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Abstract

Avian influenza H5N1 and pandemic (H1N1) 2009 viruses are known to induce viral pneumonia and subsequent acute
respiratory distress syndrome (ARDS) with diffuse alveolar damage (DAD). The mortality rate of ARDS/DAD is extremely high,
at approximately 60%, and no effective treatment for ARDS/DAD has been established. We examined serial pathological
changes in the lungs of mice infected with influenza virus to determine the progress from viral pneumonia to ARDS/DAD.
Mice were intranasally infected with influenza A/Puerto Rico/8/34 (PR8) virus, and their lungs were examined both macro-
and micro-pathologically every 2 days. We also evaluated general condition, survival rate, body weight, viral loads in lung,
and surfactant proteins in serum. As a result, all infected mice died within 9 days postinfection. At 2 days postinfection,
inflammation in alveolar septa, i.e., interstitial pneumonia, was observed around bronchioles. From 4 to 6 days postinfection,
interstitial pneumonia with alveolar collapse expanded throughout the lungs. From 6 to 9 days postinfection, DAD with
severe alveolar collapse was observed in the lungs of all of dying and dead mice. In contrast, DAD was not observed in the
live infected-mice from 2 to 6 days postinfection, despite their poor general condition. In addition, histopathological
analysis was performed in mice infected with a dose of PR8 virus which was 50% of the lethal dose for mice in the 20-day
observation period. DAD with alveolar collapse was observed in all dead mice. However, in the surviving mice, instead of
DAD, glandular metaplasia was broadly observed in their lungs. The present study indicates that DAD with severe alveolar
collapse is associated with death in this mouse infection model of influenza virus. Inhibition of the development of DAD
with alveolar collapse may decrease the mortality rate in severe viral pneumonia caused by influenza virus infection.
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Introduction

Pandemic (H1N1) 2009 influenza A virus has spread worldwide

since 2009. Many people have been infected with this new influenza

virus, some of whom became seriously ill and required respiratory care

[1–4]. Avian H5N1 virus infection is also known to have a high

mortality rate. The main cause of death among patients with viral

pneumonia caused by pandemic (H1N1) 2009 and avian H5N1

influenza virus is acute respiratory distress syndrome (ARDS) [2,4–10],

which is clinically defined as acute respiratory failure, bilateral

infiltration in chest X-rays, low oxygen in arterial blood, and normal

cardiac filling pressure [11–13]. ARDS is caused by several etiologies,

including viral or bacterial infection in the lung and sepsis. However,

autopsies of patients with ARDS have found a pathologically identical

characteristic, called diffuse alveolar damage (DAD), which is defined

by the formation of a hyaline membrane lining the alveoli and alveolar

ducts, inflammatory cell accumulation in the lungs, and pulmonary

edema [14–16]. Although effective anti-influenza virus drugs are

currently available, the mortality rate of ARDS caused by influenza

virus remains high. Therefore, it is necessary to deepen our

understanding of ARDS/DAD in order to develop an effective

treatment.

Viral pneumonia and subsequent ARDS caused by influenza virus

has been investigated in mice [17–21]. In addition, DAD in mice has

only recently been reported [22]. Therefore, to understand the

histopathological process from viral pneumonia to DAD, we

performed serial pathological analysis of lungs from mice infected

with mouse-adapted influenza A/Puerto Rico/8/34 (PR8, H1N1)

virus, which was lethal to mice. The results demonstrated that death in

infected mice was closely associated with expansion of DAD in the

lungs. Our results suggest that inhibition of the development of DAD in

the lungs through medical intervention may decrease the mortality rate

of viral pneumonia and subsequent ARDS caused by influenza virus

infection.

Results

General Appearance, Survival Rate, Body Weight and
Viral Load

Mice were intranasally inoculated with 5650% mouse lethal

dose (MLD50) of influenza PR8 virus. In the first 2 days
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postinfection, no change in the general appearance of the mice

was observed. However, reduced activity, ruffled fur, and difficulty

breathing (tachypnea and labored respiration) were accompanied

by reduced food and water intake at 3 days postinfection. From 4

days postinfection, these conditions, including weight loss

(Figure 1B), diarrhea and cyanosis, worsened. At 6 days

postinfection, half of the infected mice died. All of the remaining

mice were dead by 9 days postinfection (Figure 1A). Viral loads

were elevated in the lungs of the infected mice (Figure 1C).

