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Several cortical regions are reported to vary in meditation practitioners. However, prior
analyses have focused primarily on examining gray matter or cortical thickness.Thus, addi-
tional effects with respect to other cortical features might have remained undetected.
Gyrification (the pattern and degree of cortical folding) is an important cerebral character-
istic related to the geometry of the brain’s surface. Thus, exploring cortical gyrification in
long-term meditators may provide additional clues with respect to the underlying anatom-
ical correlates of meditation. This study examined cortical gyrification in a large sample
(n = 100) of meditators and controls, carefully matched for sex and age. Cortical gyrification
was established by calculating mean curvature across thousands of vertices on individual
cortical surface models. Pronounced group differences indicating larger gyrification in med-
itators were evident within the left precentral gyrus, right fusiform gyrus, right cuneus, as
well as left and right anterior dorsal insula (the latter representing the global significance
maximum). Positive correlations between gyrification and the number of meditation years
were similarly pronounced in the right anterior dorsal insula. Although the exact functional
implications of larger cortical gyrification remain to be established, these findings suggest
the insula to be a key structure involved in aspects of meditation. For example, variations
in insular complexity could affect the regulation of well-known distractions in the process
of meditation, such as daydreaming, mind-wandering, and projections into past or future.
Moreover, given that meditators are masters in introspection, awareness, and emotional
control, increased insular gyrification may reflect an integration of autonomic, affective,
and cognitive processes. Due to the cross-sectional nature of this study, further research
is necessary to determine the relative contribution of nature and nurture to links between
cortical gyrification and meditation.
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INTRODUCTION
Various brain regions have been reported to be anatomically dif-
ferent between meditators and controls, to show associations with
the amount of meditation practice, and/or to change as a conse-
quence of meditation exercises (Lazar et al., 2005; Pagnoni and
Cekic, 2007; Holzel et al., 2008, 2010; Vestergaard-Poulsen et al.,
2008; Luders et al., 2009, 2011a,b; Grant et al., 2010; Tang et al.,
2010). Many of these aforementioned effects were evident across
the lateral and medial surfaces of the cortex as well as buried
beneath it (e.g., within the insula) suggesting the cerebral cortex
to be heavily involved in processes related to meditation. Given
that most prior analyses have focused on examining gray matter
(GM) attributes (including cortical thickness), effects with respect
to other cortical features might have remained undetected. Gyrifi-
cation (the pattern and degree of cortical folding) is an important
cerebral characteristic related to the geometry of the brain’s sur-
face. Thus, establishing profiles of cortical gyrification in medita-
tors and comparing these profiles to well-matched controls may

provide additional clues with respect to the underlying anatomi-
cal correlates of meditation. In addition, investigating associations
between local gyrification and the amount of meditation expe-
rience may provide insights with respect to meditation-related
neuronal plasticity (i.e., the brain’s ability to change throughout
life). Meditation practitioners who are seriously committed to a
long-term practice provide an ideal human model for investigating
brain plasticity given their ongoing, frequent, and regular mental
efforts.

We applied a well-established and automated whole-brain
approach to measure cortical gyrification at thousands of points
across the cortical surface (Gaser et al., 2006; Luders et al.,
2006, 2008). As described previously (Luders et al., 2006), our
gyrification measure resembles the 3D extension of the well-
known gyrification index (GI; Zilles et al., 1988) defined as the
ratio of the length of a 2D curve to the length of its con-
vex hull. Several alternative approaches to analyze cortical fold-
ing/complexity have also been described (Awate et al., 2010).
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Traditionally, gyrification descriptors characterize cortical fold-
ing/complexity by a single number, either for the whole brain
or for specific regions-of-interest (ROIs). While ROI-based mea-
sures provide a better regional specificity than whole-brain indices,
measurements are still averaged across pre-defined regions. More-
over, anatomically defined boundaries do not always correspond
to functionally relevant boundaries. In contrast, the current
approach generates detailed and regionally specific estimates
of surface complexity, at every point across the entire cortex,
without requiring any a priori ROI definitions. Moreover, it is
sensitive to the magnitude of folding (depths of sulci/heights
of gyri) as well as to the frequency of folding (number of
gyri/sulci).

