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The nucleotidyl cyclase ExoY is an effector protein of the type III secretion

system of Pseudomonas aeruginosa. We compared the cyclic nucleotide pro-

duction and lung disease phenotypes caused by the ExoY-overexpressing

strain PA103DexoUexoT::Tc pUCPexoY, its vector control strain PA103DexoUex-
oT::Tc pUCP18, its loss-of-function control PA103DexoUexoT::Tc pUCPexoY
K81M and natural ExoY-positive and ExoY-negative isolates in a murine

acute airway infection model. Only the P. aeruginosa carrier of the exoY-
plasmid produced high levels of cUMP and caused the most severe course

of infection. The pathology ascribed to ExoY from studies using the high-

copy-number plasmid on mammalian cells in vitro and in vivo was not

observed with natural P. aeruginosa isolates. This indicates that the role of

ExoY during infection with real-life P. aeruginosa still needs to be resolved.
1. Introduction
The type III secretion system (T3SS) of Pseudomonas aeruginosa enables the

bacterium to inject the T3SS-associated effector proteins ExoS, ExoT, ExoU

and ExoY directly into host cells via a needle-like structure [1]. In most cases,

functional expression of ExoS and ExoU is mutually exclusive [2]. Both ExoS

and ExoT—sharing the highest homology out of the four known T3SS

enzymes—exhibit ADP-ribosyltransferase activity, interfering with manifold

signalling pathways in the host cell, such as the Ras-signal transduction

[2–5]. By contrast, ExoU causes direct cytotoxic effects on host cells by its phos-

pholipase A2 activity [6]. While ExoS, ExoT and ExoU are well established

virulence factors of P. aeruginosa, little is known about the role of ExoY

during P. aeruginosa infection.

The effector protein ExoY was originally described as an adenylyl cyclase

with structural similarities to the bacterial cyclases CyaA from Bordetella pertus-
sis and oedema factor (EF) from Bacillus anthracis [7], having no significant

impact on cytotoxicity in vitro, which led to the persisting evaluation of the exo-

toxin as having no clinical relevance [8,9]. Contrary to this, several recent

studies have been published on a P. aeruginosa mutant bearing an additional

plasmid coding for exoY (PA103DexoUexoT::Tc pUCPexoY) [7]. In these studies,

a distinct phenotype of cells or animals infected with the ExoY-overexpressing

mutant could be demonstrated [10–13].

ExoY synthesizes numerous cNMPs [14–16]. cUMP turned out to be the

most prominent cyclic nucleotide generated in the lungs of mice infected
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Table 1. Bacterial strains.

strain
strain
designation source virulence

T3SS-
effectors ExoY

PA103DexoUexoT::Tc pUCPexoY ExoY genetically engineered [7]
pp

—
p

PA103DexoUexoT::Tc pUCPexoY K81M ExoYK81M genetically engineered [7] — —
p

(loss-of-function mutation

at position K81)

PA103DexoUexoT::Tc pUCP18

(vector control strain)

DExoY genetically engineered [7] — — —

B420 B420 river [20] — — —

PT22 PT22 river [21]
p p p
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with ExoY expressing P. aeruginosa [15]. In the infected lungs,

the accumulated cUMP leaked into the extracellular compart-

ments [15], where it induced chemotaxis or metabolic

responses. cUMP is known to be transported across the

plasma membrane by multidrug resistance protein (MRP)

4/5 [15,17] which probably led to the appearance of cUMP

in sera, urine and faeces of these infected mice [15].

ExoY is an obligatory effector of all T3SS in P. aeruginosa,

but ExoS and ExoU are almost mutually exclusive so that the

P. aeruginosa population is currently differentiated into a

major ExoS-positive clade, a minor ExoU-positive clade and

a minute T3SS-negative clade [18,19]. In this study, we com-

pared the cNMP levels and lung disease of mice that were

infected with T3SS-negative or T3SS-positive P. aeruginosa
isolates [20,21] with those infected with the engineered