Macroscopic Findings of the Lungs and Pulmonary
Edema

The lungs of infected mice were enlarged, edematous, and

dusky red in color (Figure 2A). The weight of the lungs and the

water content in the lungs gradually increased from 2 to 6 days

postinfection (Figure 2B and C).

Serial Histopathological Changes in the Infected Lungs
At 2 days postinfection, focal inflammation in alveolar septa,

characterized by the infiltration of inflammatory cells, mononuclear

cells and lymphocytes in the pulmonary parenchyma, was observed

with mild alveolar collapse around a few bronchioles (Figure 3E, F

and H). Invagination of the pulmonary pleura was caused by

collapse (Figure 3E, arrowheads). The alveolar septa were thick and

congested (Figure 3F). Infected cells were immunohistochemically

stained positive in focal interstitial inflammation areas (Figure 3G),

whereas other parenchyma, especially at the marginal area of the

lung, were normal and infected cells were absent. The epithelium of

bronchi and bronchioles was intact (Figure 3F). At 4 days

postinfection, interstitial inflammation reached the distal parenchy-

Figure 1. Survival rate, body weight and viral titers in lungs of
PR8-infected mice. Mice were intranasally inoculated with PR8 virus.
(A) Survival rates of PR8-infected mice (n = 10). (B) Body weight of PR8-
infected mice (0–5 days postinfection, n = 10; 6 days postinfection,
n = 5). Percentages of mean body weight 6 SD based on day 0 are
shown. (C) Viral titers in lungs of PR8-infected mice (n = 5, each day) was
measured by plaque forming assay using MDCK cells at 2, 4, and 6 days
postinfection. Mean viral titers 6 SD are shown. Representative results
are shown.
doi:10.1371/journal.pone.0021207.g001

Figure 2. Macroscopic appearance, weight of lungs and water
content in lungs of PR8-infected mice. (A) Gross pathology of
mouse lung. Large, edematous and dusky red in color in infected lung
at 6 days postinfection (right panel). Lung of non-infected control (left
panel). dpi, days postinfection. (B) Weight of lungs excised from PR8-
infected mice (n = 5, each day) sacrificed at indicated days. Significant
differences were observed on days 2, 4 and 6 when compared with day
0 as a control. (C) Percentages of lung water content in PR8-infected
mice (n = 5, each day) determined by dry-wet ratio assay modified by
incubation at 50uC for 24 h. Significant differences were observed on
days 4 and 6 when compared with day 0 as a control. Differences in
means 6 SD and p values are shown. *p,0.05, ***p,0.001. Data
represent three independent experiments.
doi:10.1371/journal.pone.0021207.g002
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ma, and invagination of the pulmonary pleura expanded and

became more severe (Figure 3I, arrowheads). Alveolar collapse and

enlargement of alveolar duct were remarkable (Figure 3I, J and L).

Infected cells were found in collapsed areas (Figure 3K). Cell debris

that contained scrapped nuclei and stained positively with the anti-

influenza antibody was observed prominently in the lumen of many

bronchioles (Figure 3J and K, arrowheads), whereas the bronchiolar

epithelium was normal. As shown in Figure 1A, there were both live

and dead infected mice at 6 days postinfection. In the mice that were

live at this point, infiltration with inflammatory cells, mainly

mononuclear cells, lymphocytes and a few neutrophils, had further

expanded throughout the lung (Figure 3M). Increasing alveolar

collapse and enlargement of alveolar duct resulted in lung

deformation (Figure 3M). The alveolar space beneath the

pulmonary pleura contained proteinous exudates. Influenza

antigen-positive cell debris accumulated in the lumen of bronchioles

and antigen-positive cells in collapsed areas (Figure 3N and O,

arrowheads). Only a few epithelial cells of bronchioles were infected.

In contrast, in all of the dead mice from 6 to 9 days postinfection,

DAD with hyaline membrane formation (Figure 3Q and R,

arrowheads) and severe collapse (Figure 3Q, R and T) were broadly

evident throughout the lungs in spite of the fact that several lungs

were excised and fixed with paraformaldehyde immediately after

their death. In addition, DAD with severe alveolar collapse were

observed in dying but still live infected-mice at 8 days postinfection,

which were sacrificed in accordance with a humane judgment

because the mice should die within 24 hours. The collapsed areas

contained several infected cells (Figure 3S). The distribution of

pathological lesions, the degree of pulmonary edema, and the

degree of DAD observed by microscopic examination are shown in

Table S1. Histopathological assessment ruled out bacterial infection

in all lungs.

