resting-State) Brain Image (DPABI) 

[47]. The first five time points were discarded for signal 

equilibrium and the participants’ adaptation to the MRI 

scanning. The images were then slice time-corrected 

and realigned. Two aMCI patients and six NC persons 

were excluded due to excess head motion (rotation > 2 ° 

or translation > 2 mm [48]). T1-weighted images were 

subsequently coregistered to the mean functional 

images, followed by segmentation into gray matter 

(GM), white matter (WM) and cerebrospinal fluid 

(CSF) [49]. Each bad time point, defined as volumes 

with framewise displacement (FD) (Jenkinson) > 0.2 

mm, as well as volumes 2 forward and 1 back from 

these volumes, was included as a regressor [47, 50], 

after regressing out head motion effects from the 

realigned data using the Friston 24-parameter model 

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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Table 2. Anatomical regions and their abbreviations. 

Region Abbrev. Region Abbrev. 

Anterior medial prefrontal cortex amPFC Anterior temporal lobe aTL 

Dorsal medial prefrontal cortex dmPFC Hippocampal formation HF 

Inferior frontal gyrus IFG Posterior cingulated cortex pCC 

Posterior inferior parietal lobule pIPL Precuneus PCu 

Superior frontal gyrus SFG Superior temporal sulcus STS 

Temporal parietal junction TPJ Frontal eye fields FEF 

Ventral medial prefrontal cortex vmPFC Inferior precentral sulcus iPCS 

Middle temporal motion complex MT Superior occipital gyrus SOG 

Superior parietal lobule SPL Anterior insula aINS 

Anterior inferior parietal lobule aIPL Dorsolateral prefrontal cortex dlPFC 

Dorsal anterior cingulated cortex daCC Middle frontal gyrus BA6 MFG(BA6) 

Medial superior prefrontal cortex msPFC Middle frontal gyrus BA9 MFG(BA9) 

Rostrolateral prefrontal cortex rlPFC   

 

[51]. Additionally, WM and CSF signals were regressed 

out to reduce respiratory and cardiac effects, whereas 

the global signal was not regressed out due to the 

controversy that its removal would cause redistribution 

of correlation coefficients [52]. After that, temporal 

filtering (0.01 – 0.08 Hz) was applied to the time series 

to decrease the effects of low-frequency drifts and high-

frequency physiological noise. The functional volumes 

were spatially normalized to the Montreal Neurological 

Institute (MNI) space and resampled to 3-mm isotropic 

voxels. Finally, the functional images were spatially 

smoothed with a Gaussian kernel of 6 × 6 × 6 mm3 full 

width at half maximum (FWHM). 

 

Determining ROIs 
 

Forty-three ROIs defined by task-based activation in 

previous studies [18, 19] were selected in this research, 

and the radius of each region was 3 mm. Forty-three 

ROIs representing the core nodes of these three 

networks were derived from a previous study [17] in 

which the ROIs were isolated by a multivariate spatio-

temporal analysis of three tasks: autobiographical 

planning, visuospatial planning, and counting. In 

general, the autobiographical planning task involved 

internally directed cognition and engaged the default 

mode network, the visuospatial planning task involved 

externally directed cognition and engaged the dorsal 

attention network, and both planning tasks engaged the 

frontoparietal control network relative to counting task. 

It has been demonstrated that these task-defined 

networks showed similar topographical patterns to 

intrinsic connectivity networks identified using resting-

state fMRI [18, 19]. All nodes, anatomical labels and 

their abbreviations are listed in Table 2. The mean time 

series was estimated by averaging the time series of all 

voxels in their own regions. The FC matrices, also 

called correlation matrices, were obtained by calculating 

Pearson correlation coefficients of time series. In this 

study, we’d like to study the absolute variation in the 

FC and thus used the absolute values of both positive 

and negative correlations for the group comparison. 

Subsequently a mean correlation matrix was generated 

by averaging the correlation coefficient matrices of all 

participants in each group separately. Two mean 

correlation matrices, one for the aMCI group, and the 

other one for the normal group, were separately 

produced. Last, a hierarchical-clustering algorithm was 

separately applied to the two mean correlation matrices 

and divided the forty-three regions into three networks. 

The network was determined through visual inspections 

by the experienced radiologists. For a more precise 

definition of each network, we further explored the 

number of overlapped regions between the networks 

obtained by the hierarchical-clustering algorithm and 

the task-defined networks. 

