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Abstract

Antibiotics seize an effect on bacterial composition and diversity and have been demon-

strated to induce disruptions on gut microbiomes. This may have implications for human

health and wellbeing, and an increasing number of studies suggest a link between the gut

microbiome and several diseases. Hence, reducing antibiotic treatments may be beneficial

for human health status. Further, antimicrobial resistance (AMR) is an increasing global

problem that can be counteracted by limiting the usage of antibiotics. Longer antibiotic treat-

ments have been demonstrated to increase the development of AMR. Therefore, shortening

of antibiotic treatment durations, provided it is safe for patients, may be one measure to

reduce AMR. In this study, the objective was to investigate effects of standard and reduced

antibiotic treatment lengths on gut microbiomes using a murine model. Changes in the

murine gut microbiome was assessed after using three different treatment durations of

amoxicillin (3, 7 or 14 days) as well as a control group not receiving amoxicillin. Fecal sam-

ples were collected before and during the whole experiment, until three weeks past end of

treatment. These were further subject for 16S rRNA Illumina MiSeq sequencing. Our results

demonstrated significant changes in bacterial diversity, richness and evenness during

amoxicillin treatment, followed by a reversion in terms of alpha-diversity and abundance of

major phyla, after end of treatment. However, a longer restitution time was indicated for

mice receiving amoxicillin for 14 days, and phylum Patescibacteria did not fully recover. In

addition, an effect on the composition of Firmicutes was indicated to last for at least three

weeks in mice treated with amoxicillin for 14 days. Despite an apparently reversion to a

close to original state in overall bacterial diversity and richness, the results suggested more

durable changes in lower taxonomical levels. We detected several families, genera and

ASVs with significantly altered abundance three weeks after exposure to amoxicillin, as well

as bacterial taxa that appeared significantly affected by amoxicillin treatment length. This

may strengthen the argument for shorter antibiotic treatment regimens to both limit the

emergence of antibiotic resistance and risk of gut microbiome disturbance.
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Introduction

More than half of all cells inside the human body are bacteria [1], and most of these reside in

the intestine. Numerous different microbial taxa have been identified in the gut system and a

the gut flora commonly comprise 800–1000 different bacterial species [2], whereas the major-

ity (> 90%) belongs to the phyla Bacteroidetes and Firmicutes [3]. The gut microbes and their

composition may seize a significant effect on our health and wellbeing as they contribute to

our metabolism [4,5], nutrient uptake [6], and play a key role in regulating our immune system

[7]. A range of factors has been suggested to affect the microbial composition and dynamics of

mammalian intestines [reviewed in 8], e.g. birth mode, genetics, gender, hormonal cycle, early

life development, infections, diurnal rhythm, medicines, diet and lifestyle. A dysbiosis in the

microbial composition or alterations in the abundance of certain taxa, may seize a negative

impact on human health and has been linked to the pathogenesis of various diseases, e.g.

inflammatory bowel disease (IBD) [9], asthma [10], obesity [11], liver disease [12], diabetes

[13], depression [14], cardio vascular disease [15] and Alzheimer [16].

It is well known that simultaneously with eliminating pathogenic target-organisms, antibi-

otic treatments seize an effect on the microbiome and may disrupt intestinal bacterial homeo-

stasis [17–20]. Broad-spectrum antibiotics such as Ciprofloxacin and β-lactams cause a

significant drop in taxonomic richness, diversity and evenness during intake [21,22]. Even

though the microbiome to some extent display a resilient capacity and may recover to a com-

position relatively close to the original, alterations reflected in the abundance of certain taxa,

may persist for extensive time [23,24]. Studies involving amoxicillin, have demonstrated a sig-

nificant shift in the microbiome composition during treatment [24]. A recent review paper

focusing on the effect of antibiotics on gut microbiomes conclude that in most of the studies

included in the assessment, microbial composition returned to normal within 2–4 weeks after

amoxicillin treatment [25]. Short-term effects, such as an increase in Bacteriodetes/Firmicutes

ratio, have been described in several papers [18,22], and significant changes in abundance of

the phyla Proteobacteria, Actinobacteria, Verrucomicrobia, Deferribacteria, Patescibacteria

and Deferribacterota have been observed during treatment and shortly after [18,26]. Neverthe-

less, it has been suggested that alterations in specific taxa at lower phylogenetic levels, e.g.

genus or species, may persist [27]. Despite a reversion to the original state in terms of bacterial

phyla diversity, significant alterations in specific taxa can seize an effect on human health and

wellbeing [28,29]. Antibiotic induced disturbances in the microbiome have been linked to dis-

eases such as acute or chronic gut infections [30], immune homeostasis [reviewed in 31] and

increased risk of allergy and asthma [32]. Hence, it is vital to assess differences on lower taxo-

nomic levels in order to reveal long-persistent changes in the microbiome.