Hyaline Membrane Formation in the Infected Lungs
Hyaline membrane formation was specifically visualized using

Masson’s trichrome staining. Pastel purple staining indicated that

a thick hyaline membrane lined the alveolar ducts throughout the

lungs (Figure 4A and B, arrowheads). Alveolar space was filled

with hyaline membrane. Alveolar collapse was most evident

around hyaline membrane formations (Figure 4C). Infected cells

were located in collapsed parenchyma beside hyaline membrane

(Figure 4D and 3S), but not in the hyaline membrane itself. In

contrast, no hyaline membrane formation was observed in the

lungs of the live infected-mice between 2 and 6 days postinfection

(Figure 4E to J).

Figure 3. Serial histopathological changes in lungs infected with PR8 virus. (A–D) Non-infected mice were sacrificed and excised the lungs
as a control. (E–P) Mice (n = 6, each day) were infected with PR8 influenza virus and sacrificed at the indicated days after infection. (Q–T) Dead infected
mice were performed postmortem examination immediately after their death. (A, E, I, M and Q) Magnification is 640. (B–D, F–H, J–L, N–P and R–T)
Magnification is6400. (A, B, E, F, I, J, M, N, Q and R) HE staining. (C, G, K, O and S) Immunohistochemical staining using anti-influenza virus polyclonal
antibody. (D, H, L, P and T) elastica van Gieson (EVG) staining. (E–H) Infected lung at 2 days postinfection. (E) Focal inflammation in the lung and
invagination of the pulmonary pleura (arrowheads). (F) Congestion in thick alveolar septa and mild collapse. (G) Antigen-positive cells are stained red
in alveoli around bronchioles. (H) Mild alveolar collapse. (I–L) Infected lung at 4 days postinfection. (I) Expansion of inflammation and invagination of
the pulmonary pleura (arrowheads). (J) Alveolar collapse and cell debris (arrowheads) in bronchiolar lumen. (K) Antigen-positive cell debris in
bronchiolar lumen (arrowheads). (L) Increased alveolar collapse. (M–P) Infected lung from live mice at 6 days postinfection. (M) Lung deformation
with enlargement of alveolar duct and alveolar collapse. (N) Cell debris in bronchiolar lumen (arrowhead). (O) Antigen-positive cell debris in
bronchiolar lumen (arrowheads). (P) Alveolar collapse and enlargement of alveolar ducts. (Q–T) Infected lung from dead mice at 6 days postinfection.
(Q) Severe collapse throughout entire lung. (R) Hyaline membrane formation lining alveolar ducts (arrowhead) and collapse. (S) Antigen-positive cells
in collapsed area. (T) Severe alveolar collapse. HE, hematoxyline-eosin staining. IHC, immunohistochemistry. EVG, elastica van Gieson staining.
doi:10.1371/journal.pone.0021207.g003
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Increase of Surfactant Protein (SP) -A and -D in Sera
Increased alveolar permeability and damage to the alveoloca-

pillary interface in humans can be assessed by serum levels of SP-A

and -D, which are markers of severe lung injury, interstitial

pneumonia and acute respiratory distress syndrome [23–25].

Therefore, we examined SP-A and -D levels in sera from PR8-

infected mice. The levels of both proteins were found to be

increased between 2 and 6 days postinfection (Figure 5).

Hyaline Membrane Formation with a Low Dose of Virus
To determine whether an inoculated virus dose affects hyaline

membrane formation, we performed additional histopathological

analysis of the lungs of mice inoculated with a low dose

(16MLD50) of PR8 virus. The infected mice died gradually

between 9 and 16 days postinfection. In total, 50% of the infected

mice survived for 20 days. Postmortem examination revealed

hyaline membrane formation with collapse in alveoli and alveolar

ducts in the dead mice, regardless of the number of days

postinfection (Figure 6A to F, arrowhead). In contrast, when the

surviving mice were sacrificed after the 20-day observation period,

no hyaline membrane was observed anywhere in the lungs.

Instead, glandular metaplasia, proliferation of bronchiolar epithe-

lial cells extending to distal alveoli and alveolar ducts, with collapse

and thick alveolar septa were broadly observed (Figure 6G and H).

Discussion

The present study revealed the serial process of pathological

changes from interstitial pneumonia to DAD in the lung of mice

infected with influenza virus. Interstitial pneumonia was observed in

the lung of live mice infected with PR8 virus when they were

sacrificed. In contrast, DAD was found in the dying and dead mice.