 

Constructing FC and calculating Dc 

 

The reliable correlations were determined by 

implementing a bootstrapping procedure, similar to a 

previous study [17]. Resample over the correlation 

coefficients, constructing bootstrap samples. A bias-

corrected and accelerated percentile method was used to 

determine the 95% CI for each pair of correlation. A 

resampling rate of 10,000 was selected to ensure the 

reliability and stability of each CI estimate. The bias-

corrected and accelerated percentile method (BCa) is a 

kind of way of estimating confidence intervals of the 

parameter of interest, according to the bootstrap 

samples created though resampling with replacement. It 

has a relatively high accuracy of the parameter 

estimation [23], especially for the evaluation of a small 

size sample. Finally, the correlation coefficient value 

was preserved if it was located within the 95% CI of the 

mean functional connectivity strength, or was set to 
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zero if not. Five persons (four NC subjects and one 

aMCI patient) were discarded, because all their 

correlation coefficients were outside of the 95% CI, 

resulting in five 43*43 zero matrices. In total, 24 

patients and 47 normal subjects remained. A Fisher’s 

transformation was utilized to improve the normality of 

the correlation coefficients for every subject. The nodal 

parameter Dc was computed via a GRaph thEoreTical 

Network Analysis (GRETNA) toolbox [53]. 

 

Statistical analysis 
 

The statistical differences in the mean FC between and 

within networks were assessed using a two-sample two-

tailed t test, with a statistical significance level of P < 

0.05 (uncorrected). For the multiple comparisons in FC, 

a FDR corrected at a q value of 0.05 was utilized, while 

the multiple comparisons in Dc, a Bonferroni corrected 

was used. Multiple linear regression analyses were 

conducted to remove the confounding effects of age, 

gender, education, and relative Root-Mean Squared-FD. 

 

The relationships between MMSE scores and FC as 

well as Dc were also investigated via a correlation 

analysis, with a statistical significance level of P < 0.05 

(uncorrected) because these relationships were 

exploratory in nature. 

 

Abbreviations 
 

FC: functional connectivity; aMCI: amnestic mild 

cognitive impairment; fMRI: functional magnetic 

resonance imaging; ROI: regions of interest; Dc: degree 

centrality; DN: default-mode network; CN: control 

network; AN: attention network; MMSE: Mini Mental 

State Examination; FDR: false discovery rate; STS: 

superior temporal sulcus; AD: Alzheimer’s disease; 

BOLD: blood oxygen level-dependent; NC: normal 

control; PCu: precuneus; CI: confidence interval; EPI: 

echo planar imaging; TR: repetition time; TE: echo 

time; FA: flip angle; TI: inversion time; GM: gray 

matter; WM: white matter; CSF: cerebrospinal fluid; 

FD: framewise displace; MNI: Montreal Neurological 

Institute; FWHM: full width at half maximum; amPFC: 

anterior medial prefrontal cortex; dmPFC: dorsal medial 

prefrontal cortex; IFG: inferior frontal gyrus; pIPL: 

posterior inferior parietal lobule; SFG: superior frontal 

gyrus; TPJ: temporal parietal junction; vmPFC: ventral 

medial prefrontal cortex; MT: middle temporal motion 

complex; SPL: superior parietal lobule; aIPL: anterior 

inferior parietal lobule; daCC: dorsal anterior cingulated 

cortex; msPFC: medial superior prefrontal cortex; 

rlPFC: rostrolateral prefrontal cortex; aTL: anterior 

temporal lobe; HF: hippocampal formation; pCC: 

posterior cingulated cortex; FEF: frontal eye fields; 

iPCS: inferior precentral sulcus; SOG: superior occipital 

gyrus; aINS: anterior insula; dlPFC: dorsolateral 

prefrontal cortex; MFG(BA6): middle frontal gyrus 

BA6; MFG(BA9): middle frontal gyrus BA9. 

 

AUTHOR CONTRIBUTIONS 
 

Liang dealt with all image data and wrote most of this 

manuscript. Li made a contribution to the discussion. 

Liu, Zhang, Wang, Chu and Ye expressed different 

opinions from diverse aspects. Xi collected the original 

images. Zhao gave the idea of this paper, and revised 

this manuscript. 

