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Abstract: During the last decades, essential oils (EOs) have been proven to be a natural alternative
to additives or pasteurization for the prevention of microbial spoilage in several food matrices.
In this work, we tested the antimicrobial activity of EOs from Melissa officinalis, Ocimum basilicum,
and Thymus vulgaris against three different microorganisms: Escherichia coli, Clostridium tyrobutyricum,
and Penicillium verrucosum. Pressed ewes’ cheese made from milk fortified with EOs (250 mg/kg) was
used as a model. The carryover effect of each oil was studied by analyzing the volatile fraction of dairy
samples along the cheese-making process using headspace stir bar sorptive extraction coupled to gas
chromatography/mass spectrometry. Results showed that the EOs contained in T. vulgaris effectively
reduced the counts of C. tyrobutyricum and inhibited completely the growth of P. verrucosum without
affecting the natural flora present in the cheese. By contrast, the inhibitory effect of M. officinalis
against lactic acid bacteria starter cultures rendered this oil unsuitable for this matrix.

Keywords: cheese; essential oils; Escherichia coli; Clostridium tyrobutyricum; Penicillium
verrucosum; antimicrobial

1. Introduction

The cheese microbiota has an important role in the development of cheese flavor and texture.
By contrast, exogenous microorganisms can have a negative impact on the organoleptic properties of
cheese, with the potential for great economic loss. For example, the occurrence of coliforms (Escherichia
coli, Klebsiella aerogenes) and sporulating butyric bacteria (Clostridium tyrobutyricum, C. butyricum,
and C. sporogenes) is known to be responsible for early and late cheese blowing, respectively [1,2].
Also, some filamentous molds (Penicillium comune, P. verrucosum, and P. nalgiovense) of the dairy factory
environment [3,4], which are usually found in cheese rind or interior, have been associated with the
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presence of mycotoxins, with a consequent human health risk [5,6]. Late cheese blowing is quite
frequent in semi-hard and hard cheeses, including Grana Padano, Cheddar, and Manchego [7–10],
and is characterized by the presence of numerous and irregular internal holes produced by CO2

released from lactate metabolism [7,11]. In this context, C. tyrobutyricum is considered as a main spoiler
agent markedly affecting the volatile profiles of cheese [12].

Several approaches are available to reduce the occurrence of late blowing cheese spoilage, such
as pasteurization or the use of additives, including nitrates and lysozyme; however, none of these
approaches is ideal. In the case of pasteurization, bacterial endospores can survive the pasteurization
process and germinate as vegetative cells in cheese during ripening. Also, the addition of nitrates
has been associated with the presence of nitrosamine in cheese, although the European Food Safety
Authority has recently re-assessed the acceptable safe daily intake of nitrites and nitrates [13]. Lastly,
lysozyme has antimicrobial effects on lactic acid bacteria during cheese ripening [14]. Given these
constraints, the use of essential oils (EOs) as natural food preservatives has steadily gained recognition
as an alternative to the aforementioned treatments, as they are designated as “Generally Recognized
as Safe” by the Food and Drug Administration [15,16], and they have proven antibacterial [17] and
antifungal [18,19] activity. That being said, the antimicrobial activity of EOs has been assayed mostly
under in vitro conditions and against pathogenic microorganisms [20,21], and there is a paucity of
studies focusing on food products, especially in cheese [22,23]. In this context, Hyldgaard et al. [15]
have emphasized the importance of understanding the behavior of EOs in a food matrix—as differences
have been reported between plant and animal food products [24,25]. Moreover, there is conflicting
evidence between studies, even when using the same product type, likely because of compositional
differences, for example, cheeses with different fat or moisture content [5,23,26]. The utility of EOs or
their compounds in cheese production has been examined in several studies [22,23], including their
use as surface covers [5], or added directly to a finished product [19,21,26] or microencapsulated [27].
Yet, very little is known about the impact of adding EOs directly to milk before cheesemaking. Hamedi
et al. [28] showed that the efficacy of EOs against Salmonella spp. in cheese diminished significantly
when the results were compared with those obtained using a laboratory medium. It would be
reasonable to expect that the EOs used to combat spoilers or pathogens should also be tested against
lactic acid bacteria and different starter cultures required for semi-hard and hard cheese making.

Against this background, the present study was designed to determine the antimicrobial activity
and the transfer of chemical compounds to fortified cheeses of different EOs. We used Melissa officinalis
(lemon balm), Ocimum basilicum (sweet basil), and Thymus vulgaris (common thyme), and three typical
cheese spoilers, E. coli, C. tyrobutyricum, and P. verrucosum.

2. Materials and Methods

2.1. Plant Material and EO Production

The aerial parts of M. officinalis, O. basilicum, and T. vulgaris were supplied by Nutraceutical SRL
(Brazov, Romania). The raw material was packed in sealed plastic bags and stored in the dark at room
temperature until analysis. EOs were obtained by solvent-free microwave extraction (SFME) with a
NEOS® apparatus (Milestone, Sorisole, Italy) using methodology previously employed by Moro et
al. [29]. In total, 150 g of the plant was placed in the NEOS reactor with 250 mL of Milli-Q water to wet
the dry plant sample. As its name implies, the technique does not use a solvent, but the plant must
contain the water that drags the essential oils when heated by microwaves, the principle with which
this equipment works. Exhaustive extraction of EOs was then performed (35 min): the extraction
power was set at 600 W (5 min) and then at 250 W (30 min), and the temperature was monitored
with an infrared sensor for avoiding overheating (95 ± 5 ◦C). The oil was collected in the device with
graduation marks available to the equipment itself for this purpose. For the antimicrobial activity
test, the EOs were filtered using 0.2-µm PTFE syringe filters (Millipore, Madrid, Spain) to ensure the
absence of microorganisms before use.
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2.2. Milk Samples

“Manchega” breed ewes’ milk was used for cheese fabrication. Bulk tank milk was collected from
a commercial farm in Albacete (Spain). Milk had the following compositional values (g/100 g): dry
matter, 17.81; fat content, 6.80; and protein content, 5.61. The mean pH was 6.66, somatic cell counts
were 603 × 103 cells/mL and 158 × 103 CFU/mL microbial load.