P. aeruginosa PA103 strains PA103DexoUexoT::Tc pUCPexoY,

PA103DexoUexoT::Tc pUCPexoY K81M and PA103DexoUex-
oT::Tc pUCP18 carrying plasmids with exoY wild-type

sequence, the loss-of-function mutation K81M exoY and the

empty plasmid, respectively. The latter three strains have

been used in the literature to dissect the function of ExoY

in the absence of other T3SS effectors, but the side-by-side

comparison with natural isolates has not yet been performed

although this direct comparison provides a clue about the

physiological relevance of phenotypes generated by a

recombinant strain carrying multiple copies of exoY in trans.
2. Material and methods
2.1. Cultivation of bacteria
Bacterial stocks (80% Luria Bertani (LB) broth/20% glycerol)

were stored at 2808C. For experiments the recombinant

P. aeruginosa strains PA103DexoUexoT::Tc pUCPexoY hereafter

designated ‘ExoY’, PA103DexoUexoT::Tc pUCPexoY K81M

designated ‘ExoYK81M’ and PA103DexoUexoT::Tc pUCP18

designated ‘DExoY’ [5] were streaked on Vogel Bonner

medium plates containing 400 mg ml21 carbenicillin and

incubated at 378C overnight. The next day, a large loopful

of bacteria was suspended in PBS and the number of

colony forming units (cfu) ml21 determined by measuring

the optical density with the UV-160A spectrophotometer,

OD540 ¼ 0.25 ¼ 2�108 cfu ml21. The environmental isolates

B420 and PT22 [20,21] were cultivated at 378C in LB for

14 h, harvested by centrifugation, washed with PBS and

adjusted to their final density extrapolated from a standard
growth curve. The factors of dilution were calculated from

growth curves that had been recorded in prior experiments.

A short description of all bacterial strains used in the study

is listed table 1.

2.2. DNA preparation
For preparation of genomic DNA, strains ExoY and ExoYK81M

were washed from VB plates containing carbenicillin in a

total volume of 5 ml PBS and pelleted by centrifugation;

5 ml liquid cultures of strains B420 and PT22 were pelleted

as well. DNA was then prepared from bacterial cells follow-

ing standard procedures which had been optimized for

Gram-negative bacteria [22].

2.3. ExoY real-time PCR
Multiwell PCR (StepOnePlus, Applied Biosystems) was

performed with 1 ng genomic DNA per well, 50 nM primer

solution (50-GGA CGG ATT CTA TGG CAG GG-30, 50-CGT

CGC TGT GGT GAA ACA TC-30), 7 ml H2O and 10 ml

Power SYBR Green PCR Master Mix (Life Technologies,

Delhi, India). The exoY copy number was determined by

comparison with a dilution series of the exoY-plasmid

(pET16bexoYwt; Novagen/Merck KgaA, Darmstadt,

Germany) and normalized to the Ct-value of the hydrogen
cyanide synthase subunit (hcnB) gene located adjacent to exoY
in the P. aeruginosa genome.

2.4. Murine airway infection model
Eight- to 10-week-old female C57BL/6 J mice (Janvier,

Germany) were maintained in the animal facility of Hann-

over Medical School in microisolator cages with filter top

lids at 21+ 28C, 50+5% humidity and a 14 L : 10 D cycle.

They were supplied with autoclaved, acidulated water and

fed ad libitum with autoclaved standard diet. Prior to

infection mice were anaesthetized (5 mg midazolam kg21

and 100 mg ketamine kg21) intraperitoneally and to reduce

anaesthesia-induced salivation each animal received atropine

(dose: 1 mg per animal) subcutaneously half an hour before.

Bacteria were adjusted to 106 cfu and in a volume of 50 ml

PBS instilled intratracheally (i.t.) to the mice lungs as

described previously [23]. For the determination of the

actual dosage, serial inoculates were plated on LB agar

plates. Mice were sacrificed by an overdose of anaesthetic

0–72 h post-infection. Blood was taken by puncture of the
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Figure 1. Copy number of exoY in P. aeruginosa B420, PT22 and the recom-
binant PA103 ExoY and K81M. Copy number of exoY (PA2191, PAO1 genome
coordinates 2410344 – 2411480) was determined from three independent
preparations of genomic DNA by real-time PCR and normalized to the signals
of the first DNA preparation of strain PT22 and of the adjacent hcnB gene
(PA2194, coordinates 2412857 – 2414251). For better discrimination of low
and high copy numbers of exoY in natural and genetically engineered strains
y-axis was interrupted.
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2.5. Disease score, temperature, body weight
and lung score

During infection mice were monitored regularly for 72 h (4, 6,

8, 10, 12, 24, 48, 72 h) by rectal temperature and body weight.