In addition to diversity-related changes in the microbiome, antibiotic treatments stimulate

the development of antibiotic resistant bacterial strains [33] and the human gut microbiota has

been characterized as a reservoir of antibiotic resistance genes [17]. Infections from antibiotic

resistant strains are increasing and are estimated to cause at least 700 000 deaths worldwide

each year, and have further been projected to rise to 10 million deaths per year by 2050 [34].

AMR is regarded as one of the most alarming issues for human health, and international insti-

tutions are urging to reduce the extensive use of antibiotics [35], which is the main driving

force for the development of AMR [33]. Longer antibiotic treatments have been associated

with increased rates of resistance [36,37]. In a study comparing 8 and 15 days antibiotic treat-

ment, multi-resistant pathogens was detected with a lower frequency in patients who had

received antibiotics for 8 days compared to 15 [36]. While several studies have demonstrated a

higher risk of resistance development with longer treatment lengths, there has to our knowl-

edge been no clinical studies comparing treatment lengths, demonstrating increased risk of
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AMR development among patients receiving treatments with shorter treatment length. Fur-

ther, several studies have demonstrated that for the treatment of infections in e.g. the urinary

tract, tonsillitis or lungs, reduced antibiotic treatment durations is not inferior to standard

treatment duration for patient recovery outcomes [36,38–42]. Therefore, implementation of

shorter treatments is in several cases regarded as safe and has been recommended as a standard

procedure for certain infections [43,44].

Since several recommendations urge to reduce antibiotic treatment lengths as a measure to

limit AMR bacterial strains, it is highly relevant to investigate whether shorter antibiotic

courses also reduce the potential dysbiosis effect on the gut microbiome. This may strengthen

the argument of reducing treatment durations. In this study, we investigated gut microbiome

effects in mice, using high throughput sequencing, after antibiotic treatments amoxicillin with

different duration (3, 7 or 14 days). Amoxicillin is a β-lactam antibiotic that targets a moderate

range of Gram negative and Gram-positive bacteria. It is a widely used antibiotic worldwide

and is commonly used for treating disease such as Streptococcus tonsillitis, sinusitis and pneu-

monia [45]. In this study, we investigated changes both during and after the intake of amoxicil-

lin, at higher and lower taxonomical levels, to assess whether treatment-related changes are

prone to reversion after ending the amoxicillin treatment, and if longer treatments increase

the risk of longer lasting changes.

Materials and methods

Experimental design

This study was approved by the Norwegian Food Safety Authority (FOTS ID 16504) and was

conducted at the Section for comparative medicine, University of Oslo. In total 20 CD1 mice,

purchased from Scanbur, were used in the experiment. The mice were eight weeks upon

arrival, and all were females. They were kept in quarantine for two weeks prior to the experi-

ment. All mice were housed with bedding and wood material/carton for activity. Cage changes

were performed twice a week and they had a cycle of 12 h of light and 12 h of darkness.

The mice were randomly organized into four groups (A, B, C and D), with five mice in each

group (ntotal = 20). The groups were kept in different cages. To distinguish between the repli-

cates throughout the experiment, the mice were ear labeled. Three of the groups (B, C and D)

were given amoxicillin added to the water (200 μg/ml). The concentration was based on a pre-

vious estimation that mice drink approximately 15 ml per 100 g body weight [46] and weighs

approximately 25 grams = 32 mg amoxicillin/kg/day. This is comparable to concentrations

commonly used to treat humans (15–35 mg/kg/day) [47]. The water bottle was wrapped in tin

foil to protect from light and avoid breakdown of amoxicillin. To mimic natural environmen-

tal conditions, the cage environment/feeding was not sterile. Instead, a control group not

receiving amoxicillin, Group A, was included. Since amoxicillin have a bitterness in taste, a

version with fruit flavor (lemon- and strawberry essence) added to it, was used to make sure

that the mice did not recent the water. Group B received amoxicillin for 3 days, group C for 7

days and group D for 14 days. The water levels were closely monitored by daily pen-marks on

the bottles, to make sure that the mice were drinking as expected during the whole period of

amoxicillin intake. After finalizing the treatment, mice from group B, C and D were housed

for 22 days, while mice from group A were housed throughout the whole experiment (Fig 1).

Sample preparations and sequencing

Fecal samples were collected every fourth day (Fig 1). Sampling was performed by transferring

each mouse individually to a clean cage wiped with 70% ethanol. A minimum of five fecal pel-

lets were obtained from each mouse. The pellets were transferred to individual 1,5 ml
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Eppendorf tubes, and 1 ml RNAlater™ (Thermo Fisher, United Sates) was added to the tube.

The samples were frozen at -80˚C until extraction. At the final experimental day for each

group, the mice were euthanized by CO2.