2.3. Microbial Strains

The following assayed strains were purchased from the Spanish Type Culture Collection (CECT,
Burjassot, Valencia, Spain): E. coli CECT 4201, C. tyrobutyricum CECT 4011, and P. verrucosum CECT 2906.

2.4. Elaboration of Cheese Samples Fortified with EOs

Before beginning cheesemaking, vats of 30 L of milk were fortified with EO samples at a final
concentration of 0.250 g/kg. EOs were mixed 1:1 with a commercial food emulsifier (Tween-20® Food
quality, Panreac, Spain) selected because it is considered safe [30]. The control vat contained the
emulsifier at the same concentration used in the experimental (EOs) tanks. Milk was heated to 20 ◦C
for 30 min to facilitate oil solubilization, and a pressed ewes’ milk cheese procedure was performed
at a pilot dairy plant from Castilla-La Mancha University, according to Licón et al. [31], with some
modifications. Briefly, the starter culture (CHOOZIT MA4001; Danisco, Sassenage, France) was added
for 30 min with stirring, and the temperature was increased to 30 ◦C. At this point, commercial rennet
(0.023% v/v) was added to the vat with vigorous stirring, and the milk was allowed to coagulate. Thirty
minutes later, the curd was cut into 8–10 mm cubes, heated (37 ◦C), and stirred for 45 min before
whey separation. Curd was press-molded for 4 h until reaching pH 5.2. Lastly, cheeses were salt
brined at 9 ◦C and stored in a ripening chamber over four months at 12 ◦C and 80% humidity prior
to performing the assays. The cheese chemical composition was determined using a Foss FoodScan
analyzer (FoodScan Lab, FOSS, Hillerød, Denmark).

2.5. Volatile Extractions and HS-SBSE/GC/MS Analyses

EOs were directly injected (0.2 µL) into a gas chromatograph following the methodology of Moro et
al. [29]. Milk and cheese volatile extraction was performed by the headspace stir bar sorptive extraction
(HS-SBSE) method. For the former, 10 mL liquid dairy samples (milk and whey) were pipetted
separately into headspace glass vials, whereas cheese volatile extraction was performed following the
methodology of Licón et al. [32]. For all dairy samples, headspace glass vials were affixed with inserts
for headspace exposition and supplemented with a 1 × 10−3 g/kg aqueous solution of the internal
standard ethyl octanoate (Aldrich Chemical Co., Milwaukee, WI, USA). A polydimethylsiloxane
(PDMS)-coated stir bar (0.5 mm film thickness, 10 mm length in liquid samples, and 20 mm length in
cheese samples; Twister, Gersterl GmbH, Mülheim an der Ruhr, Germany) was placed into the insert,
and headspace vials were sealed with an aluminum crimp cap. Before analysis, the glass inserts and
vials were thoroughly cleaned and heat conditioned at 110 ◦C to avoid any odorous contamination.
The extraction of volatile compounds was performed following conditions proposed by Moro et al. [33],
stirring at 1000 rpm for 120 min (milk and whey) or 240 min (cheese) at 45 ◦C. The PDMS stir bars were
rinsed with distilled water, dried with cellulose tissue, and finally transferred into thermal desorption
tubes for the GC/MS analysis.

The extracted volatiles from dairy samples were desorbed in an automated thermal desorption
system (Turbo Matrix ATM, PerkinElmer, Norwalk, CT, USA) under the following conditions: oven
temperature, 280 ◦C; desorption time, 5 min; cold trap temperature, −30 ◦C; helium inlet flow rate,
45 mL/min. The volatiles were transferred into a Varian CP-3800 gas chromatograph (GC) equipped with
a Saturn 2200 ion trap mass spectrometer (MS) (Varian Inc., Palo Alto, CA, USA) and an Elite-Volatiles
Specialty phase capillary column (30 m × 0.25 mm i.d., 1.4 µm film thickness; PerkinElmer, Shelton,
CT, USA). The column temperature was set at 35 ◦C for 2 min and then raised at 5 ◦C/min to 240 ◦C
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and held for 5 min. The detector temperature was 250 ◦C, and the helium carrier gas flow rate was
1 mL/min. The electron ionization mode at 70 eV was used for the MS analysis. The mass range varied
from 35 to 300 m/z.

To avoid matrix interferences between the EOs and dairy matrix volatiles, the MS identification
of volatiles was performed in single-ion-monitoring mode using their characteristic m/z values and
by comparison of their mass spectra with those of pure compounds or reported in the NIST/ADAMS
library. The identities of the EO components were established from the GC retention time (relative
to Kovats index). Quantification was carried out in scan mode and expressed as the relative area
using the correction factor for the internal standard (ethyl octanoate) area. The results of each volatile
compound that was transferred to the dairy matrix were expressed as relative concentration area (g/kg)
using the internal standard correction factor. Then the transference ratio or recovery yield (%) from
milk to cheese of each compound that was found was calculated by the following Formula (1):

recovery yield (%) = [Xi (g/kg)/X (g/kg)] × 100 (1)

where Xi indicates the presence of each compound in cheese, and X indicates the presence of the same
compound in milk. Dairy samples were analyzed in triplicate.