 

ACKNOWLEDGMENTS 
 

We thank American Journal Experts (AJE) for the 

English language editing of this manuscript. 

 

CONFLICTS OF INTEREST 
 

The research was conducted in the absence of any 

commercial or financial relationships that could be 

construed as a potential conflicts of interest. 

 

FUNDING 
 

This study was funded by the Natural Science 

Foundation of China (grant number _61473196), and 

the Science and Technology Commission of Shanghai 

Municipality (grant number _18411970300), and the 

Health Industry Clinical Research of the Shanghai 

Health and Family Planning Committee (grant number 

_201840018), and in part by the Science Technology 

Department Program of Zhejiang Province (grant 

number _LGG18H180001), and in part by the National 

Science Foundation of China (grant number 

_81301200), and in part by the scientific research 

project of the Shanghai health and family planning 

committee (grant number _201740207), and in  

part by the academic leader training plan of Shanghai 

Pudong new area health system (grant number 

_PWRd2016-07). 

 

REFERENCES 
 

1. Dai Z, He Y. Disrupted structural and functional brain 
connectomes in mild cognitive impairment and 
Alzheimer’s disease. Neurosci Bull. 2014; 30:217–32. 

 https://doi.org/10.1007/s12264-013-1421-0 
 PMID:24733652 

2. Busse A, Hensel A, Gühne U, Angermeyer MC, Riedel-
Heller SG. Mild cognitive impairment: long-term course 
of four clinical subtypes. Neurology. 2006; 67:2176–85. 

 https://doi.org/10.1212/01.wnl.0000249117.23318.e1 
 PMID:17190940 

https://doi.org/10.1007/s12264-013-1421-0
https://www.ncbi.nlm.nih.gov/pubmed/24733652
https://doi.org/10.1212/01.wnl.0000249117.23318.e1
https://www.ncbi.nlm.nih.gov/pubmed/17190940


 

www.aging-us.com 5917 AGING 

3. Ishikawa T, Ikeda M. Mild cognitive impairment  
in a population-based epidemiological study. 
Psychogeriatrics. 2007; 7:104–08. 

 https://doi.org/10.1111/j.1479-8301.2007.00197.x 

4. Buschert VC, Friese U, Teipel SJ, Schneider P, Merensky 
W, Rujescu D, Möller HJ, Hampel H, Buerger K. Effects 
of a newly developed cognitive intervention in 
amnestic mild cognitive impairment and mild 
Alzheimer’s disease: a pilot study. J Alzheimers Dis. 
2011; 25:679–94. 

 https://doi.org/10.3233/JAD-2011-100999 
 PMID:21483095 

5. Belleville S, Clément F, Mellah S, Gilbert B, Fontaine F, 
Gauthier S. Training-related brain plasticity in subjects 
at risk of developing Alzheimer’s disease. Brain. 2011; 
134:1623–34. 

 https://doi.org/10.1093/brain/awr037 
 PMID:21427462 

6. Petersen RC, Roberts RO, Knopman DS, Boeve BF, 
Geda YE, Ivnik RJ, Smith GE, Jack CR Jr. Mild cognitive 
impairment: ten years later. Arch Neurol. 2009; 
66:1447–55. 

 https://doi.org/10.1001/archneurol.2009.266 
 PMID:20008648 

7. Sporns O. Contributions and challenges for network 
models in cognitive neuroscience. Nat Neurosci. 2014; 
17:652–60. 

 https://doi.org/10.1038/nn.3690 PMID:24686784 

8. Bressler SL, Menon V. Large-scale brain networks in 
cognition: emerging methods and principles. Trends 
Cogn Sci. 2010; 14:277–90. 

 https://doi.org/10.1016/j.tics.2010.04.004 
 PMID:20493761 

9. Fox MD, Raichle ME. Spontaneous fluctuations in brain 
activity observed with functional magnetic resonance 
imaging. Nat Rev Neurosci. 2007; 8:700–11. 

 https://doi.org/10.1038/nrn2201 
 PMID:17704812 

10. D’Amelio M, Rossini PM. Brain excitability and 
connectivity of neuronal assemblies in Alzheimer’s 
disease: from animal models to human findings. Prog 
Neurobiol. 2012; 99:42–60. 