The histopathological characteristics of DAD, hyaline membrane

formation, inflammatory cells accumulation and pulmonary edema,

in the lungs of PR8-infected mice closely resembled the character-

istics of DAD at the exudative stage in humans. Therefore, the serial

pathological process from interstitial pneumonia to DAD observed

in the PR8-infected mice is considered to be a model of the

development of human DAD.

Our histopathological examination of live infected-mice sacrificed

from 2 to 6 days postinfection revealed that interstitial pneumonia

gradually expanded from pulmonary parenchyma around bronchi-

oles to the entire lungs and DAD was not observed anywhere. All of

the infected mice died from 6 to 9 days postinfection (Figure 1). DAD

with severe collapse was found in the dying but still live mice at 8 days

postinfection, which should die within 24 hours, and in all of the dead

mice, several of which were autopsied immediately after their deaths

(Figures 3 and 4). The results indicate that DAD is not a postmortem

change. Considering histopathologically temporal alteration of the

infected lungs, DAD with hyaline membrane appears to develop

quickly, within at least 2 days. In clinical appearance, it is consistent

with rapid progress to ARDS in human [11]. In addition, the dead

mice inoculated with 16MLD50 of virus also developed DAD with

collapse several days later than mice inoculated with 5 6MLD50 of

virus (Figure 6). Moreover, in our preliminary study, when mice

infected with 5 6 MLD50 of PR8 virus were administered anti-

influenza drug oseltamivir twice a day from 0 to 10 days postinfection,

a few mice died after 12 days postinfection and the survival rate in the

20-day observation period was 80%. Histopathological examination

of the live mice sacrificed on 8–10 days postinfection revealed that

hyaline membrane with collapse was observed very focally in the

lungs, in spite of the fact that the mice appeared not to die within at

least 2 days. Taken together, these observations indicate that

expansion of DAD in lungs is closely involved in mouse death in

Figure 4. DAD with hyaline membrane formation demonstrat-
ed by Masson’s trichrome staining. Postmortem examinations of
dead infected mice were performed immediately after their death. (A
and B) Hyaline membrane stained pastel purple (arrowheads) in
enlarged alveolar ducts and alveolar spaces throughout collapsed
lungs. (A) Magnification, 6200. (B) Magnification, 6400. (C) Elastica van
Gieson staining shows alveolar collapse throughout entire lungs.
Magnification, 6200 (D) Influenza virus antigen-positive cells in
collapsed area beside hyaline membrane. Magnification, 6400 (E–J)
Hyaline membrane was not found in any lungs from the live infected
mice at 2–6 days postinfection. (E, G, and I) Magnification, 6200. (F, H,
and J) Magnification, 6400.
doi:10.1371/journal.pone.0021207.g004

Figure 5. Levels of SP-A and -D in sera from PR8-infected mice.
Upper and lower panels show SP-A and SP-D respectively, determined
by Western blotting using the respective antibodies. Each lane was
loaded with 10 mg of mouse serum without albumin and immuno-
globulin.
doi:10.1371/journal.pone.0021207.g005
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this model of influenza virus PR8 infection. This is compatible with

the fact that DAD has been observed characteristically in autopsies of

many patients who died of severe viral pneumonia and ARDS

induced by influenza virus [5,8,26,27].

The present study also revealed the order of hyaline membrane

formation and alveolar collapse by continuous histopathological

examination (Figure 3). Alveolar collapse in this study was observed

earlier than previously reported [14]. Mild collapse and invagination

of pulmonary pleura by alveolar collapse was already observed 2 days

postinfection. Subsequently, collapse became more severe and

significant expansion of alveolar duct was observed between 4 and

6 days postinfection as shown by hematoxylin-eosin (HE) and elastica

van Gieson staining. In addition, the fact that invagination of

pulmonary pleura became more severe and wider as shown in low

magnification of HE staining is implicated in augmentation of

alveolar collapse. Finally the expanded alveolar ducts were lined by

hyaline membrane in the dying and dead mice. As described above,

hyaline membrane formation followed severe alveolar collapse in this

study. Katzenstain have mentioned that alveolar collapse is found in

the fibrotic stage of DAD [14], but at least in mouse infected with

influenza virus, alveolar collapse was found earlier than hyaline

membrane formation in the exudate stage of DAD. Several events

involved in alveolar collapse were also observed in the present study.

After 4 days postinfection, antigen–positive cell debris was apparently

increased in bronchioles, suggesting that pulmonary cells were

destroyed by influenza virus infection downstream from the

bronchioles. Destruction of the pulmonary cells indicates the

disruption of the alveolar-capillary barrier. In fact, surfactant

proteins, SP-A and SP-D, drastically increased in the serum and

pulmonary edema occurred in infected mice (Figures 5 and 2).