2.6. Cheese Microbial Content

To enumerate the microbial content on ripened cheeses, a 10-g sample of each cheese was
aseptically homogenized with 90 mL of sterile 0.1% (w/v) peptone water in an IUL Stomacher (IUL
SA, Barcelona, Spain) for 60 s. Serial decimal dilutions of the homogenates were prepared with
buffered peptone water (BPW) (Scharlau, Barcelona, Spain) and plated onto the corresponding media
in duplicate using an Eddy Jet spiral plater (Eddy Jet v1.23, IUL SA, Barcelona, Spain). Total aerobic
bacterial counts were performed on plate count agar (PCA; Panreac Química S.L.U., Barcelona, Spain)
after incubation at 32 ◦C for 48 h under aerobic conditions. Lactic streptococci were plated on M17
agar (Biokar Diagnostics, Barcelona, Spain) with incubation at 37 ◦C for 48 h, under aerobic conditions.
Brilliant Green Bile Agar was used for coliform incubation (BGB; Pronadisa Conda, Madrid, Spain) at
37 ◦C for 24 h, under aerobic conditions. Clostridium spp. was plated on a reinforced clostridial agar
(RCA; Oxoid, Basingstoke, UK) and incubated at 37 ◦C for 48 h, under anaerobic conditions. Molds
and yeasts were seeded in potato dextrose agar (PDA; Merck, Darmstadt, Germany) and incubated at
25 ◦C, during 96 h, in aerobic conditions. Microbial growth estimations were done with an automatic
plate counter (Countermat Flash 4.2, IUL Intruments S.A., Barcelona, Spain), and the results were
expressed as log cfu/g.

2.7. Antimicrobial Activity Test

The experimental procedure for antimicrobial activity determination is depicted in Figure 1,
and allows the investigation of microbial spoilage, in the case of an external contamination such as
that occurring in ripening chambers with molds. Nine cheese cubes of 27 mm3 were obtained from
each cheese using a cheese blocker (BOSKA, Bodegraven, Holland). The cubes were divided into three
subgroups, with three cubes in each. Cubes were introduced into a sterile container and distributed as
follows: Group 1, internal inoculation with C. tyrobutyricum at 103 cfu/g, incubated at 37 ◦C under
anaerobic conditions (AnaeroGenTM, Oxoid LTD., Basingstoke, UK); Group 2, internal inoculation
with E. coli at 103 cfu/g, incubated at 37 ◦C under aerobic conditions; Group 3, surface inoculation with
P. verrucosum at 103 cfu/cm2, incubated at 25 ◦C under aerobic conditions. P. verrucosum was inoculated
onto the surface, given its inability to grow in the interior of the cheese.
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Figure 1. Antimicrobial activity assay performed by the inoculation of fortified cheeses with: (a) 
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Anastasiou et al. [35] after 15 min heat treatment at 80 °C, by serial dilution in BPW. An E. coli 
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forming units were also established by serial dilution in BPW. In both cases, 1 mL aliquots of 
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P. verrucosum spore suspensions were sub-cultured weekly on Potato Dextrose Agar (Merck, 

Darmstadt, Germany) at 25 °C in the dark. Conidia were harvested according to Baratta et al. [36], 

and the spore suspension was adjusted to an optical density of 0.5 (λ = 530 nm), equivalent to 105 

spores/mL. This suspension was employed for the immediate surface inoculation of cheese samples 

at a concentration of 103 cfu/g. 

After 1 week of incubation, starters, total viable counts, and target microbial growth were 

determined in all cheese cubes. The experiment was performed in duplicate. 

2.9. Statistical Analysis 

Descriptive analysis and analysis of variance (ANOVA; p < 0.001) coupled to a Tukey’ test (p < 

0.05) were performed to determine group differences between the antimicrobial activity results using 

IBM Statistics SPSS software, v24 (SPSS Inc., Chicago, IL, USA). 
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Figure 1. Antimicrobial activity assay performed by the inoculation of fortified cheeses with:
(a) Clostridium tyrobutyricum (37 ◦C, anaerobic conditions), (b) Escherichia coli (37 ◦C, aerobic conditions)
and (c) Penicillium verrucosum (25 ◦C, aerobic conditions).

2.8. Microorganism Inoculum Preparation

C. tyrobutyricum spore suspensions were obtained by prior prolonged incubation (1 week) on
Reinforced Clostridial Medium (Oxoid LTD.). Subsequently, spores were harvested and cleaned
following a procedure adapted from Yang et al. [34], which briefly consisted of double purification by
centrifugation at 8000× g for 15 min at 4 ◦C. The final pellet was resuspended in sterilized distilled
water, and the spore concentration of the suspension was determined by adapting the procedure of
Anastasiou et al. [35] after 15 min heat treatment at 80 ◦C, by serial dilution in BPW. An E. coli suspension
was obtained after 22 h of cultivation on Triptone Soy Medium (Oxoid LTD.); the colony-forming
units were also established by serial dilution in BPW. In both cases, 1 mL aliquots of concentrated
bacterial suspensions were stored at −20 ◦C in 15% of glycerol until needed for inoculation at a final
concentration of 103 cfu/g.

P. verrucosum spore suspensions were sub-cultured weekly on Potato Dextrose Agar (Merck,
Darmstadt, Germany) at 25 ◦C in the dark. Conidia were harvested according to Baratta et al. [36],
and the spore suspension was adjusted to an optical density of 0.5 (λ = 530 nm), equivalent to 105

spores/mL. This suspension was employed for the immediate surface inoculation of cheese samples at
a concentration of 103 cfu/g.

After 1 week of incubation, starters, total viable counts, and target microbial growth were
determined in all cheese cubes. The experiment was performed in duplicate.

2.9. Statistical Analysis

Descriptive analysis and analysis of variance (ANOVA; p < 0.001) coupled to a Tukey’ test (p < 0.05)
were performed to determine group differences between the antimicrobial activity results using IBM
Statistics SPSS software, v24 (SPSS Inc., Chicago, IL, USA).

3. Results and Discussion

3.1. Extraction and Composition Analysis of Essential Oils

EOs from aromatic plants are a complex mixture of volatile oils of low molecular weight that are
obtained by steam distillation [37]. In the present study, EOs were obtained using a modern extraction
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technique based on solvent-free, microwave hydrodiffusion, also known as SFME or microwave
hydrodiffusion and gravity [38]. The use of this technique offers several advantages over conventional
hydrodistillation or solvent distillation, including the avoidance of artefacts during distillation, and also
savings in energy and extraction time [38].