The present study, which includes 100 subjects (i.e., 50 medita-
tors and 50 controls, well-matched for gender and age), comprises
the largest meditation sample investigated to date with structural
imaging methods. Moreover, it constitutes the first study to address
links between meditation and cortical gyrification. Though our
hypotheses were two-tailed with respect to the direction of effects,
we hypothesized that group differences and correlations would
occur in brain regions implicated in prior meditation studies that
have included other cortical measures (i.e., cortical thickness, GM
volume, GM concentration/density). Specifically, we hypothesized
that group differences and/or correlations would be most pro-
nounced within the following cortical regions: (1) right (anterior)
insula (Lazar et al., 2005; Holzel et al., 2008), (2) right (orbito-)
frontal cortex (Lazar et al., 2005; Holzel et al., 2008; Luders et al.,
2009), (3) left frontal cortex (Vestergaard-Poulsen et al., 2008),
(4) left inferior temporal gyrus (Holzel et al., 2008; Luders et al.,
2009), (5) left fusiform gyrus (Vestergaard-Poulsen et al., 2008),
(6) bilateral paracentral lobe, including primary and secondary
somato-sensory cortex (Luders et al., 2009; Grant et al., 2010) as
well as (7) bilateral cingulate (Grant et al., 2010; Holzel et al.,
2011).

MATERIALS AND METHODS
SUBJECTS
Our study included 50 meditators and 50 control subjects
which were matched pair-wise for sex (28 men, 22 women)
and for age [meditators (mean ± SD): 51.4 ± 12.8 years; con-
trols (mean ± SD): 50.4 ± 11.8 years]. Age ranged between 24 and
71 years; the average age difference within a sex-matched pair was
1.8 years. While the scans for the controls were obtained from the
ICBM database of normal adults1,meditators were newly recruited
from various meditation venues. Years of meditation practice
ranged between 4 and 46 years (mean ± SD: 19.8 ± 11.4 years).
An overview with respect to the subject-specific meditation style
as well as amount of practice (i.e., number of years, frequency
per week, and duration per session) is provided in Table A1 in
the Appendix. The majority of subjects (89%) were right-handed
as based on self-reports of hand preference for selected activi-
ties. Six meditators and five controls were left-handed. All subjects
were required to be free of any neurological and psychiatric disor-
ders and gave informed consent according to UCLA’s Institutional
Review Board.

1http://www.loni.ucla.edu/ICBM/Databases/

IMAGE ACQUISITION
Magnetic resonance imaging (MRI) data from all subjects
was acquired on a 1.5T Siemens Sonata scanner (Erlangen,
Germany) using an eight-channel head coil and a 3D T1-
weighted sequence (MPRAGE) with the following parameters:
TR = 1900 ms, TE = 4.38 ms, flip angle = 15˚, 160 contiguous
1 mm sagittal slices, FOV: 256 mm × 256 mm, matrix: 256 × 256,
voxel dimensions: 1.0 mm × 1.0 mm × 1.0 mm.

IMAGE PROCESSING
As detailed elsewhere (Dale et al., 1999; Fischl et al., 1999a,b), image
volumes passed through a number of preprocessing steps using
mostly automated procedures included in the FreeSurfer software
suite, version 4.52. Briefly, images were processed using intensity
normalization and skull stripping, followed by linear registration
and non-linear morphing to a probabilistic brain atlas, as well as
tissue classification into GM, white matter (WM), CSF, and back-
ground. Subsequently, a WM surface was derived from the WM
segment using the marching cubes algorithm, followed by topol-
ogy correction. Then, by outwardly deforming the WM surface,
the pial surface was generated. As a final step, the WM and pial
surfaces were averaged together, vertex-by-vertex, to construct a
central surface. These central surfaces were then used as basis to
determine the degree of cortical gyrification (described below).