 https://doi.org/10.1016/j.pneurobio.2012.07.001 
 PMID:22789698 

11. Wang L, Li H, Liang Y, Zhang J, Li X, Shu N, Wang YY, 
Zhang Z. Amnestic mild cognitive impairment: 
topological reorganization of the default-mode 
network. Radiology. 2013; 268:501–14. 

 https://doi.org/10.1148/radiol.13121573 
 PMID:23481166 

12. Cai S, Chong T, Peng Y, Shen W, Li J, von Deneen KM, 
Huang L, and Alzheimer’s Disease Neuroimaging 

Initiative. Altered functional brain networks in 
amnestic mild cognitive impairment: a resting-state 
fMRI study. Brain Imaging Behav. 2017; 11:619–31. 

 https://doi.org/10.1007/s11682-016-9539-0 
 PMID:26972578 

13. Li Y, Wang X, Li Y, Sun Y, Sheng C, Li H, Li X, Yu Y, Chen 
G, Hu X, Jing B, Wang D, Li K, et al. Abnormal resting-
state functional connectivity strength in mild cognitive 
impairment and its conversion to Alzheimer’s disease. 
Neural Plast. 2016; 2016:4680972. 

 https://doi.org/10.1155/2016/4680972 
 PMID:26843991 

14. Wang P, Zhou B, Yao H, Zhan Y, Zhang Z, Cui Y, Xu K, 
Ma J, Wang L, An N, Zhang X, Liu Y, Jiang T. Aberrant 
intra- and inter-network connectivity architectures in 
Alzheimer’s disease and mild cognitive impairment. Sci 
Rep. 2015; 5:14824. 

 https://doi.org/10.1038/srep14824 
 PMID:26439278 

15. Gardini S, Venneri A, Sambataro F, Cuetos F, Fasano F, 
Marchi M, Crisi G, Caffarra P. Increased functional 
connectivity in the default mode network in mild 
cognitive impairment: a maladaptive compensatory 
mechanism associated with poor semantic memory 
performance. J Alzheimers Dis. 2015; 45:457–70. 

 https://doi.org/10.3233/JAD-142547 
 PMID:25547636 

16. Binnewijzend MA, Schoonheim MM, Sanz-Arigita E, 
Wink AM, van der Flier WM, Tolboom N, Adriaanse 
SM, Damoiseaux JS, Scheltens P, van Berckel BN, 
Barkhof F. Resting-state fMRI changes in Alzheimer’s 
disease and mild cognitive impairment. Neurobiol 
Aging. 2012; 33:2018–28. 

 https://doi.org/10.1016/j.neurobiolaging.2011.07.003 
 PMID:21862179 

17. Spreng RN, Sepulcre J, Turner GR, Stevens WD, 
Schacter DL. Intrinsic architecture underlying the 
relations among the default, dorsal attention, and 
frontoparietal control networks of the human brain. J 
Cogn Neurosci. 2013; 25:74–86. 

 https://doi.org/10.1162/jocn_a_00281 
 PMID:22905821 

18. Spreng RN, Stevens WD, Chamberlain JP, Gilmore AW, 
Schacter DL. Default network activity, coupled with the 
frontoparietal control network, supports goal-directed 
cognition. Neuroimage. 2010; 53:303–17. 

 https://doi.org/10.1016/j.neuroimage.2010.06.016 
 PMID:20600998 

19. Spreng RN, Schacter DL. Default network modulation 
and large-scale network interactivity in healthy young 
and old adults. Cereb Cortex. 2012; 22:2610–21. 