Chemical characterization of the EOs in terms of volatile composition was necessary before
determining the transference ratio during cheesemaking. The total number of compounds identified in
the EOs ranged from 14 in O. basilicum to 27 in T. vulgaris (Table 1), and they constituted over 87% of
the total area composition.

According to chemical families of compounds, all EOs were represented mainly by monoterpenes—
with 83.80% to 96.57% of the total peak area, respectively. Sesquiterpenes represented <3.2% of the
total composition. In accordance with our previous study [33], the present results showed that all
of the EOs were dominated by two or three major compounds (Table 1), representing up to 40%
of the total area. These main compounds were commonly oxygenated monoterpenes, terpenes,
which undergo biochemical modifications that add oxygen molecules and move or remove methyl
groups [15]. In contrast to other studies [17,18], we found that the O. basilicum EO was described
mainly by the aromatic compound 4-allyl-anisole also known as methyl chavicol (58.21%), rather than
linalool (11.21%), which has been reported in larger amounts by other authors (20%–66%). In addition,
we found a small amount (3.20%) of the sesquiterpene α-bergamotene (E)(Z).

Linalool is a linear monoterpene that is frequently found in volatile plant extracts. We found this
in a range from 1.71% to 34.54% of the total area; the latter case was found for T. vulgaris, exceeding the
concentration of thymol, which is usually the characteristic EO marker of this species [20,39]. The other
family groups of compounds identified in this EO represented ~2% of the total composition.

Regarding the EOs of M. officinalis, nerol (35.85%) and neral (35.34%) were the major compounds
identified, and the remaining compounds did not exceed 2.7% of the total area. These results differ
from those of previous works [40,41], which suggested that citral—a mixture of neral and geranial—is
the major compound [40,41]. Geranial and nerol are biosynthetically connected, as geranial is the
aldehyde isomer of nerol.

The absence of or a smaller-than-expected amount of compounds has been reported by other
authors, such as the absence of thymol in thyme oil, and the presence of other compounds, such as
carvacrol, a phenolic monoterpene, or p-cymene, and γ-terpinene, precursors in its biogenetic
pathway [42]. In this regard, some authors have highlighted the effect of plant chemotype on EO
composition for the presence of thymol, thymol/linalool, and carvacrol chemotypes in different varieties
of thyme [43]. Moreover, several studies have emphasized the importance of culture-growing conditions
and harvesting, in addition to different varieties, when EOs are chemically characterized [17,42]. The
extraction methodology is also known to affect the composition and quality of extracts, as the use of
high temperatures can stimulate the hydrolysis and polymerization of some esters [44], whereas the
use of solvents can leave residual substances that affect the biological properties of EOs [45]. Using the
same extraction procedure as that used here, Okoh et al. [46] achieved better extraction yields and
larger amounts of oxygenated monoterpenes than with EOs obtained by hydrodistillation, which may
explain the compositional differences between studies.
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Table 1. Volatile composition of essential oils (EOs) expressed as relative area (%).

Compounds RT (min) KI exp. * m/z Pattern ** Melissa officinalis Ocimum basilicum Thymus vulgaris

Number of compounds 18 14 27
Monoterpenes family

α-thujene 28.34 924 77/93/136 - - 0.43
α-pinene 28.86 937 93/136 0.51 0.27 4.74

camphene 29.56 946 93/121/136 2.71 - 1.69
sabinene 30.51 970 93/77/41 0.02 0.23 1.27
β-pinene 30.77 975 41/93/107/121 2.22 0.52 8.13
myrcene 30.83 988 41/93/69 - 0.31 -

α-phelandrene 31.74 1002 93/77/136 - - 0.8
α-terpinene 32.22 1014 93/121/136 - - 5.12

β-ocimene (Z) 32.55 1017 79/93/136 0.43 - -
p-cymene 32.64 1020 91/119 - - 6.96

sylvestrene 32.66 1024 41/68/93/136 0.48 - -
1,8 cineole 32.80 1026 43/108/139/154 - 5.85 -

β-phelandrene 32.90 1025 77/93/136 - - 1.52
β-ocimene (E) 33.06 1032 79/93/136 0.31 0.84 0.11
γ-terpinene 33.74 1054 77/93/121/136 - - 7.5

4-thujanol (Z) 34.16 1065 43/71/93/139/154 - - 1.44
terpinolene 34.83 1086 43/93/121/136 0.3 - 2.47

linalool 35.09 1089 43/71/154 1.71 11.21 34.54
perillene 35.14 1093 41/69/81/150 0.12 - -

4-thujanol (E) 35.37 1098 43/71/93/139/154 - - 0.18
citronellal 37.04 1148 41/69/95/121/154 0.65 - -
camphor 37.64 1141 41/95/152 - 0.54 0.3
borneol 38.01 1165 95/154 - - 2.77

terpinen-4-ol 38.30 1174 43/71/154 0.28 0.33 10.54
α-terpineol 38.75 1186 43/59/93/136 0.56 - 2.14

4-allyl-anisole 38.84 1189 77/121/148 - 58.21 -
dihydro carvone (E) 39.09 1194 41/67/95/152 - - 0.51
dihydro carvone (Z) 39.41 1200 41/67/95/152 - - 0.56

linalyl acetate 40.25 1210 43/93/121 - - 1.55
nerol 40.38 1227 41/69/154 35.85 - -
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Table 1. Cont.