CORTICAL GYRIFICATION
Cortical gyrification was established via calculating mean cur-
vature (Do Carmo, 1976) across thousands of vertices on each
individual central surface mesh model. Mean curvature at a given
vertex point is defined as:

Tcurvature =
nv∑

v=1

(
(x̄v − x̃v ) • Ñv

Bv

)2

where x̃v is the centroid of its neighbors of vertex v, Bv is the aver-
age distance from the centroid of each of the neighbors, and “·”
is the vector product operator. As demonstrated in Figure 1, the
resulting values can be expressed in degrees ranging from −180˚
to 180˚, where large negative values correspond to sulci and large
positive values to gyri. To increase the signal-to-noise ratio, mean
curvature at a given vertex was averaged within a geodesic dis-
tance of 3 mm, followed by calculating absolute mean curvature.
Finally, a smoothing procedure was applied using a surface-based
heat kernel filter (Chung et al., 2005) with a full width at half max-
imum (FWHM) of 25 mm. The resulting smoothed absolute mean
curvature values (hereafter referred to as curvature values) were
used as dependent variables in the statistical analyses.

STATISTICAL ANALYSES
The curvature values were compared at each vertex point between
the 50 meditators and 50 controls, while co-varying for gender and
age (analysis I). In addition,within the sample of the 50 meditators,
correlation analyses were performed to determine associations
between curvature values at each vertex point and the number

2http://surfer.nmr.mgh.harvard.edu
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FIGURE 1 | Estimation of cortical gyrification. Illustrated is the
computation of local gyrification using a simulated folded surface. The
magnitude of the folding increases from proximal to distal, and the frequency
increases from left to right. Left Panel: After establishing mean curvature (in
degrees), sulci can be identified as regions with large negative values
(displayed in blue), while gyri are characterized by large positive values
(displayed in red). Middle Panel: After averaging mean curvature within

distances of 3 mm, values are transformed into absolute mean curvature (i.e.,
all values become positive regardless of whether they represent gyri or sulci).
Higher values indicate areas with larger gyrification. Right Panel: Curvature
values are smoothed using a surface-based heat kernel filter with
FWHM = 25 mm. As demonstrated, increases in the amplitude and
wavelength of the simulated folding are reflected in increased values of
smoothed absolute mean curvature.

of meditation years, while removing the partial effects of age and
gender (analysis II). Given our regional hypotheses (and since pre-
vious studies with focus on cortical gyrification do not yet exist),
significance profiles were established using uncorrected thresholds
at p ≤ 0.05 as well as p ≤ 0.01. This allows for a first exploratory
characterization of such effects and also provides a framework
against which outcomes from future analyses can be compared.

RESULTS
ANALYSIS I: GROUP DIFFERENCES
As demonstrated in Figure 2 (top panel), cortical gyrification
in long-term meditators was larger in numerous regions across
the lateral and medial cortices at p ≤ 0.05 (depicted in yel-
low/orange). These regions include the left (L) and right (R)
anterior dorsal insula, pre/post central gyrus (L), central sul-
cus (L), inferior/middle temporal gyrus (L), angular gyrus (L),
and parieto-occipital fissure (L) as well as parietal operculum
(R), fusiform gyrus (R), and cuneus (R). As further illustrated
in Figure 2 (bottom panel), when applying stricter significance
thresholds (p ≤ 0.01), these group differences remained evident
within the left precentral gyrus (cluster 1), bilaterally within the
anterior dorsal insula (clusters 2–3), the right fusiform gyrus
(cluster 4), and the right cuneus (cluster 5). While there were
also some clusters indicating larger gyrification in controls at
p ≤ 0.05 (top panel; depicted in cyan), these effects were no
longer present (bottom panel) when applying stricter signifi-
cance criteria (p ≤ 0.01). Overall, the global significance max-
imum was located within the right anterior dorsal insula (red
circle) indicating a larger gyrification in meditators compared to
controls.