Disruption of the alveolar-capillary barrier also induces an influx of

serum content into alveolar space. Moreover, the water and protein

contents in flowing serum dilute lung surfactant and inhibit its

function. In addition, decreases in the quantity of type II

pneumocytes by virus infection may be directly linked to the absence

of lung surfactant because type II pneumocytes produce surfactant.

Based on the fact that lung surfactant prevents alveolar collapse [28],

qualitative and quantitative loss of lung surfactant may result in

alveolar collapse in mouse lungs infected with influenza virus. Lung

surfactant has also been shown to reduce surface tension at the

alveolar air–liquid interface and stabilize alveoli and terminal airways

at low lung volumes [23]. Therefore, decreases in lung surfactant in

the infected lung may lead to the malfunction the alveolar–capillary

barrier, e.g., the further augmentation of influx and disruption of

efflux of protein-rich exudate which originated in serum, and

eventually the formation of hyaline membrane. According to this

perspective, the widespread alveolar collapse observed in the infected

lungs might imply the formation of hyaline membrane.

Immunohistochemical examination in this study revealed influenza

virus antigen–positive cells in pulmonary parenchyma around

bronchioles (Figures 3 and 4). Interestingly, only a few epithelial cells

of bronchioles were infected with influenza virus and their structure

remained intact throughout the observation period. This finding

indicates that influenza virus infection to bronchiolar epithelium is not

necessary for the development of DAD. Furthermore, hyaline

membrane formation was observed following the appearance of

infected necrotic debris within bronchioles, suggesting that the

destruction of alveoli, rather than bronchioles, is a key to the

development of DAD with hyaline membrane, which corresponds with

previous findings [14].

In conclusion, the present study demonstrated the pathological

process from interstitial pneumonia to DAD with severe collapse in

mice infected lethally with influenza A virus H1N1. Furthermore,

expansion of DAD in the lungs was found to be correlated with mouse

death in influenza virus infection. These findings indicate that, in

addition to anti-influenza virus drugs, inhibition of the development of

DAD with alveolar collapse by medical intervention may relieve

severe pneumonia and ARDS by influenza virus and improve the

survival rates.

Materials and Methods

Mice and Virus
Female 5- to 6-week-old, specific pathogen-free BALB/c mice

verified as being uncontaminated with pneumonia-causing patho-

gens, such as Pasteurella pneumotropica, Mycoplasma pulmonis, and Sendai

virus, were obtained from Japan SLC, Inc. (Hamamatsu, Japan).

Mouse-adapted PR8 virus, influenza A/Puerto Rico/8/34 (A/PR/

8/34, H1N1), was kindly provided by the National Institute of

Infectious Diseases, Japan [29] and was grown once in the lung of

BALB/c mouse. The homogenate of the infected lungs were clarified

by low speed centrifugation at 3,500 rpm for 5 minutes at 4uC, and

the supernatant were used as purified virus. The PR8 virus titer were

Figure 6. Hyaline Membrane Formation with a Low Dose of
Virus. (A–F) Postmortem examinations of dead mice infected with 16
MLD50 of PR8 virus were performed at the indicated days. (A, C, and E)
Magnification, 640. (B, D, and F) Magnification, 6400. (A) Alveolar collapse
and expanded alveolar ducts on 10 days postinfection. (B) Hyaline
membrane lining alveolar ducts (arrowheads). (C) Alveolar collapse and
expanded alveolar ducts at 12 days postinfection. (D) Hyaline membrane
lining alveolar ducts (arrowheads). (E) Alveolar collapse and expanded
alveolar ducts at 14 days postinfection. (F) Hyaline membrane lining alveolar
ducts (arrowheads). (G and H) surviving mice infected with 16MLD50 of PR8
virus were sacrificed at 20 days postinfection for histopathological
examination. (F) Alveolar collapse, expanded alveolar ducts, glandular
metaplasia, and thick alveolar septa were observed without hyaline
membrane formation. Magnification, 640. (G) Remarkable glandular
metaplasia. Magnification, 6400.
doi:10.1371/journal.pone.0021207.g006
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measured by plaque forming assay using Madin-Darby canine kidney

(MDCK) cells.