Compounds RT (min) KI exp. * m/z Pattern ** Melissa officinalis Ocimum basilicum Thymus vulgaris

carvone 40.747 1235 54/82/93/150 - - 0.13
neral 41.31 1239 41/69/109/152 35.34 - -

thymol 41.43 1281 135/150/65 - - 0.66
bornyl acetate 41.91 1288 41/95/121 - 1.18 -

carvacrol 41.98 1298 41/135/150 - - 0.51
eugenol 44.05 1356 43/131/149/164 - 3.03 -

neryl acetate 44.06 1359 41/69/93/154 7.54 - -
methyl eugenol 45.03 1403 41/107/163/178 - 1.28 -
Sesquiterpenes

α-bergamotene (E)(Z) 46.33 1432 41/93/119/204 - 3.2 -
β-caryophyllene (E) 46.48 1417 41/93/103/161 2.94 - 1.76

Others
1-octen-3-ol 30.19 974 43/57 - - 0.06

Total area of all identified
compounds (%) 91.97 87 98.39

Total Monoterpenes (%) 89.03 83.8 96.57
Total Sesquiterpenes (%) 2.94 3.2 1.76

Total Others (%) - - 0.06

* Experimental Kovats index; ** in bold m/z used for quantification.
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3.2. Volatile Composition of Dairy Samples

As previously reported by Tajkarimi et al. [47], the normal concentration range for spices and
herbs used in food systems is between 0.05% and 0.1%. In the present study, an EO concentration
of 0.25 g/kg was chosen to study the transference of volatile compounds during the cheese-making
process, to prevent an excessive sensory impact and to provide antimicrobial activity. Indeed, the
concentration of EOs is an important consideration, as it has been demonstrated that they may have an
undesirable impact on cheese sensory properties by modifying the dynamics or activity of the microbial
ecosystem during cheese making and ripening. This hypothesis derives from indirect observations in
several trials of hard-cooked cheeses and experiments performed by Tornambé et al. [48], where EO
concentration levels higher than 10 g/kg resulted in a high sensory impact and consequent rejection
by consumers. Because specific surfactant actions are required to improve the affinity of the matrix
for volatile compounds, particularly terpenes, we selected Tween®-20 as a polysorbate surfactant,
whose stability and relative lack of toxicity allow it to be used as a detergent and emulsifier for culinary,
scientific, and pharmacological purposes.

The methodology selected for the extraction and characterization of volatiles (HS-SBSE coupled
with GC/MS) is a common technique in food volatile analysis, and it has been specifically optimized by
Licón et al. [32] and Moro et al. [33] for pressed ewes’ milk cheeses. This food matrix is quite complex,
and several interactions can potentially take place between food components and EOs [15] due to
the high fat and protein content of the cheese. For the present study, we only examined the volatiles
present in the EOs, and the identification of other cheese compounds was dismissed. The results of the
concentration of the main compounds identified in milk, cheese, and whey, together with the carryover
percentages, are provided in Table 2.

The major compounds of the EOs (Table 1) corresponded to those identified in larger quantities in
milk, cheese, and whey, whereas the minor compounds were below the method’s limit of detection.
The number of detected compounds in the different matrices ranged from 9 to 22, and between 82%
and 95% of the compounds detected in the EOs were transferred to the dairy products. This transfer
range was much broader than that described by Tornambé et al. [48] (43%) when a pasture plant EO
was added to milk.

Regarding the different chemical families found in milk, monoterpenes were the most abundant
in milk spiked with M. officinalis (47.76 mg/kg), T. vulgaris (249.81 mg/kg), and O. basilicum (82.71
mg/kg). For cheese and whey, different transference rates were obtained for each plant: for M. officinalis,
monoterpene compounds (7.06%) in cheese and sesquiterpenes (30.61%) in whey showed the lowest
and the highest carryover effects in this plant; for T. vulgaris, sesquiterpenes (16.67% and 39.58%)
were the most abundant family of compounds in cheese and whey, respectively; whereas for O.
basilicum, the best carryovers were observed for monoterpenes (28.44% and 23.15%) for cheese and
whey, respectively. Transference of compounds in EOs to dairy matrices is challenging, as they are
known to interact with fat, carbohydrate, and protein matrices in cheese [20,24]. Specifically, proteins
and whey proteins can interact with compounds presenting with a hydroxyl group, restricting their
ability to be transferred [20,23].

As individual compounds, the major content of M. officinalis-enriched dairy products (milk, cheese,
whey) were nerol (17.56, 0.86, 3.57 mg/kg), neral (16.30, 0.86, 3.38 mg/kg), and camphene (8.60, 0.99, 1.36
mg/kg). Most of the compounds identified in O. basilicum-enriched milk were below 0.60 mg/kg, with
the exception of 4-allyl-anisole (47.02 mg/kg), 1,8 cineole (15.49 mg/kg), and linalool (13.99 mg/kg). For
T. vulgaris-enriched dairy products, a larger abundance of significant compounds was found, as eight
compounds >10 mg/kg were detected in milk, reaching 6.5 mg/kg in cheese, and as high as 13 mg/kg in
whey. The same was found for cheese and whey. However, these individual major compounds did not
offer the best carryover ratios, and other minor compounds were better transferred: linalool (14.29%) in
cheese, and β-caryophyllene (30.61%) in whey from M. officinalis, β-caryophyllene (16.67%) in cheese
and 1,8 cineole (47.12%) in whey from T. vulgaris, and α-thujene (75.00%) in cheese and γ-terpinene
(30.00%) in whey from O. basilicum. In the case of α-thujene, it has to be pointed out that it is a high
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transfer rate but for a very minority compound, which we do not even find in the essential oil of this
plant. Maybe the enzymatic activity present in the milk could convert sabinene into α-thujene since
they have great structural similarity. Indeed, it seems that the different functional groups of compounds
also affected the transfer ratios, which were better for hydrocarbon monoterpenes than for oxygenated
ones. Thus, better carryover ratios were reached by using EOs that are richer in hydrocarbons rather
than oxygenated monoterpenes.
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Table 2. Presence of compounds in fortified dairy products and transfers from milk to cheese and whey (n = 3).