 https://doi.org/10.1093/cercor/bhr339 
 PMID:22128194 

https://doi.org/10.1111/j.1479-8301.2007.00197.x
https://doi.org/10.3233/JAD-2011-100999
https://www.ncbi.nlm.nih.gov/pubmed/21483095
https://doi.org/10.1093/brain/awr037
https://www.ncbi.nlm.nih.gov/pubmed/21427462
https://doi.org/10.1001/archneurol.2009.266
https://www.ncbi.nlm.nih.gov/pubmed/20008648
https://doi.org/10.1038/nn.3690
https://www.ncbi.nlm.nih.gov/pubmed/24686784
https://doi.org/10.1016/j.tics.2010.04.004
https://www.ncbi.nlm.nih.gov/pubmed/20493761
https://doi.org/10.1038/nrn2201
https://www.ncbi.nlm.nih.gov/pubmed/17704812
https://doi.org/10.1016/j.pneurobio.2012.07.001
https://www.ncbi.nlm.nih.gov/pubmed/22789698
https://doi.org/10.1148/radiol.13121573
https://www.ncbi.nlm.nih.gov/pubmed/23481166
https://doi.org/10.1007/s11682-016-9539-0
https://www.ncbi.nlm.nih.gov/pubmed/26972578
https://doi.org/10.1155/2016/4680972
https://www.ncbi.nlm.nih.gov/pubmed/26843991
https://doi.org/10.1038/srep14824
https://www.ncbi.nlm.nih.gov/pubmed/26439278
https://doi.org/10.3233/JAD-142547
https://www.ncbi.nlm.nih.gov/pubmed/25547636
https://doi.org/10.1016/j.neurobiolaging.2011.07.003
https://www.ncbi.nlm.nih.gov/pubmed/21862179
https://doi.org/10.1162/jocn_a_00281
https://www.ncbi.nlm.nih.gov/pubmed/22905821
https://doi.org/10.1016/j.neuroimage.2010.06.016
https://www.ncbi.nlm.nih.gov/pubmed/20600998
https://doi.org/10.1093/cercor/bhr339
https://www.ncbi.nlm.nih.gov/pubmed/22128194


 

www.aging-us.com 5918 AGING 

20. Yi LY, Liang X, Liu DM, Sun B, Ying S, Yang DB, Li QB, 
Jiang CL, Han Y. Disrupted topological organization of 
resting-state functional brain network in subcortical 
vascular mild cognitive impairment. CNS Neurosci 
Ther. 2015; 21:846–54. 

 https://doi.org/10.1111/cns.12424 PMID:26257386 

21. Wee CY, Yap PT, Zhang D, Wang L, Shen D. Group-
constrained sparse fMRI connectivity modeling for mild 
cognitive impairment identification. Brain Struct Funct. 
2014; 219:641–56. 

 https://doi.org/10.1007/s00429-013-0524-8 
 PMID:23468090 

22. Efron B. 1977 Bootstrap method: another look at the 
jackknife. Ann Stat. 1979; 7:1–26. 

 https://doi.org/10.1214/aos/1176344552 
23. Efron B, Tibshirani R. Bootstrap methods for standard 

errors, confidence intervals, and other measures of 
statistical accuracy. Stat Sci. 1986; 1:54–75. 

 https://doi.org/10.1214/ss/1177013815 
24. Wang JH, Zuo XN, Gohel S, Milham MP, Biswal BB, He 

Y. Graph theoretical analysis of functional brain 
networks: test-retest evaluation on short- and long-
term resting-state functional MRI data. PLoS One. 
2011; 6:e21976. 

 https://doi.org/10.1371/journal.pone.0021976 
 PMID:21818285 

25. Cao H, Plichta MM, Schäfer A, Haddad L, Grimm O, 
Schneider M, Esslinger C, Kirsch P, Meyer-Lindenberg 
A, Tost H. Test-retest reliability of fMRI-based graph 
theoretical properties during working memory, 
emotion processing, and resting state. Neuroimage. 
2014; 84:888–900. 

 https://doi.org/10.1016/j.neuroimage.2013.09.013 
 PMID:24055506 

26. Xia M, Wang J, He Y. BrainNet Viewer: a network 
visualization tool for human brain connectomics. PLoS 
One. 2013; 8:e68910. 

 https://doi.org/10.1371/journal.pone.0068910 
 PMID:23861951 

27. Ciftçi K. Minimum spanning tree reflects the alterations 
of the default mode network during Alzheimer’s 
disease. Ann Biomed Eng. 2011; 39:1493–504. 

 https://doi.org/10.1007/s10439-011-0258-9 
 PMID:21286814 

28. Dixon ML, De La Vega A, Mills C, Andrews-Hanna J, 
Spreng RN, Cole MW, Christoff K. Heterogeneity within 
the frontoparietal control network and its relationship 
to the default and dorsal attention networks. Proc Natl 
Acad Sci USA. 2018; 115:E1598–607. 

 https://doi.org/10.1073/pnas.1715766115 
 PMID:29382744 

29. De Vogelaere F, Santens P, Achten E, Boon P, 
Vingerhoets G. Altered default-mode network 

activation in mild cognitive impairment compared with 
healthy aging. Neuroradiology. 2012; 54:1195–206. 