Prior to extraction, RNA later was removed by centrifugation (3 min, 10 000 X g, room-

temperature). Genomic DNA was extracted from 3 replicate fecal pellets per sample, using

DNA mini stool kit (Qiagen, Germany), following the manufacturers protocol, but with fol-

lowing modifications: one fecal pellet was added two each extraction tube along with extrac-

tion buffer. The samples were vortexed for 10 minutes to homogenize, prior to proceeding

with the protocol provided by the manufacturer. Shortly described, DNA from the fecal sam-

ples binds specifically to a silica-gel membrane while contaminants and excess compounds

pass through. A buffer assures separation of PCR inhibitors from DNA. The intact DNA is

eluted from the column after a serial of washing steps. DNA from the three replicate samples

were pooled before quantification and analysis. The quality was assessed using a UV5nano

nanodrop (Mettler Toledo, Switzerland), and concentration by using Invitrogen dsDNA HS

Assay Kit (Fisher Scientific, United States) and Invitrogen Qubit 3 Fluorometer (Fisher Scien-

tific, United States).

All samples from sampling day 1–29 and 37 (n = 165) were selected for sequencing.

Extracted DNA was equalized based on concentration measurements from Qubit (Fisher

Fig 1. Experimental set-up to investigate the effect of amoxicillin treatment durations on gut microbiomes. Four

different treatment groups of mice were used. Group A did not receive any antibiotic (control group), group B = 3

days, group C = 7 days, group D = 14 days of antibiotic treatment, respectively. Fecal pellets were sampled from all five

replicate mice in each of the four treatment groups, every fourth day (indicated by arrows), and until three weeks after

intake of antibiotics had ended.

https://doi.org/10.1371/journal.pone.0275737.g001
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Scientific, United States). Prior to submission, all samples were run on an 0.8% agarose gel

stained with GelRed1Nucleic Acid Gel Stain (Biotium, United States) for quality check. The

library preparations for 16S rRNA amplicon sequencing were performed by The Norwegian

Sequencing Centre (NCS), following a standardized protocol [48], using universal primers tar-

geting the V3-V4 region of 16S rRNA. Resulting 16S rRNA fragments from the 165 samples

were sequenced by Illumina MiSeq v3, which provides approximately 20 M paired end reads

with 300 bp length.

Sequence analysis and multivariable statistics

The sequence files were processed using the dada2 pipeline [49] in R statistical software [50].

Filtering and primer-removal were performed using the filterAndTrim function using the

parameters maxEE = c(2,6), and truncLen = c(260,239). Further, filtered sequences were clus-

tered into Amplicon Sequence Variants (ASVs) using pseudo-pooling, followed by merging

the reads using 12 nt as minimum overlap. Finally, chimeric sequences were removed using

the removeBimeraDenovo function. Resulting sequences were taxonomically classified using

the function assignTaxonomy and the Silva database v. 138 [51,52]. Total number of sequences

and number of sequences obtained after quality control for the various samples are summa-

rized in S1 Table.

All statistics conduced to assess and compare the samples were done in R statistical software

[50] and all plots were made using ggplot2 [53]. The ASV dataset was normalized by rarefying

to the sample with the lowest number of ASVs (= 18529 ASVs), using the rarify_even_depth
function in the Phyloseq package [54]. Alpha diversity indexes were calculated using the

alpha-function in Vegan [55]. Normal distribution was assessed by D’agostinos test [56] and

non-parametric Kruskal-Wallis tests were used to assess differences between the samples alpha

diversity [57] and Wilcoxon test for pairwise comparison of samples. Rarefaction analysis was

performed based on normalized sequence data from the analysed sample set and are shown in

S1 Fig. Venn diagrams were created to assess ASVs overlapping and unique for the treatment

groups on day 1 (before intake of amoxicillin), day 5 (during treatment) and 3 weeks past end

of treatment, by using the VennDiagram package [58]. Boxplots were created for all phyla

(Bacteroides, Firmicutes, Actinobacteria, Cyanobacteria, Deferribacterota, Patescibacteria,

Proteobacteria and Verrucomicrobia), with data from day 1, day 5 and three weeks past end of

treatment, as well as taxonomical orders/families/genera with significant differential abun-

dance between treatment groups. Beta diversity was assessed by calculating Bray Curtis dissim-

ilarity matrices of the normalized data. Non-metric multidimensional scaling (NMDS) using

the ordinate function in Phyloseq, permutational ANOVA using adonis in Vegan, and Beta

dispersion test using the permutest in Vegan, were performed using these dissimilarity matri-

ces. Further, we identified ASVs with significant different abundance between samples, using

the DEseq2 package in R [59] on the normalized data using p< 0.05 as a cut-off value.