Melissa officinalis Ocimum basilicum Thymus vulgaris

Conc. (mg/kg) † Transf. (%) ‡ Conc. (mg/kg) Transf. (%) Conc. (mg/kg) Transf. (%)

M§ C W C W M C W C W M C W C W

Number of
compounds 11 9 10 19 18 19 22 22 18

Monoterpene family
α-thujene - - - - - 0.04 0.03 0.01 75.00 25.00 2.19 0.28 0.22 12.79 10.05
α-pinene 1.53 0.18 0.23 11.76 15.03 0.47 0.33 0.09 70.21 19.15 21.10 2.58 2.19 12.23 10.38

camphene 8.60 0.99 1.36 11.51 15.81 0.13 0.08 0.03 61.54 23.08 7.79 0.92 0.77 11.81 9.88
sabinene - - - - - 0.45 0.21 0.08 46.67 17.78 5.64 0.64 0.64 11.35 11.35
β-pinene 0.22 0.03 0.05 13.64 22.73 0.67 0.32 0.14 47.76 20.90 34.08 3.72 4.25 10.31 11.78

α-phelandrene - - - - - - - - - - 3.26 0.40 0.40 12.27 12.27
α-terpinene - - - - - - - - - - 22.52 2.50 2.80 11.10 12.43
p-cymene - - - - - 0.27 0.12 0.05 44.44 18.52 13.04 1.48 1.65 11.35 12.65

sylvestrene - - - - - - - - - - 16.54 1.56 - 9.43 -
1.8 cineole - - - - - 15.49 4.55 4.37 29.37 28.21 5.73 0.61 2.70 10.65 47.12

β-ocimene (E) 0.48 0.06 0.09 12.50 18.75 1.28 0.47 0.26 36.72 20.31 0.45 0.06 - 13.33 -
γ-terpinene - - - - - 0.10 0.04 0.03 40.00 30.00 27.88 3.10 3.95 11.12 14.17

4-thujanol (Z) - - - - - - - - - - 0.52 0.03 - 5.77 -
terpinolene 0.45 0.04 0.06 8.89 13.33 0.26 0.34 0.06 130.77 23.08 7.19 0.88 1.17 12.24 16.27

linalool 1.19 0.17 0.36 14.29 30.25 13.99 3.85 3.62 27.52 25.88 61.83 6.57 12.98 10.63 20.99
4-thujanol (E) - - - - - - - - - - 1.99 0.13 - 6.53 -

camphor - - - - - 0.61 0.18 0.15 29.51 24.59 0.85 0.09 0.17 10.59 20.00
borneol - - - - - 0.15 0.04 0.03 26.67 20.00 2.14 0.30 0.49 14.02 22.90

terpinen-4-ol 0.15 - 0.02 - 13.33 0.20 0.05 0.04 25.00 20.00 13.03 1.45 3.31 11.13 25.40
α-terpineol - - - - - - - - - - 1.26 0.18 0.40 14.29 31.75

4-allyl-anisole - - - - - 47.02 12.70 9.97 27.01 21.20 - - - - -
linalyl acetate - - - - - - - - - - 0.61 0.08 - 13.11 -

nerol 17.56 0.86 3.57 4.90 20.33 - - - - - - - - - -
neral 16.30 0.86 3.38 5.28 20.74 - - - - - - - - - -

eugenol - - - - - 0.77 - 0.07 - 9.09 - - - - -

bornyl acetate - - - - - 0.64 0.18 0.12 28.13 18.75 0.17 0.02 0.08 11.76 47.06
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Table 2. Cont.

Melissa officinalis Ocimum basilicum Thymus vulgaris

Conc. (mg/kg) † Transf. (%) ‡ Conc. (mg/kg) Transf. (%) Conc. (mg/kg) Transf. (%)

M§ C W C W M C W C W M C W C W

neryl acetate 1.28 0.18 0.34 14.06 26.56 - - - - - - - - - -

methyl eugenol - - - - - 0.17 0.03 0.03 17.65 17.65 - - - - -

Sesquiterpene family

α-bergamotene
(E)(Z) - - - - - 0.68 0.18 0.14 26.47 20.59 - - - - -

β-caryophyllene
(E) 0.49 0.06 0.15 12.24 30.61 - - - - - 0.48 0.08 0.19 16.67 39.58

Total identified
compounds 48.25 3.33 9.61 7.11 19.92 83.39 23.70 19.29 28.42 23.13 250.29 27.66 38.36 11.05 15.33

Total monoterpenes 47.76 3.37 9.46 7.06 19.81 82.71 23.52 19.15 28.44 23.15 249.81 27.58 38.17 11.04 15.28

Total sesquiterpenes 0.49 0.06 0.15 12.24 30.61 0.68 0.18 0.14 26.47 20.59 0.48 0.08 0.19 16.67 39.58
† Concentration of the compound in the matrix expressed as mg/kg; ‡ Transfer of compounds from milk to cheese and whey; §M, C, W: Milk, Cheese, and Whey samples.
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3.3. Antimicrobial Activity

The established concentration mean value of 103 was decided as a mid-point of known studies
for the different species. In the case of P. verrucosum, the studies considered were those of Nielsen
et al. [49] and Vazquez et al. [5]. The first ones inoculated Arzua-Ulloa cheeses with fungal species
at the concentration of 1.5 × 103 spores/cm2 and the second ones at 102 spores/cm2. We decided to
fit the inoculum at an intermediate level of 103 cfu/cm2. For E. coli, several authors [21,50,51] used
contamination levels in cheese or milk for cheese elaboration in the range from 101 cfu/g or mL to 105

cfu/g or mL. The average value of 103 seemed reasonable again, as it was also somewhat below the
maximum contamination levels found for Clostridium in cheeses by several authors [9,52].