 https://doi.org/10.1007/s00234-012-1036-6 
 PMID:22527687 

30. Tao W, Li X, Zhang J, Chen Y, Ma C, Liu Z, Yang C, Wang 
W, Chen K, Wang J, Zhang Z. Inflection point in course 
of mild cognitive impairment: increased functional 
connectivity of default mode network. J Alzheimers 
Dis. 2017; 60:679–90. 

 https://doi.org/10.3233/JAD-170252 
 PMID:28869465 

31. Reuter-Lorenz PA, Cappell KA. Neurocognitive aging 
and the compensation hypothesis. Curr Dir Psychol Sci. 
2008; 17:177–82. 

 https://doi.org/10.1111/j.1467-8721.2008.00570.x 
32. Sun Y, Yin Q, Fang R, Yan X, Wang Y, Bezerianos A, Tang 

H, Miao F, Sun J. Disrupted functional brain 
connectivity and its association to structural 
connectivity in amnestic mild cognitive impairment 
and Alzheimer’s disease. PLoS One. 2014; 9:e96505. 

 https://doi.org/10.1371/journal.pone.0096505 
 PMID:24806295 

33. Grady CL, Protzner AB, Kovacevic N, Strother SC, 
Afshin-Pour B, Wojtowicz M, Anderson JA, Churchill N, 
McIntosh AR. A multivariate analysis of age-related 
differences in default mode and task-positive networks 
across multiple cognitive domains. Cereb Cortex. 2010; 
20:1432–47. 

 https://doi.org/10.1093/cercor/bhp207 
 PMID:19789183 

34. Wang Z, Liang P, Jia X, Jin G, Song H, Han Y, Lu J, Li K. 
The baseline and longitudinal changes of PCC 
connectivity in mild cognitive impairment: a combined 
structure and resting-state fMRI study. PLoS One. 
2012; 7:e36838. 

 https://doi.org/10.1371/journal.pone.0036838 
 PMID:22629335 

35. Persson J, Lustig C, Nelson JK, Reuter-Lorenz PA. Age 
differences in deactivation: a link to cognitive control? 
J Cogn Neurosci. 2007; 19:1021–32. 

 https://doi.org/10.1162/jocn.2007.19.6.1021 
 PMID:17536972 

36. Sato JR, Biazoli CE Jr, Moura LM, Crossley N, Zugman 
A, Picon FA, Hoexter MQ, Amaro E Jr, Miguel EC, 
Rohde LA, Bressan RA, Jackowski AP. Association 
between fractional amplitude of low-frequency 
spontaneous fluctuation and degree centrality in 
children and adolescents. Brain Connect. 2019; 
9:379–87. 

 https://doi.org/10.1089/brain.2018.0628 
 PMID:30880423 

37. Liao XH, Xia MR, Xu T, Dai ZJ, Cao XY, Niu HJ, Zuo XN, 
Zang YF, He Y. Functional brain hubs and their test-

https://doi.org/10.1111/cns.12424
https://www.ncbi.nlm.nih.gov/pubmed/26257386
https://doi.org/10.1007/s00429-013-0524-8
https://www.ncbi.nlm.nih.gov/pubmed/23468090
https://doi.org/10.1214/aos/1176344552
https://doi.org/10.1214/ss/1177013815
https://doi.org/10.1371/journal.pone.0021976
https://www.ncbi.nlm.nih.gov/pubmed/21818285
https://doi.org/10.1016/j.neuroimage.2013.09.013
https://www.ncbi.nlm.nih.gov/pubmed/24055506
https://doi.org/10.1371/journal.pone.0068910
https://www.ncbi.nlm.nih.gov/pubmed/23861951
https://doi.org/10.1007/s10439-011-0258-9
https://www.ncbi.nlm.nih.gov/pubmed/21286814
https://doi.org/10.1073/pnas.1715766115
https://www.ncbi.nlm.nih.gov/pubmed/29382744
https://doi.org/10.1007/s00234-012-1036-6
https://www.ncbi.nlm.nih.gov/pubmed/22527687
https://doi.org/10.3233/JAD-170252
https://www.ncbi.nlm.nih.gov/pubmed/28869465
https://doi.org/10.1111/j.1467-8721.2008.00570.x
https://doi.org/10.1371/journal.pone.0096505
https://www.ncbi.nlm.nih.gov/pubmed/24806295
https://doi.org/10.1093/cercor/bhp207
https://www.ncbi.nlm.nih.gov/pubmed/19789183
https://doi.org/10.1371/journal.pone.0036838
https://www.ncbi.nlm.nih.gov/pubmed/22629335
https://doi.org/10.1162/jocn.2007.19.6.1021
https://www.ncbi.nlm.nih.gov/pubmed/17536972
https://doi.org/10.1089/brain.2018.0628
https://www.ncbi.nlm.nih.gov/pubmed/30880423