Results

The effect of amoxicillin treatment length on gut microbiome alpha

diversity

The alpha diversity indexes demonstrated a significant reduction in bacterial richness (Chao1)

(upper panel, Fig 2) for mice receiving amoxicillin for 7 or 14 days (group C and group D),

during antibiotic treatment. In these two treatment groups, an average reduction of respective

38% and 34% in richness was observed between day 1 and 5. The richness increased in both

groups after intake of amoxicillin ceased. For group C (7 days amoxicillin), richness remained
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significant lower compared to day 1, until day 13, while in group D (14 days amoxicillin) rich-

ness remained significantly lower until day 21. Further, Fisher’s diversity test was used to

investigate diversity (middle panels, Fig 2). No significant changes were detected over time for

group A (control) and group B (3 days amoxicillin). For group C and D, a significant reduction

in diversity was observed during antibiotic treatment, (Group C: 56% reduction from day 1 to

day 5, group D: 40% reduction from day 1 to day 5). The diversity remained significantly

lower than baseline (day 1), until day 13 in group C and day 21 in group D (one week past the

end of treatment for both groups). In the final days of the experiment there were not detected

any significant difference in diversity (Fisher’s), when comparing the samples to pre-antibiotic

treatment samples from day 1. Further, evenness (Evenness Evar) was significant lower during

antibiotic treatment and the following days, compared to day 1, in all the three treatment

groups (lower panel, Fig 2), with a reduction of respective 8, 23 and 18% between day 1 and 5,

in group B, C and D. During the experiment, there was also detected a significant reduction in

evenness in the control group, on day 25, underlining that variation may also occur without

the impact of amoxicillin. There was indeed some variation in richness, diversity and evenness

among replicas in the control-group. Such variations are expected and are caused by biological

differences between the mice. This is elaborated further in the discussion.

In general, the results demonstrated a significant reduction in observed richness, Chao rich-

ness, Fishers diversity, evenness and rarity low abundance, during antibiotic treatment (Figs 2

and S2). For most parameters, this appeared to reverse within relatively short time (Fig 2). For

treatment groups receiving amoxicillin for 3 and 7 days (Group B and C), no significant differ-

ence to other treatment groups was observed one week past end of treatment (S3 Fig).

Fig 2. Alpha diversity results. Bacterial richness Chao1 (upper panel), Fishers’s diversity (middle panel) and Evar

evenness (lower panel) indexes calculated for microbiome samples from mice treated with amoxicillin for 0 days

(group A), 3 days (group B), 7 days (group C) and 14 days (group D). The x-axis indicates sampling day. Boxes indicate

interquartile range (IQR) between the first and third quartiles (25th and 75th percentiles respectively), and the

horizontal line inside the box defines the median. Whiskers represent the lowest and highest values within 1.5 times

the IQR from the first and third quartiles, respectively. p-values to Kruskal–Wallis test is designated on the figure and

symbols � = p< 0.05, �� = p< 0.01, ��� = p< 0.001, according to Wilcoxon test.

https://doi.org/10.1371/journal.pone.0275737.g002
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However, for mice receiving amoxicillin for 14 days (Group D), a significantly lower diversity

compared to mice in the other groups, was detected one week past end of treatment. Two

weeks past treatment, there were no statistical difference between group D and the control

group.

Taxonomic composition and Beta diversity

Based on the ASVs, we identified the common core microbiome by investigating the overlap-

ping areas in Venn diagrams (Fig 3). The results demonstrated minor differences in the com-

mon core microbiome of day 1 (before treatment) and 3 weeks past end of antibiotic

treatments, where 36% of the ASVs were affiliated with the common core microbiome on day

1 (420 out of 1177 ASVs), and 34% three weeks past end of treatment (501 out of 1473 ASVs).

In terms of the variable genome, Group D (14 days amoxicillin treatment) showed the most

notable change, with an increase from 9% of the ASVs identified as unique for group D on day

1 (110 out of 1177 ASVs), to 15% three weeks past end of treatment (227 out of 1473 ASVs).

Further, the results demonstrated a reduction in both the number of ASVs affiliated with the

common core microbiome and the variable microbiome in group C (7 days amoxicillin) and

group D (14 days amoxicillin), during antibiotic treatment. The ASVs common for group A

(control), C and D on day 1 of the experiment comprised 37% (436 out of 1177 ASVs), while

on day 5 (during antibiotic treatment for group C and D) this was reduced to 28% (327 out of

1180 ASVs). The number of ASVs unique for group A, increased from 11% on day 1 (126 out

of 1177 ASVs) to 44% on day 5 (525 out of 1180 ASVs). Treatment group B was not included

in the Venn-diagram for day 5 (during treatment), since intake of amoxicillin in this group

had ceased two days prior to sampling day 5, hence the samples were regarded as post-treat-

ment samples at this point.

Changes in composition of bacterial phyla, during and after antibiotic treatments were

investigated (Fig 4). Bacteriodetes and Firmicutes were the two most abundant phyla in all

samples (S4 Fig). The average relative abundance of Bacteriodetes increased during treatment

Fig 3. Venn diagrams demonstrating shared and unique ASVs among mice treated with amoxicillin for 0 days

(control group A), 3 days (group B), 7 days (group C) and 14 days (group D), on day 1, during treatment (day 5),

and 3 weeks past end of antibiotic treatment.

https://doi.org/10.1371/journal.pone.0275737.g003
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(day 5) in group C and D (7 and 14 days amoxicillin), but was insignificant from day 1, three

weeks past end of treatment. In group B (3 days amoxicillin), the average abundance of Bacter-

iodetes did not change significantly from day 1 to day 5 (two days past intake of amoxicillin).