The overall health was assessed by a multiparametric disease

score as described before [23]. In brief, vocalization, piloerec-

tion, posture, locomotion, breathing, curiosity, nasal

secretion, grooming and dehydration were recorded and dys-

functions determined by 0, 1 or 2 points. Adding these points

resulted in the following score: unaffected (0–1); slightly

affected (2–4); moderately affected (5–7); severely affected

(8–10); moribund (greater than or equal to 11). Inflammation

in infected lungs was assessed using a semi quantitative

pathohistological score. Shortly, lung histological changes

were scored on a scale from 0 to 2 points (no pathologic

alteration ¼ 0, mild pathologic changes ¼ 1, severe patholo-

gic changes ¼ 2). Points were given separately for

macroscopic evaluation of the lung tissue (visual anomalies

as haemorrhage, atelectasis, 0–2), thoracic bleeding (0–1)

and BALF (content of blood, 0–2) and microscopic analyses

of lung tissue (oedema, apoptosis and inflammatory influx,

0–2) yielding a sum score ranging from 0 to 7.
2.6. Histology
For histology, lungs from mice sacrificed 2, 12 and 72 h after

infection, were fixed with 4% formalin (v/v) and embedded

in paraffin. The paraffin blocks were cut into 4 mm slices and

stained with haematoxylin/eosin (Merck, Darmstadt,

Germany). Microphotographs were performed using a Zeiss

AxioVert 200M microscope and a Zeiss Axio Scan.X1 scan-

ner. Exemplarily, micrographs of each group are presented

in figure 2b or c.
2.7. Mass spectrometry
Tissues (50–200 mg) were transferred to 2 ml FastPrep vials

containing 200 mg garnet matrix and one 1
4-inch ceramic

sphere (lysing matrix A). Eight hundred microlitres of organic

extraction solvent (70/30 ethanol/water [v/v] containing

12.5 ng ml21 of the internal standard tenofovir) were added

and tissue was homogenized using a FastPrep-24 system (MP

Biomedicals, Santa Anna, CA) at a speed of 5 m s21 for 60 s.

Phosphodiesterases were inactivated by heating the homogen-

ate for 15 min at 958C. After centrifugation (20 800g, 10 min,

48C), 600 ml of the supernatant fluid were dried at 408C
under a gentle nitrogen stream. The residual pellet was dis-

solved in 150 ml water and analysed by HPLC-MS/MS as

described earlier [16,24–27]. Chromatographic data were col-

lected and analysed with ANALYST 1.5.1 software (ABSCIEX).

The LLOQ for standard cAMP was 0.04 pmol per sample, for

standard cGMP 0.07 pmol per sample, for standard cCMP

0.07 pmol per sample, and for standard cUMP 0.4 pmol per

sample [25].
2.8. Statistics
Data are presented as means+ s.e.m. of n ¼ 6 animals

(animal studies) or based on three to four independent exper-

iments performed in technical duplicates. GraphPad PRISM

7.0 (San Diego, CA, USA) was used for calculation of

means and s.e.m.
3. Results
3.1. ExoY copy numbers
We hypothesized that the discordant literature reports on ExoY-

mediated phenotypes [8,9,11,13] may be ascribed to the different

copy numbers of the exoY gene in natural P. aeruginosa isolates

and the recombinant P. aeruginosa PA103 strain carrying exoY
on a plasmid and deletions of the exoU and exoT T3SS effector

genes on the chromosome. Quantitative real-time PCR revealed

as expected single to two copies of exoY in the sequenced T3SS-

positive P. aeruginosa strain PT22 [21] and no exoY signal in the

T3SS-negative strain B420 [20] (figure 1). Conversely, the recom-

binant PA103 carriers of the exoY-plasmid were harbouring

dozens of exoY genes in their cells whereby the plasmid copy

number was higher for the functionless ExoYK81M mutant than

for the functional ExoY mutant (figure 1).