ANALYSIS II: CORRELATIONS
As demonstrated in Figure 3 (top panel), cortical gyrification
appears to increase as the number of meditation years increases.
These positive correlations (depicted in yellow/orange) were evi-
dent in numerous regions across the left and right lateral surfaces

as well as the left medial surface. In contrast, the right medial
surface showed predominantly negative correlations (depicted in
cyan) suggesting that gyrification decreases as the number of prac-
tices years increase. As further illustrated in Figure 3 (bottom
panel), when applying stricter significance thresholds, almost all
significance clusters indicating significant negative correlations
were no longer present. Similarly, only a few clusters indicating
significant positive correlations remained evident. However, pro-
nounced positive correlations within the right posterior temporal
lobe as well as the right anterior dorsal insula (global maximum)
remained at the stricter significance threshold. The spatial location
of the maximum correlation effects within the right insula (red
circle) corresponds well with the location of the maximum group
difference (as shown in Figure 2). No further spatial correspon-
dences between significant correlations (Figure 3) and significant
group differences (Figure 2) were observed.

DISCUSSION
Our study was designed to examine cortical gyrification in a large
sample (n = 100) of meditators and well-matched controls. When
applying more liberal significance thresholds (p ≤ 0.05), gyrifica-
tion was larger in meditators as well as in controls (depending on
the cortical region) in numerous areas across the cortex. Inter-
estingly, meditators showed larger gyrification in some of the
regions where prior analyses have revealed thicker cortices (more
GM, respectively) in meditators compared to controls. Regions
included the right anterior insula (Lazar et al., 2005; Holzel et al.,
2008), the left inferior temporal gyrus (Holzel et al., 2008; Luders
et al., 2009), the left central sulcus and its vicinity (Luders et al.,
2009; Grant et al., 2010), as well as the right parietal operculum,
which houses the secondary somato-sensory cortex (Grant et al.,
2010). The current study also revealed a larger gyrification of the
fusiform gyrus but these effects were located within the right hemi-
sphere, rather than the left hemisphere (Vestergaard-Poulsen et al.,
2008). When applying stricter significance thresholds (p ≤ 0.01),
cortical gyrification was exclusively larger in meditators in five
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FIGURE 2 | Group differences in cortical gyrification. Shown are group
differences at p ≤ 0.05 (upper panel) and p ≤ 0.01 (lower panel), uncorrected
for multiple comparisons. The color bar encodes significance (T ). Areas with
larger gyrification in meditators (MED) are depicted in yellow/orange; areas
with larger gyrification in controls (CTL) are depicted in cyan. Callosal,
subcallosal, and midbrain regions have been excluded on the medial
surface maps. Numeric clusters indicate larger gyrification in meditators at
p ≤ 0.01 within (1) left precentral gyrus; (2) left insula; (3) right insula; (4)
right fusiform gyrus; (5) right cuneus. The red circle indicates the global
maximum. LH, left hemisphere; RH, right hemisphere.

distinct regions, regional observations that were in line with our
a priori hypotheses. These regions included the left precentral
gyrus, the left and right anterior dorsal insula, the right fusiform
gyrus, and the right cuneus. The discussion of the possible func-
tional implications of our findings will thus emphasize these five
cortical regions, with particular focus on the right insula (global
maximum).

FIGURE 3 | Links between cortical gyrification and number of

meditation years. Shown are correlations at p ≤ 0.05 (upper panel) and
p ≤ 0.01 (lower panel), uncorrected for multiple comparisons. The color bar
encodes significance (T ). Areas with positive correlations (i.e., more
meditation years link with more gyrification) are depicted in yellow/orange;
negative correlations (i.e., more meditation years link with less gyrification)
are depicted in cyan. Callosal, subcallosal, and midbrain regions have been
excluded on the medial surface maps. The red circle indicates the global
maximum. LH, left hemisphere; RH, right hemisphere.

INSULAR EFFECTS
The most pronounced group differences were detected within
the right anterior dorsal insula. Moreover, there was a striking
spatial correspondence between this region and the outcomes of
our correlation analysis that indicated significant positive corre-
lations between insular complexity and meditation practice years.
As mentioned above, previous analyses have also exposed struc-
tural differences between meditators and non-meditators within
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the right (anterior) insula (Lazar et al., 2005; Holzel et al., 2008).
Moreover, functional analyses have revealed an activation of the
insula during meditative states and/or onset of meditation (Farb
et al., 2007; Lutz et al., 2008; Baerentsen et al., 2010).