However, it increased between day 5 and day 25. The abundance of Firmicutes appeared to be

relatively stable between day 1 and day 5 in group B. However, the abundance was lower at the

end of the experiment. In group C and D, the average relative abundance of phylum Firmi-

cutes reduced during antibiotic intake, significantly in group C (p< 0.01), while three weeks

past end of treatment, the abundance had increased to initial levels.

There were no significant changes in abundance of phyla Actinobacteriota in any of the

groups receiving amoxicillin (Fig 4). However, in contrary to the control group (group A),

whereas a significant increase in abundance was observed between day 1 and day 5, the average

relative abundance decreased in the treatment groups. Cyanobacteria was not detected in any

of the treatment groups on day 1 of the experiment. However, further in the experiment, a sig-

nificant increase was observed in control group A, whereas it increased in all five replicas over

time. An increase over time was only detected in two replicas from group C and D and none

in group B. Further, there was no consistent trend in the comparative abundance of phyla

Deferribacterota between the groups given antibiotics and the control group. However, a sig-

nificant reduction was observed in group B (3 days amoxicillin) after intake of antibiotics

ceased. For phylum Patescibacteria, a reduction in average abundance was demonstrated dur-

ing antibiotic treatment in all three groups receiving amoxicillin. In mice receiving amoxicillin

Fig 4. Abundance of phylum. Boxplots demonstrating the average percentage of Bacteroidetes, Firmicutes, Actinobacteriota, Cyanobacteria,

Deferribacteriota, Patescibacteria, Proteobacteria and Verrucomicrobiota in mice treated with amoxicillin for 0 days (control group A), 3 days

(group B), 7 days (group C) and 14 days (group D). Boxes indicate interquartile range (IQR) between the first and third quartiles (25th and 75th

percentiles respectively), and the horizontal line inside the box defines the median. Whiskers represent the lowest and highest values within 1.5

times the IQR from the first and third quartiles, respectively. Symbols � = p< 0.05, �� = p< 0.01, ��� = p< 0.001, according to Students t-test.

https://doi.org/10.1371/journal.pone.0275737.g004

PLOS ONE Antibiotic treatment length and gut microbiome

PLOS ONE | https://doi.org/10.1371/journal.pone.0275737 October 27, 2022 8 / 23

https://doi.org/10.1371/journal.pone.0275737.g004
https://doi.org/10.1371/journal.pone.0275737


for 7 and 14 days (group C and D), this reduction appeared to last� 3 weeks past finalizing

the treatment and the relative abundance was significantly lower (p< 0.05) in group D. There

were no significant alterations in the abundance of Proteobacteria during the experiment.

However, while an increasing trend was observed in some of the mice from the control group

A, this was not seen in any of the mice from the treatment groups receiving amoxicillin (group

B, C, D). Verrucomicrobia increased in abundance in the control group A during the experi-

mental period. This was not detected in group B or C, however for some individual samples in

group D, an increase in abundance was observed during treatment (day 5).

Ordination analyses, based on ASV composition (NMDS), demonstrated one distinct clus-

ter of samples from mice receiving amoxicillin (Fig 5a). Interestingly, samples from group B (3

days amoxicillin treatment), collected two days after intake of antibiotics, were not part of this

cluster. On the contrary, samples from group C (7 days amoxicillin treatment), collected two

days after intake of antibiotics clustered along with the samples collected during antibiotic

treatment. A significant difference was verified using a PERMANOVA test (p< 0.001). I addi-

tion, ordination analyses were run for all samples from the four treatment groups (S5 Fig). No

distinct clusters were observed for the samples in control group A (S5a Fig) and PERMA-

NOVA confirmed that there was no significant difference between samples over time

(p = 0.096). For group B (3 days amoxicillin) (S5b Fig), most samples taken on day 5 and 9 cre-

ated a separate cluster, and PERMANOVA confirmed a significant change over time

Fig 5. Beta diversity. Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-Curtis

dissimilarity of community composition, of samples from mice receiving amoxicillin for 0 days (control group A), 3

days (group B), 7 days (group C) and 14 days (group D). a) during treatment (day 1–9 of the experiment), b) one week

past end of treatment, c) two weeks past end of treatment, and d) three weeks past end of treatment. Colour indicate

treatment group, and shape indicate sampling day (a) or treatment group/control group (b-d).

https://doi.org/10.1371/journal.pone.0275737.g005
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(p< 0.001). This was also the case for group C (7 days amoxicillin) (S5c Fig), PERMANOVA:

p = 0.003. For group D (14 days amoxicillin), samples from day 5, 9, 13 and 17 created a dis-

tinct cluster (S5d Fig). PERMANOVA confirmed a significant difference between the samples

(p< 0.001).