 

www.aging-us.com 5919 AGING 

retest reliability: a multiband resting-state functional 
MRI study. Neuroimage. 2013; 83:969–82. 

 https://doi.org/10.1016/j.neuroimage.2013.07.058 
 PMID:23899725 

38. Buckner RL, Andrews-Hanna JR, Schacter DL. The 
brain’s default network: anatomy, function,  
and relevance to disease. Ann N Y Acad Sci. 2008; 
1124:1–38. 

 https://doi.org/10.1196/annals.1440.011 
 PMID:18400922 

39. Smallwood J, Brown K, Baird B, Schooler JW. 
Cooperation between the default mode network and 
the frontal-parietal network in the production of an 
internal train of thought. Brain Res. 2012; 1428:60–70. 

 https://doi.org/10.1016/j.brainres.2011.03.072 
 PMID:21466793 

40. Sullivan MD, Anderson JA, Turner GR, Spreng RN, and 
Alzheimer’s Disease Neuroimaging Initiative. Intrinsic 
neurocognitive network connectivity differences 
between normal aging and mild cognitive impairment 
are associated with cognitive status and age. Neurobiol 
Aging. 2019; 73:219–28. 

 https://doi.org/10.1016/j.neurobiolaging.2018.10.001 
 PMID:30391818 

41. Sha Z, Wager TD, Mechelli A, He Y. Common dysfunction 
of large-scale neurocognitive networks across 
psychiatric disorders. Biol Psychiatry. 2019; 85:379–88. 

 https://doi.org/10.1016/j.biopsych.2018.11.011 
 PMID:30612699 

42. Esposito R, Cieri F, Chiacchiaretta P, Cera N, Lauriola M, 
Di Giannantonio M, Tartaro A, Ferretti A. Modifications 
in resting state functional anticorrelation between 
default mode network and dorsal attention network: 
comparison among young adults, healthy elders and 
mild cognitive impairment patients. Brain Imaging 
Behav. 2018; 12:127–41. 

 https://doi.org/10.1007/s11682-017-9686-y 
 PMID:28176262 

43. van Wijk BC, Stam CJ, Daffertshofer A. Comparing brain 
networks of different size and connectivity density 
using graph theory. PLoS One. 2010; 5:e13701. 

 https://doi.org/10.1371/journal.pone.0013701 
 PMID:21060892 

44. Ding D, Zhao Q, Guo Q, Meng H, Wang B, Luo J, 
Mortimer JA, Borenstein AR, Hong Z. Prevalence of 
mild cognitive impairment in an urban community in 
China: a cross-sectional analysis of the Shanghai Aging 
Study. Alzheimers Dement. 2015; 11:300–9.e2. 

 https://doi.org/10.1016/j.jalz.2013.11.002 
 PMID:24613707 

45. Petersen RC. Mild cognitive impairment as a diagnostic 
entity. J Intern Med. 2004; 256:183–94. 

 https://doi.org/10.1111/j.1365-2796.2004.01388.x 
 PMID:15324362 

46. McKhann GM, Knopman DS, Chertkow H, Hyman BT, 
Jack CR Jr, Kawas CH, Klunk WE, Koroshetz WJ, Manly 
JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, et al. 
The diagnosis of dementia due to Alzheimer’s disease: 
recommendations from the National Institute on 
Aging-Alzheimer’s Association workgroups on 
diagnostic guidelines for Alzheimer’s disease. 
Alzheimers Dement. 2011; 7:263–69. 

 https://doi.org/10.1016/j.jalz.2011.03.005 
 PMID:21514250 

47. Yan CG, Wang XD, Zuo XN, Zang YF. DPABI: data 
processing & analysis for (resting-state) brain imaging. 
Neuroinformatics. 2016; 14:339–51. 