Of potential functional relevance to the current findings, the
right fronto-insular cortex has been shown to play a critical role in
switching between central-executive and default-mode network
(DMN; Sridharan et al., 2008). The DMN, a well-characterized
resting state network, is most evident in states of daydreaming,
mind-wandering, and projections into past or future (Shulman
et al., 1997; Raichle et al., 2001; Greicius et al., 2003; Mason et al.,
2007; Raichle and Snyder, 2007; Buckner et al., 2008). Since these
aforementioned processes are well-known distractions in the con-
text of meditation, successful meditators might be equipped with
a better ability to control (i.e., switch on/off) the DMN. Indeed,
a recent functional imaging experiment revealed shorter neural
responses in regions of the DMN in meditators compared to
controls suggesting that “the regular practice of Zen meditation
enhances the capacity for voluntary regulation of spontaneous
mental activity” (Pagnoni et al., 2008). The altered gyral complex-
ity of the right insula perhaps constitutes one important neural
substrate for such ability.

Furthermore, the insula has been recently proposed to inte-
grate a wealth of information, such as interoceptive sensations
(within its mid/posterior parts), which cumulate in a concept of
awareness anteriorly (Craig, 2009, 2010). For example, when sub-
jects (unselected for meditation) were asked to judge the timing of
their own heart beat relative to feedback notes, the neural activity
of the right anterior dorsal insula predicted interoceptive accu-
racy (Critchley et al., 2004). In addition, interoceptive accuracy
as well as subjective ratings of visceral awareness were positively
correlated with the local GM of the right anterior dorsal insula.
Moreover, a meta-analysis of functional imaging studies provided
evidence for overlapping activation bilaterally within the anterior
dorsal insula to a wide variety of different stimuli, including cog-
nitive, socio-emotional, olfacto-gustatory, as well as interoception
and pain processing (Kurth et al., 2010). Thus, the anterior insula
may constitute a“hub”for autonomic, affective, and cognitive inte-
gration, as previously suggested (Damasio, 1994; Critchley et al.,
2004; Critchley, 2005). Meditators are masters in introspection
and awareness as well as in emotional control and self-regulation.
Moreover, meditators often practice techniques oriented toward
enhancing unconditional, positive emotional states of kindness
and compassion (Hofmann et al., 2011). Thus, the altered gyrifi-
cation of the (right) anterior dorsal insula in meditators might be
linked to these singular abilities and/or dedicated practices.

OTHER REGIONS AFFECTED
Meditators also demonstrated larger gyrification within the left
precentral gyrus (Figure 2, cluster 1). Such effects within the pri-
mary motor cortex may be more difficult to interpret and further
research will be necessary to elucidate the functional relevance of
group differences in motor areas of the brain. However, previous
analyses (Luders et al., 2009, 2011a) detected similar alterations
in meditators, either with respect to the integrity of a fiber tract
predominantly originating/terminating in motor areas (cortical-
spinal tract) or with respect to GM tissue in paracentral regions
(the latter when thresholds were lowered to detect significance

trends). Moreover, the aforementioned imaging experiment on
interoceptive awareness (where subjects had to judge the timing
of their heart beat) did not only reveal enhanced insular activ-
ity but also enhanced activity of the lateral somatomotor cortex
as well as the supplementary motor cortex (Critchley et al., 2004).
Thus, regions in the vicinity of the motor cortices (perhaps in close
association with the anterior dorsal insula) might aid in supporting
interoceptive attention and awareness.

In contrast, structural alterations within the right cuneus
(Figure 2, cluster 5) have not been previously reported. However,
since the cuneus has been suggested to be heavily involved in shift-
ing or maintaining spatial/visual attention (Corbetta et al., 1998;
Hopfinger et al., 2000; Simpson et al., 2011) our findings appear in
agreement with prior evidence that meditation is associated with
superior visual perception (Brown et al., 1984a,b; Tloczynski et al.,
2000; Jha et al., 2007; Kozhevnikov et al., 2009; Hodgins and Adair,
2010). This, in turn, might also be related to the larger gyrification
of the right fusiform gyrus (Figure 2, cluster 4), which is part of
the ventral visual stream and involved in the processing of visual
information, identification, and recognition as well as attention
control (Corbetta et al., 1998; Hopfinger et al., 2000; Joseph, 2001;
Said et al., 2011). Supporting evidence for the involvement of the
fusiform gyrus in the process of meditation has been provided in
a previous study revealing larger GM densities in long-term medi-
tators (Vestergaard-Poulsen et al., 2008), although fusiform effects
were located within the left hemisphere.