Further ordination analyses, including samples taken 1, 2 and 3 weeks after antibiotic

intake, were also performed (Fig 5b–5d). One week after end of antibiotic treatment, samples

from all 3 treatment groups receiving amoxicillin (group B, C, D) created a separate cluster

from the control samples from control group A which did not receive antibiotics (Fig 5b). The

difference was confirmed by PERMANOVA (p< 0.001). This distinct clustering was less dis-

tinct 2 and 3 weeks after antibiotic intake ended (Fig 5c and 5d). This was confirmed by PER-

MANOVA, with p = 0.068 (2 weeks past) and p = 0.277 (3 weeks past). Ordination analyses

including only ASVs affiliated with phylum Firmicutes and Bacteriodetes demonstrated the

same trend (S6 Fig, with a significant clustering 1 week after end of treatment (p< 0.001 and

p = 0.002 for Firmicutes and Batceriodetes respectively) confirmed by PERMANOVA. For Fir-

micutes, this was still significant 2 weeks after end of treatment (p = 0.015), as well as 3 weeks

after end of treatment (p = 0.049). While PERMANOVA did not demonstrate a significant

clustering of Bacteriodetes (p = 0.11 and p = 0.59), the permutational beta dispersion test sug-

gested a significant difference between group D and the treatment groups receiving shorter

treatments (group B and C), as well as the control group (p< 0.05).

Differential abundance and indicator taxa

A significant differential abundance between treatment groups was identified for several taxo-

nomic groups three weeks past end of amoxicillin treatment (Fig 6). Among these were two

Fig 6. Boxplots demonstrating the average relative abundance of Rhodospiralles, Negativibacillus, Akkermansia,

Harryflintia and Canidatus Saccharimonas in mice treated with amoxicillin for 0 days (control group A), 3 days

(group B), 7 days (group C) and 14 days (group D). Boxes indicate interquartile range (IQR) between the first and

third quartiles (25th and 75th percentiles respectively), and the horizontal line inside the box defines the median.

Whiskers represent the lowest and highest values within 1.5 times the IQR from the first and third quartiles,

respectively. Symbols � = p< 0.05, �� = p< 0.01, ��� = p< 0.001, according to Wilcoxon test.

https://doi.org/10.1371/journal.pone.0275737.g006
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genera (Negativibacillus and Harryflintia) within the Clostridia family Ruminococcaceae. Inter-

estingly, neither of these were detected in any of the mice that had received antibiotics for

either short or long treatment lengths. A lower abundance of the Alphaproteobacteria order,

Rhodospiralles, was also observed in samples from treated mice, with a statistically significant

difference between Group B and the control group (p< 0.05). This was also the case for the

genera Akkermansia. Overall, candidate genus Saccharimonas also appeared less abundant in

mice, which had received antibiotics, with a significant difference between mice receiving anti-

biotics for 14 days and the related control group (p< 0.05). Additionally, the relative abun-

dance of Candidatus Saccharimonas was significantly lower in mice receiving antibiotics for 14

days compared to mice receiving antibiotics for 3 days (p< 0.05). Fore genus Oscillibacter,

there was no significant difference in abundance between amoxicillin treatment groups three

weeks past end of treatment. However, in contrary to in control group A and group B, the

average abundance of Oscillibacter appeared to increase in the two groups receiving the lon-

gest treatments of amoxicillin, group C and D (S7 Fig).

An analysis using DEseq2 in R was used to identify ASVs with a significant higher or lower

abundance either in amoxicillin treated/untreated mice, or in mice receiving short/long treat-

ment (Fig 7). We identified 83 ASVs that were significantly associated with amoxicillin expo-

sure during treatment (Fig 7a). Most of them belonged to class Clostridia. Lachnospiraceae was

the most abundant family (37 ASVs). Four ASVs were annotated to genus Anaerotruncus, two

Fig 7. Differentially abundant ASVs with a significant difference (p< 0.05), identified through DESeq2 analysis.

The ASVs are assigned to genus if possible, colour-coded according to their taxonomical class and plotted according to

their log2 fold change (indicated on the y-axis), calculated as the levels in samples from the related control group

(indicated by � for a-e). a) During treatment (treated versus non-treated samples�), b) treated versus untreated, 1 week

after end of treatment (treatment groups B, C, D versus control group A�), c) short versus long treatment, 1 week after

end of treatment (treatment groups C and D versus treatment group B�), d) treated versus untreated, 3 week after end

of treatment (treatment groups B, C, D versus control group A�), e) short versus long treatment, 3 week after end of

treatment (treatment groups C and D versus treatment group B�).