The antimicrobial effects of the plant EOs on the initial flora of fortified cheeses are shown in
Figure 2. The antimicrobial effect of M. officinalis EOs was strong, whereas the effect of T. vulgaris
EOs was milder, and the effect of O. basilicum EOs was intermediate. Additionally, M. officinalis and
O. basilicum EOs showed the greatest inhibitory effect against clostridia microorganisms naturally
occurring in the milk and cheese. Specifically, the EOs from M. officinalis and O. basilicum completely
blocked the growth of Clostridium spp., whereas T. vulgaris tempered the growth of these bacteria by
more than 1 log unit (2.25 and 3.47 log cfu/g in the T. vulgaris-fortified and control cheese, respectively).
However, it was not possible to evaluate the inhibitory capacity on initial coliforms or molds as the
milk was free of these two groups of microorganisms since none of them grew even in control cheeses.

Foods 2019, 8, x FOR PEER 

REVIEW 

 11 of 18 

 

respectively). However, it was not possible to evaluate the inhibitory capacity on initial coliforms or 

molds as the milk was free of these two groups of microorganisms since none of them grew even in 

control cheeses. 

These findings indicate that late cheese blowing caused by clostridia development can be 

prevented by the tested EOs. Nevertheless, the robust antibacterial effect of M. officinalis EOs might 

negatively affect cheese ripening as it greatly influenced normal cheese flora development by 

reducing the starter bacteria content by nearly 2 log units (Figure 2). This imbalance in lactic 

streptococci might lead to flat flavors due to their lower activity in the ripening stages [54], paste 

defects deriving from slow acidification during cheese preparation [55], or even early cheese blowing 

as lactose consumption competition with coliforms would be lacking [56]. Indeed, when producing 

cheese, delays of more than 30 min were observed during the M. officinalis acidification process (data 

not shown). As mentioned, it was impossible to ascertain the effect of these EOs on coliforms, 

probably owing to the water activity of the four-month ripened cheeses preventing bacterial growth. 

Moreover, when compared against the control and T. vulgaris-fortified cheese, which had normal 

counts in a 150-day ripened cheese [57], the O. basilicum EOs had a mild effect on normal cheese flora 

(Figure 2). 

 

Figure 2. Microbial content (log cfu/g; mean ± SEM) in the control, Melissa officinalis (MO), Ocimum 

basilicum (OB), and Thymus vulgaris (TV) ripened cheeses. (Total Viable Counts: ; Lactic Acid 

Bacteria: ; Clostridium spp.: ). 

The antimicrobial activity results of the fortified and control cheese samples after one week of 

incubation are shown in Figure 3. The effect of EOs on Clostridium spp. remained relevant (Figure 

3a). In the Group 1 cubes (inoculated with C. tyrobutyricum), the addition of O. basilicum and T. 

vulgaris reduced the clostridial counts by more than 1 log unit as compared with the control samples 

(4.04 log cfu/g), whereas the M. officinalis cheeses had no clostridial counts. In our previous study on 

the anticlostridial activity of M. officinalis EOs in laboratory media, we found that the concentration 

of these EOs required to achieve total inhibition was ten times lower [58]. These results are in 

accordance with the fact that higher concentrations of EOs are needed in food matrices compared 

with those used in in vitro testing, highlighting the importance of performing simultaneous studies 

in vitro and in situ [59]. This inhibitory effect on clostridial growth reached in this assay was more 

robust than that described by other authors such as Deans and Ritchie [60], who tested pure oils in 

vitro, and were unable to demonstrate inhibition of C. sporogenes with any of the three tested EOs. 

By contrast, Baratta et al. [36] reported inhibitions with O. basilicum oil on another clostridial species, 

C. perfringes, which overall suggests varying resistance among strains. 

  

0

1

2

3

4

5

6

7

Control MO OB TV

lo
g

 c
fu

/g

Figure 2. Microbial content (log cfu/g; mean ± SEM) in the control, Melissa officinalis (MO), Ocimum
basilicum (OB), and Thymus vulgaris (TV) ripened cheeses. (Total Viable Counts:
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These findings indicate that late cheese blowing caused by clostridia development can be prevented
by the tested EOs. Nevertheless, the robust antibacterial effect of M. officinalis EOs might negatively
affect cheese ripening as it greatly influenced normal cheese flora development by reducing the starter
bacteria content by nearly 2 log units (Figure 2). This imbalance in lactic streptococci might lead to
flat flavors due to their lower activity in the ripening stages [53], paste defects deriving from slow
acidification during cheese preparation [54], or even early cheese blowing as lactose consumption
competition with coliforms would be lacking [55]. Indeed, when producing cheese, delays of more than
30 min were observed during the M. officinalis acidification process (data not shown). As mentioned,
it was impossible to ascertain the effect of these EOs on coliforms, probably owing to the water activity
of the four-month ripened cheeses preventing bacterial growth. Moreover, when compared against
the control and T. vulgaris-fortified cheese, which had normal counts in a 150-day ripened cheese [56],
the O. basilicum EOs had a mild effect on normal cheese flora (Figure 2).

The antimicrobial activity results of the fortified and control cheese samples after one week of
incubation are shown in Figure 3. The effect of EOs on Clostridium spp. remained relevant (Figure 3a).
In the Group 1 cubes (inoculated with C. tyrobutyricum), the addition of O. basilicum and T. vulgaris
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reduced the clostridial counts by more than 1 log unit as compared with the control samples (4.04 log
cfu/g), whereas the M. officinalis cheeses had no clostridial counts. In our previous study on the
anticlostridial activity of M. officinalis EOs in laboratory media, we found that the concentration of
these EOs required to achieve total inhibition was ten times lower [57]. These results are in accordance
with the fact that higher concentrations of EOs are needed in food matrices compared with those used
in in vitro testing, highlighting the importance of performing simultaneous studies in vitro and in
situ [58]. This inhibitory effect on clostridial growth reached in this assay was more robust than that
described by other authors such as Deans and Ritchie [59], who tested pure oils in vitro, and were
unable to demonstrate inhibition of C. sporogenes with any of the three tested EOs. By contrast,
Baratta et al. [36] reported inhibitions with O. basilicum oil on another clostridial species, C. perfringes,
which overall suggests varying resistance among strains.
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Figure 3. Microbial content (log cfu/g; mean ± SEM) in the control, Melissa officinalis (MO), Ocimum
basilicum (OB), and Thymus vulgaris (TV) ripened cheeses inoculated and incubated for 1 week with
(a) Clostridium tyrobutyricum, (b) Escherichia coli, and (c) Penicillium verrucosum. (Total Viable Counts:
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No growth was recorded for any of the cubes in Group 2 (inoculated with E. coli), which fits
with the initial cheese enumeration of the coliforms (Figures 2 and 3b). It is commonly accepted that
Gram-negative bacteria are more resistant than Gram-positive bacteria to EOs [23]. However, the
results herein do not match with these observations, likely due to the harsh conditions of matured
cheeses until coliform development; for instance, low pH, water activity, or lactose exhaustion [54].