Cells and Antibodies
MDCK cells were obtained from the American Type Culture

Collection (ATCC CCL-34). The cells were maintained in

minimum essential medium (MEM) containing 10% fetal bovine

serum, 50 units/ml penicillin, and 50 mg/ml streptomycin. The

cells were cultured in 5% CO2 at 37uC. Rabbit anti-human

influenza A, B virus polyclonal antibody (code #M149, Takara,

Tokyo, Japan) was used for immunohistochemical analyses.

Rabbit anti-SP-A antibody (Santa Cruz Biotechnology, Inc.,

Santa Cruz, CA) and mouse anti-SP-D monoclonal antibody

(Abcam Inc., Cambridge, MA) were used for Western blot analysis

of mouse blood samples purified using Aurum serum protein mini

kits (Bio-Rad, Hercules, CA).

Viral Infection of Mice
The mice were anesthetized with isoflurane and were

intranasally inoculated with 16 or 5650% mouse lethal dose

(MLD50) of PR8 virus for infection studies. Mice (n = 8) were

inoculated with 16MLD50 of virus for survival rate, clinical

condition and body weight. Mice (n = 40) were also inoculated

with 16MLD50 of virus and 3 of them were sacrificed every two

days for lung histopathological analysis. Mice (n = 10) inoculated

with 56MLD50 of virus were monitored for survival rate, clinical

condition and weighed daily. Mice (n = 54) inoculated with

56MLD50 of virus were sacrificed for lung histopathological

analysis. Mice (n = 60) were inoculated with 56MLD50 of virus

and 5 of them were sacrificed at 0, 2, 4, and 6 days postinfection to

measure infectious viral loads in the lungs, lung weight and lung

water content. Dead mice were also dissected for lung histopa-

thology. The amount of water in the infected lungs was measured

using a modified dry-wet ratio assay [30]. Briefly, the lungs were

excised from the PR8-inoculated mice and weighed (wet weight).

After incubation at 50uC for 24 hours, the lungs were again

weighed (dry weight). The amount of water in the lungs was

determined by subtracting the dry weight from the wet weight.

The protocols of all mouse experiments were approved by the

Animal Care and Use Committee of the National Center for

Global Health and Medicine of Japan (approval ID: 21-I-9).

Plaque Forming Assay
Plaque forming assays were performed to measure virus loads in

the lung of infected mice as previously described [31]. In brief, the

infected mice were sacrificed at 0, 2, 4, 6 days postinfection. Their

lungs were excised, homogenated using Multi-beads Shocker

(Yasui Kikai Co., Osaka, Japan), and clarified by centrifugation at

3,500 rpm for 5 minutes at 4uC. The clarified supernatants

containing virus were diluted serially using MEM containing 0.2%

bovine albumin, 2 mM L-Glutamine, 50 units/ml penicillin, and

50 mg/ml streptomycin. The diluted viruses were infected to an

MDCK monolayer for 1 hour at 37uC. The MDCK monolayer

was washed with PBS (2) once to remove free viruses, and

overlaid with MEM containing 0.6% agar, and incubated at 37uC.

After incubation for 2 days, the monolayer cells were stained with

crystal violet solution (0.095% crystal violet and 19% methanol).

Histopathological Analysis
Mouse lungs were fixed in 4% paraformaldehyde and stained

with hematoxylin and eosin (HE). Elastica van Gieson method

[32] was performed to visualize easily crumpling alveoli without

air space because elastic fiber in alveolar septa was stained black.

Masson’s trichrome staining [33] was performed to visualize

hyaline membrane formation. Immunohistochemical analysis was

performed to detect influenza virus antigens. In brief, the

histopathological slides were deparaffinized and treated with

methanol containing 3% hydrogen peroxide to block endogenous

peroxidase. The slides were incubated with rabbit anti-human

influenza A, B virus polyclonal antibody (code #M149) [34] and

were treated with HistoMouse Max (Invitrogen, San Diego, CA) in

accordance with the manufacturer’s instructions [35]. Histopath-

ological evaluation was measured by microscope investigation.

The slides were viewed using an Olympus BX51 microscope and

software DP controller to capture images.

Statistical Analysis
All data are expressed as means 6 SD. Differences between

groups were assessed using Student’s t test, and p,0.05 was

considered statistically significant.

Supporting Information

Table S1 Results of observation of the lungs from mice
infected with 56MLD50 of PR8 virus by the microscopic
examination.dpi, days postinfection. focal/diffuse, the affected

area was focal or diffuse, it depended on samples. (2), not

observed. (6), faint. (+), obvious. (++), severe.

(TIF)
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