https://doi.org/10.1371/journal.pone.0275737.g007
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to Oscillibacter, and one to each of the genera Butyricicoccus, Lactobacillus, Tuzzerella, Paludi-
cola, Roseburia and Acetatifactor. Most of the ASVs were less abundant in samples treated with

amoxicillin. However, nine ASVs had a significant higher abundance during treatment,

among these were six ASVs annotated to class Bacteroidia, whereas four were represented by

family Muribaculaceae. One week after end of amoxicillin treatment, we identified 24 ASVs,

which were significantly associated with amoxicillin treatment (Fig 7b), and 20 ASVs with� 7

days treatment (Fig 7c). All ASVs with a significant lower abundance in treated samples com-

pared to untreated samples, both one and three weeks after end of treatment, affiliated with

Clostridia (Fig 7b and 7d). For some of the ASVs, there was also a significant difference

between short and long (� 7 days) amoxicillin treatment one week after end of treatment (Fig

7c). This was particularly apparent for ASVs from Lachnospiraceae, which had a reduced abun-

dance in treated samples, and Muribaculaceae which had a higher abundance in treated sam-

ples. Further, three weeks after end of amoxicillin treatment, 12 ASVs were identified as

significantly associated with amoxicillin treatment (Fig 7d). Three of these affiliated with fam-

ily Ruminococcaceae (ASV 438 was assigned to genus Negativibacillus), and one ASV affiliated

with Colidextribacter. Among the five ASVs with a significantly higher abundance in amoxicil-

lin-treated samples, two was annotated to Muribaculaceae within class Bacteroidia. Only four

ASVs were identified with a significant different abundance between samples treated with

amoxicillin for 3 and 7 days (Fig 7e). All of these were less abundant in samples collected from

treatment groups C and D. Two affiliated to family Muribaculaceae, and the two others to dif-

ferent lineages of Clostridia.

Discussion

Effects on the microbiome during amoxicillin treatment

It is well documented that antibiotics exert a significant impact on the gut microbiome

[17,20,25,60–62]. The results from this study confirm this, since a significant reduction in

diversity, evenness and richness was demonstrated for samples collected during amoxicillin

intake (Figs 2, 3 and S1), as well as bacterial and taxonomic composition (Figs 4, 5 and S3).

However, the effect did not appear to accelerate over time with prolonged antibiotic treatment,

since there was no significant difference in richness, diversity, nor evenness between day 5 and

day 9/day 13 for treatment group D that received amoxicillin for 14 days (Figs 2 and S1). Few

other studies investigating antibiotic induced change in the microbiome, include multiple

sampling points during treatment as here, but rather assess the pre- and post-treatment effects.

However, in a study by Dollive [63], reduced relative abundance of 16S rRNA gene copies was

observed in mice receiving amoxicillin for 10 days, from day 1 to day 16, with stable numbers

from day 2 to day 16. This, along with the results from our study, suggest an acute effect of

amoxicillin, which is not accelerating over time despite continuation of antibiotic intake. The

observed effect was further strengthened by ordination analyses, since samples collected dur-

ing amoxicillin treatment clustered together (Figs 5a, S3c and S3d), rather than creating dis-

tinct subclusters.

Previous studies have demonstrated an increasing abundance of Bacteriodetes and a reduc-

tion of Firmicutes as an effect of antibiotic treatments (reduced F/B ratio) [reviewed in

20,22,64]. Our results confirmed this since increase in abundance of phyla Bacteriodetes was

observed during amoxicillin treatment (Fig 4, group C and D). Our results also suggested a

reduction in abundance of phylum Firmicutes (Fig 4, group C and D). Alterations in the F/B

ratio have been associated with increased BMI, obesity and metabolic disease [65–67], where a

correlation between increased F/B ratio and BMI has been demonstrated.
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Among the less abundant phyla, antibiotics have been demonstrated to affect e.g. Proteo-

bacteria and Verrucomicrobia significantly in humans. Phylum Proteobacteria has been

reported to increase in human gut microbiomes after antibiotic treatments [18,26]. In contrary

to this, our results did not suggest a significant increase of Proteobacteria in the murine gut

microbiome, during amoxicillin treatment. This phylum contains a wide range of bacteria and

several differences have been identified between the human and murine microbiome [68],

which may explain why we did not observe an increase in Proteobacteria during amoxicillin

treatment in this study, using a murine model. Phylum Patescibacteria appeared to be among

the most affected phylum in the murine gut during amoxicillin treatment since a significant

reduction was detected during treatment in group D (Fig 4). A reduction of Patescibacteria

has previously been demonstrated during treatment with the antifungal compound flucona-

zole [69] and it has also been demonstrated as highly sensitive to inorganic contamination in

drinking water [70]. However, little information regarding the potential health related effects

of these bacterial phyla in the gut is found.