NATURE VERSUS NURTURE
Given the cross-sectional design of this study, our findings do
not allow any definitive causal conclusions. On the one hand, a
different cortical gyrification in meditators might constitute an
innate brain feature; on the other hand,regular meditation practice
might alter gyral/sulcal features of specific brain regions routinely
engaged in the activity of meditating. In general, it is estimated that
about 30% of phenotypic variance in gyrification is attributed to
genetic variation (Rogers et al., 2010). Although the folding pattern
of the cortical surface is assumed to be largely under the influence
of genetic control (Armstrong et al., 1995; Piao et al., 2004), the
degree of folding has been demonstrated to still change in child-
hood and adolescence (Blanton et al., 2001). This suggests that
environmental factors may have a modulating impact on cortical
gyrification (Bartley et al., 1997; Lohmann et al., 1999; White et al.,
2010). That is, actively meditating (especially regularly meditating
over a long period of time) may induce plastic changes on a micro-
anatomical level (synaptic pruning, dendritic arborization, etc.),
which conceivably could alter the morphology of gyri and sulci
and impact the folding of the cortical surface (Van Essen, 1997).
The observed positive correlations between gyrification and num-
ber of practice years add some further support to suggest that
meditation enhances regional gyrification.

It is equally plausible that the observed effects exist due to an
interaction between nature and nurture. That is, people with a spe-
cific pattern of normal anatomical variability might have picked up
meditation and induced further structural changes in the course of
their long-term practice. It is similarly likely, that different mech-
anisms apply to different brain regions. For example, training and
practice might have a stronger impact on cerebral regions that
mature later. Thus, meditation-induced alterations may especially
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occur in superficial or tertiary sulci, which develop mainly after
birth and appear to be more affected by non-genetic influences
(Lohmann et al., 1999). In contrast, deeper fissures and devel-
opmentally earlier forming sulci are more strongly influenced by
genetic processes and thus might be much less susceptible to envi-
ronmental perturbations. Interestingly, insular sulci (as well as the
central sulci) are among the first macroscopical structures iden-
tified on the lateral surface of the human fetal brain (with earlier
development in the right hemisphere than in the left; Afif et al.,
2007). Since the folding pattern of the insula appears to be estab-
lished around birth, it is likely that the observed group differences
within the insula (as well as in the vicinity of the central sulcus)
constitute innate cortical characteristics. In agreement with this
assumption, cross-sectional studies detected insular differences in
meditators (Lazar et al., 2005; Holzel et al., 2008), while longitudi-
nal analyses with particular focus on the insula did not reveal any
meditation-induced insular changes (Holzel et al., 2011). Never-
theless, although Holzel’s longitudinal study (2011) did not detect
any changes of insular GM within the time frame of 8 weeks, it
is likely that such changes occur with respect to other insular
characteristics and/or as a consequence of longer lasting prac-
tices (note, meditators in the current study had practiced almost
20 years on average). Moreover, the longitudinal study (Holzel
et al., 2011) included participants of a mindfulness-based stress
reduction program and hence a selective sample with a particular
health condition. Therefore, the relevance of these findings to ours
is less direct and it may as well be possible that insular alterations
in long-term meditation practitioners constitute practice-induced
effects. In support of this hypothesis, insular complexity seems to
increase as the number of meditation years increases, as revealed
in our correlation analysis. Similar findings were reported from
another cross-sectional study (Holzel et al., 2008) demonstrating
a trend toward significant positive correlations between insular
GM and the amount of meditation practice (i.e., hours of medita-
tion training). Notwithstanding, further research on links between
meditation practices and cortical gyrification is necessary, and
any conclusions with respect to the possible determinants of the
observed group differences and correlations remain speculative.