Regarding the antifungal effect against P. verrucosum, we found a complete inhibition of growth
in the T. vulgaris-fortified cheese, a slight reduction in the M. officinalis cheese (0.61 log unit) and no
effect in the O. basilicum cheese (Figure 3c). These findings contrast with those obtained under in vitro
conditions, where O. basilicum activity was the greatest, and T. vulgaris activity was the lowest [57].
Thus, the comparison of the effects of EOs on a cheese matrix and on laboratory media is important,
as the activity may completely change.

Indeed, the activity of these EOs followed the same pattern in the cheese matrix as that observed
in culture media against C. tyrobutyricum; thus, M. officinalis proved the most active, followed by O.
basilicum and then T. vulgaris [60]. Cheese type can also have an effect on the antimicrobial potential
of EOs, which was highlighted by Vázquez et al. [5], who found different effects of EO compounds
when applied as cheese covers depending on cheese type. The authors of this study observed that it is
possible to robustly inhibit P. citrinum in Arzúa-Olloa cheese with 200 µL/mL of eugenol, whereas no
inhibition was observed for Cebreiro cheese, and the same was found when using thymol, the principal
constituent of thyme oil [23,61]. These authors had to apply pure thyme oil to inhibit Aspergillus
parasiticus growth in culture media.

Some other factors relating to the cheese matrix can completely alter the activity of EOs, which are
in the main reduced as compared with laboratory media [24]. Several studies have demonstrated that
food composition has a negative impact on EO efficacy, particularly carbohydrate, protein, and fat
content [23,58]. In this line, low-fat cheeses are better for the action of EOs against Gram-positive
bacteria but are worse for Gram-negative ones [26], and carbohydrates reduce the activity of EOs in
other food matrices [24].

With the exception of the cheese samples incubated at 25 ◦C under aerobic conditions, the total
viable counts and lactic streptococci generally decreased in relation to the initial cheese content
(Figures 2 and 3). The decline in these bacterial counts ranged from 0.1 to 3.3 log units. Furthermore,
these reductions seemed to be influenced by not only the addition of EOs but also by the incubation
conditions (Figure 3). Indeed, the combined effect of an anaerobic environment and the addition of M.
officinalis or T. vulgaris EOs led to the most marked reductions in microbial flora (Figure 3a). During
a long ripening period, like that studied in this work, a reduction in starter microorganisms is due
not only to their loss of viability but also to the release of intracellular enzymes [62]. These starter
microorganisms, which are stored refrigerated for a long ripening period, generally acclimatize to
low temperature. Hence, this selection for more cold-tolerant microorganisms can explain the lower
inhibition noted in the cheese cubes incubated at lower temperatures. In addition, increasing the
incubation temperature from 25 ◦C to 37 ◦C can trigger the evaporation of the volatile compounds
transferred from EOs to cheese, thus increasing their content in the vapor phase and, consequently,
inhibiting bacteria more efficiently, as formerly observed by other authors [63,64].

4. Conclusions

The present study demonstrates that most of the compounds present in the EOs from M. officinalis,
T. vulgaris, and O. basilicum were transferred from milk to cheese and whey. The carryover results
show hydrocarbon monoterpenes to be the best transferred compounds from milk to cheese (11%–53%)
and whey (11%–20%), indicating that they are less affected by fat and casein matrices. Obtaining
dairy products supplemented with aromatic compounds enhances their flavor, but also contributes to
bioactive properties (antioxidant or antimicrobial) and are alternatives for the dairy industry. Therefore,
further research is recommended to test these potential properties. This work also demonstrates
the importance of conducting specific studies on the target food matrix in order to evaluate the
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antimicrobial activity of EOs. Occasionally their efficacy could be extrapolated, which was the case
of the three EOs studied against C. tyrobutyricum, although lower concentrations are required when
assaying in culture media. Yet with other microorganisms like P. verrucosum, extrapolation can lead to
a misinterpretation of the potential of these EOs if only in vitro assays are performed to select the most
appropriate ones because many matrix factors can impact the results.

The effect of these EOs on microorganisms that are crucial for proper cheese ripening must also be
considered, given the risk of converting a good, natural solution for a technological problem into a new
limitation. By considering these considerations, and the concentrations assayed, we conclude that the
EOs of M. officinalis and O. basilicum display excellent activity that helps combat microorganisms that
may cause late cheese blowing before and after inoculation, and they do not show post-inoculation
inhibition against mold. However, the M. officinalis EOs are not recommended because they potently
inhibit the starter cultures usually added during cheese manufacture. The most balanced EOs for
combating the microbial cheese defects addressed in this work are those of T. vulgaris, which reduce
the clostridia content, strongly inhibit mold growth, and do not damage lactic streptococci starters.
Further studies are needed to better understand the precise effect of EOs from aromatic plants on
cheese matrices to adjust the most adequate EOs concentration for consumer acceptability, as well as
their effect on different cheese varieties or ripening stages.
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