3.2. Acute murine Pseudomonas aeruginosa airway
infection

Having determined a non-physiologically high copy number

of exoY in the PA103 recombinants that have been used to

explore the pathogenicity of ExoY in infection models, we

next compared the course of an acute airway infection in

C57BL/6 J mice that received 106 cfu of either B420, PT22,

ExoY, ExoYK81M or DExoY bacteria by intratracheal instilla-

tion. All mice experienced a loss of body weight and a

drop of rectal temperature within the first few hours and

developed clinical signs of disease, but the recipients of

B420, PT22, ExoYK81M or DExoY bacteria recovered thereafter
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Figure 2. Phenotype of infected mice. (a) Decrease in body temperature and body weight, disease score and lung score of infected mice 0 – 72 h post-infection.
Bars represent the mean+ s.e.m. of n ¼ 6 animals after infection with 106 cfu per mouse. (b) Representative micrographs of lung tissue using H/E staining.
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(figure 2a). The ExoY recipients, however, continuously dete-

riorated during the observation period of 72 h. Lung

histology revealed a similar outcome (figure 2b). Twelve

hours after the instillation of bacteria inflammatory cells

had emigrated into the lungs of all mice irrespective of the

inoculated P. aeruginosa strain. By 72 h the number of inflam-

matory cells had declined in recipients of B420, PT22,

ExoYK81M or DExoY bacteria, whereas cellular infiltration

and inflammation had increased in mice which had received

the ExoY recombinant strain. These data demonstrate that the

absence or presence of a single T3SS operon did not signifi-

cantly affect the course of the acute airways infection in our

murine model, but that a high copy number of plasmid-

borne exoY despite the absence of exoU and exoT is sufficient

to induce a substantially more severe course of local and

systemic infection.

3.3. Concentrations of cNMPs in lung tissue and serum
of infected mice

ExoY is a promiscuous nucleotidyl cylase that synthesizes

numerous cNMPs including the previously undescribed
cUMP. We measured cNMP concentrations in lung tissue

and serum during the acute murine airway infection with

P. aeruginosa. Fluctuating levels of cAMP were recorded in

all mice demonstrating that the production of cAMP was

not influenced by the absence or presence of a T3SS operon

or of a functional ExoY (figure 3). Some cGMP and cCMP

were detectable in lungs of ExoYK81M recipients ruling out

that these cyclic nucleotides had been synthesized by ExoY.

By contrast, high cUMP levels in both lungs and sera were

exclusively measured in samples from mice that had been

infected with the P. aeruginosa carrier of the exoY-plasmid.

Thus neither the murine host nor P. aeruginosa chromo-

some-derived gene products but plasmid-borne ExoY had

synthesized cUMP in the infected animals.
4. Discussion
The ExoY-overexpressing recombinant P. aeruginosa strains

ExoY and its loss-of-function control ExoYK81M have been

used as informative tools to resolve the action of the exotoxin

on mammalian cells in vitro and in vivo. Thereby ExoY was

identified to be a promiscuous cyclase that synthesizes
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preferentially cUMP and cGMP in vitro [14], and mainly

cUMP in vivo [15]. ExoY intoxication has been shown to

hinder vascular repair following infection [11], to induce

intercellular gap formation and to stimulate endothelial cell

tau hyperphosphorylation and insolubility [10,11,13]. Hence

ExoY may drive a proteinopathy of the endothelium in the

infected host [13].

The outcome of this study does not contradict these find-

ings on the action of the exotoxin ExoY. However, our data

demonstrate that the recombinant PA103 strain is strongly

overexpressing ExoY thanks to the presence of multiple

copies of exoY in extrachromosomal plasmids. The engin-

eered ExoY strain caused substantial morbidity and

pathology in our murine infection model, but no difference

in phenotype was seen between the ExoY-positive PT22, the

ExoY negative B420, the ExoY knock-out ExoYK81M and

the vector-negative control DExoY. Our findings demonstrate

that the reported [10,11,13] severe infectious phenotypes are

caused by multi-copy plasmid-borne exoY. Thus the role of

ExoY during infection with real-life P. aeruginosa remains

elusive. ExoY may indeed be an exotoxin that stimulates an

infectious proteinopathy, but up to now this phenotype has

not been detected by the commonly applied infection

models with natural P. aeruginosa strains. However, it must

be kept in mind that these infection models focus on the

role of ExoY in acute infections, whereas chronic infection

models may uncover some specific ExoY-associated pathol-

ogy. But at present we would like to conclude that earlier

statements are still valid—that wild-type concentrations of
ExoY ‘have little effect on virulence and cytotoxicity’ [8]. It

remains to be seen whether the F-actin mediated stimulation

of ExoY activity observed in vitro [28] under certain conditions

translates in vivo.
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