SUMMARY AND OUTLOOK
For the first time, the current study examined cortical gyrification
in association with mindfulness practices. The group differences
between meditators and controls as well as the links between local
gyrification and number of meditation years point to cortical
regions involved in processes related to meditation, with particular
involvement of the (right) anterior dorsal insula. Since cortical

gyrification relates to behavioral traits in humans (Awate et al.,
2010), the observed alterations in long-term practitioners might
reflect specific traits associated with meditation (e.g., higher levels
of introspection, awareness, response control, compassion, etc.).
However, this hypothesis remains to be tested with actual behav-
ioral data and/or performance measures in follow-up studies.
Moreover, the applied curvature measurement does not allow dis-
tinguishing between sulci and gyri (nor between a cortical region
with a large number of shallow convolutions and one with only
a small number of deep convolutions). Thus, future studies may
consider introducing additional curvature indices to improve the
regional specificity in general and also to discriminate between sul-
cal and gyral effects. Increasing the spatial resolution of findings
will provide important clues, for example, with respect to whether
primary, secondary, or tertiary sulci are affected (which may pro-
vide hints with respect to the heredity of effects). Similarly, being
able to discriminate between gyral and sulcal effects may provide
hints with respect to a possible neuroprotective impact in the con-
text of brain aging, as previously discussed (Lazar et al., 2005;
Pagnoni and Cekic, 2007; Luders et al., 2011a). For example, it was
shown that the shape of gyri/sulci changes due to normal aging
processes, with gyri getting more sharply and steeply curved and
sulci becoming flatter (Magnotta et al., 1999). If meditation had a
brain-preserving effect, meditators might have wider gyral crowns
and/or narrower sulci than age-matched controls. Last but not
least, since there seems to be a positive correlation between corti-
cal gyrification and intelligence (Luders et al., 2008), controlling
for IQ in future studies, will ensure that individual intelligence
is not a significant modulator when comparing meditators and
controls with respect to gyrification.
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APPENDIX

Table A1 | Subject-specific meditation practices

M Experience (in years) Frequency (times per week) Duration (minutes per session) Meditation style (self-reported)

1 4 4 30 Samatha, Vipassana

2 5 7 10 Samatha

3 6 5–6 15 Not specified

4 7 3 40 Zen

5 7 7 60 Kriya

6 7 3–4 60 Vipassana

7 7 7 45 Samatha, Vipassana

8 7 7 120 Vipassana

9 9 7 60 Tibetan Buddhist Meditation

10 9 3 40 Vipassana

11 10 7 60 Samatha, Vipassana, Zen

12 10 3 20 Kriya

13 10 7 60 Vipassana

14 12 1 40 Not specified

15 12 7 240 Samatha

16 12 7 15 Not specified

17 13 5–6 60 Zen

18 14 1–2 30 Raja Yoga Meditation

19 15 7 30 Zen

20 15 7 30 Samatha, Vipassana

21 15 7 15 Not specified

22 15 7 45 Vipassana

23 16 3–5 90 Zen

24 16 7 30 Not specified

25 16 5–6 30 Vipassana

26 16 7 60 Vipassana, Zen

27 17 7 30 Vajrayana

28 18 6 30 Mindfulness Meditation

29 19 7 120 Vipassana

30 20 7 45 Vipassana

31 21 7 40 Vipassana

32 21 7 60 Vipassana

33 22 7 45 Buddhist Meditation

34 22 7 60 Not specified

35 23 7 35 Vipassana

36 25 3 30 Vipassana

37 28 7 120 Dzogchen, Vipassana

38 30 3 30 Zen

39 31 7 60 Sadhana, Samatha, Vipassana,

40 31 7 60 Vipassana, Zen

41 32 7 60 Dzogchen

42 33 7 60 Vipassana

43 36 6 20 Zen

44 36 7 45 Dzogchen, Mahamudra, Vipassana

45 38 1 60 Not specified

46 38 3 90 Chenrezig

47 38 7 150 Dzogchen, Vajrayana

48 41 3 60 Samatha, Vipassana

49 41 1 60 Not specified

50 46 7 45 Kundalini

M: meditators 1–50.
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