 https://doi.org/10.1007/s12021-016-9299-4 
 PMID:27075850 

48. Li M, Das T, Deng W, Wang Q, Li Y, Zhao L, Ma X, Wang 
Y, Yu H, Li X, Meng Y, Palaniyappan L, Li T. Clinical utility 
of a short resting-state MRI scan in differentiating 
bipolar from unipolar depression. Acta Psychiatr Scand. 
2017; 136:288–99. 

 https://doi.org/10.1111/acps.12752 
 PMID:28504840 

49. Ashburner J, Friston KJ. Unified segmentation. 
Neuroimage. 2005; 26:839–51. 

 https://doi.org/10.1016/j.neuroimage.2005.02.018 
 PMID:15955494 

50. Jenkinson M, Bannister P, Brady M, Smith S. Improved 
optimization for the robust and accurate linear 
registration and motion correction of brain images. 
Neuroimage. 2002; 17:825–41. 

 https://doi.org/10.1006/nimg.2002.1132 
 PMID:12377157 

51. Friston KJ, Williams S, Howard R, Frackowiak RS, Turner 
R. Movement-related effects in fMRI time-series. Magn 
Reson Med. 1996; 35:346–55. 

 https://doi.org/10.1002/mrm.1910350312 
 PMID:8699946 

52. Murphy K, Birn RM, Handwerker DA, Jones TB, 
Bandettini PA. The impact of global signal regression 
on resting state correlations: are anti-correlated 
networks introduced? Neuroimage. 2009; 44:893–905. 

 https://doi.org/10.1016/j.neuroimage.2008.09.036 
 PMID:18976716 

53. Wang J, Wang X, Xia M, Liao X, Evans A, He Y. GRETNA: 
a graph theoretical network analysis toolbox for 
imaging connectomics. Front Hum Neurosci. 2015; 
9:386. 

 https://doi.org/10.3389/fnhum.2015.00386 
 PMID:26175682 

https://doi.org/10.1016/j.neuroimage.2013.07.058
https://www.ncbi.nlm.nih.gov/pubmed/23899725
https://doi.org/10.1196/annals.1440.011
https://www.ncbi.nlm.nih.gov/pubmed/18400922
https://doi.org/10.1016/j.brainres.2011.03.072
https://www.ncbi.nlm.nih.gov/pubmed/21466793
https://doi.org/10.1016/j.neurobiolaging.2018.10.001
https://www.ncbi.nlm.nih.gov/pubmed/30391818
https://doi.org/10.1016/j.biopsych.2018.11.011
https://www.ncbi.nlm.nih.gov/pubmed/30612699
https://doi.org/10.1007/s11682-017-9686-y
https://www.ncbi.nlm.nih.gov/pubmed/28176262
https://doi.org/10.1371/journal.pone.0013701
https://www.ncbi.nlm.nih.gov/pubmed/21060892
https://doi.org/10.1016/j.jalz.2013.11.002
https://www.ncbi.nlm.nih.gov/pubmed/24613707
https://doi.org/10.1111/j.1365-2796.2004.01388.x
https://www.ncbi.nlm.nih.gov/pubmed/15324362
https://doi.org/10.1016/j.jalz.2011.03.005
https://www.ncbi.nlm.nih.gov/pubmed/21514250
https://doi.org/10.1007/s12021-016-9299-4
https://www.ncbi.nlm.nih.gov/pubmed/27075850
https://doi.org/10.1111/acps.12752
https://www.ncbi.nlm.nih.gov/pubmed/28504840
https://doi.org/10.1016/j.neuroimage.2005.02.018
https://www.ncbi.nlm.nih.gov/pubmed/15955494
https://doi.org/10.1006/nimg.2002.1132
https://www.ncbi.nlm.nih.gov/pubmed/12377157
https://doi.org/10.1002/mrm.1910350312
https://www.ncbi.nlm.nih.gov/pubmed/8699946
https://doi.org/10.1016/j.neuroimage.2008.09.036
https://www.ncbi.nlm.nih.gov/pubmed/18976716
https://doi.org/10.3389/fnhum.2015.00386
https://www.ncbi.nlm.nih.gov/pubmed/26175682