During antibiotic treatment, there was a significant reduction of several Clostridia bacteria,

particularly ASVs affiliated with Clostridia UCG-014, Lachnospiraceae and Oscillospiraceae. A

severe effect from antibiotic treatments has been demonstrated on Lachnospiracea in previous

studies [71]. Lachnospiraceae is one of the main producers of short chain fatty acids in the gut

and is reckoned to be highly beneficial in regards to human health [72]. In addition, several

ASVs affiliated with genera belonging to this family was significantly reduced; Acetifactor,
Lachnoclostridium and Roseburia. These are fibre-degrading bacteria, which also are consid-

ered positive for gut health. Further, a Blautia-classified ASV was demonstrated to decrease

during antibiotic treatment. Blautia has been described as a genus capable of relieving inflam-

matory and metabolic diseases, holding antibacterial activity against certain microbial strains

[73,74]. Butyrate-producing bacteria are frequently regarded as probiotic and are often found

depleted in IBD patients [75]. In our study, we identified reduction in two ASVs affiliated with

genus Butyricoccus and further five ASVs affiliating with Ruminococcaceae, a family known to

harbour numerous Butyrate-producing bacteria, during amoxicillin treatment. Several genera

within Lachnospiraceae do also produce butyric acid, and are regarded as protective against

colon cancer. Most of the ASVs detected with a significant differential abundance between

samples undergoing treatment and not, was reduced in samples obtained during amoxicillin

treatment. However, eleven ASVs affiliating with Muribaculaceaea, Prevotellaeceae, Tannerel-
laceae, Lachnospiraceae and Bacteroides was detected with a higher abundance in mice receiv-

ing amoxicillin. Muribaculaceaea contribute to propionate production in the gut and its

higher relative abundance has been demonstrated to correlate to increased life span in rodents

[76]. Further, a negative correlation with obesity- related indicators has also been shown for

Muribaculaceaea in mice [77]. Family Prevotellaeceae comprise several pathogenic strains and

a higher abundance of Prevotellaeceae has been observed in immunodeficient patients diag-

nosed with e.g. HIV [78]. Further, it has also been demonstrated that in women with a high

genetic risk score for obesity, higher relative abundance of Prevotellaeceae increase the risk of

obesity [79]. This family has also been shown to significantly increase in patients with IBS,

Ulcerative colitis and Chron’s disease [80].

Microbiome effects after antibiotic treatment

Studies suggest that the effect of antibiotics on the human gut microbiome seizes after treat-

ment has stopped, and according to the resilience theory, overall bacterial composition returns

close to the original state relatively fast [81]. However, certain changes may last up to months

and even years [reviewed in 17], particularly after very long treatments (e.g. > 6 months) [82].
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Our results suggested that overall richness and diversity is normalized relatively fast in mice

after finalizing amoxicillin treatment (Figs 2, 3 and S2). This is comparable to several previous

studies [18,25,83], e.g. in a study assessing changes after 14 days of Vancomycin treatment,

whereas diversity and OTU compositional structure was insignificant from baseline 9 days

past end of treatment [83]. However, it was also demonstrated that recovery appeared faster

with shorter treatment durations. Our results demonstrated no significant difference in diver-

sity between samples collected prior to treatment and two days past antibiotic intake, for the

mice in group B (3 days amoxicillin treatment) (Fig 2). However, there was still a significant

difference detected two days past treatment for mice in group C (7 days amoxicillin treatment),

and three days past treatment for mice in group D (14 days amoxicillin treatment). There was

also a significant difference in both richness and diversity, between microbiome samples from

mice treated with antibiotics for 14 days and the control group, one week past end of treat-

ment. This was not the case for mice treated with antibiotics for 3 or 7 days, which strengthen

the assumption that longer treatments may induce longer lasting effects on the gut microbial

diversity. However, in terms of sample evenness, the results demonstrated a longer lasting

effect (� 3 weeks) for mice receiving antibiotics for 3 days, compared to those treated for 7–14

days. This suggests that even short treatments may induce long-lasting alterations to the

microbiome.

In a previous study treating mice with a combination of amoxicillin, metronidazole and bis-

muth for 10 days, the taxonomic profiles appeared to be close to pre-treatment state two weeks

past treatment [18]. In our study, the taxonomy profiles observed for group C and D (Fig 4)

suggest that reversion of the bacterial composition is quickly achieved after finalizing the treat-

ment, and that there is a strong resilience in the microbiome. However, in concordance with a

previous study [26], the decline in abundance of phylum Patescibacteria appeared to last� 3

weeks past end of treatment and was strongest in mice receiving amoxicillin for 14 days. Phy-

lum Patescibacteria is commonly found in low abundance and is not well described, nor signif-

icantly linked to pathogenic conditions in the literature. Interestingly, despite no long-term

effect on the abundance of Firmicutes, a significant effect of� 7 days amoxicillin on the com-

position of Firmicutes-affiliated ASVs, was suggested to last for� 3 weeks. Phylum Cyanobac-

teria increased significantly in the control group, while not in the three treatment groups. This

suggests a suppressive effect from amoxicillin. Cyanobacteria are blue green algae and its role

in the gut microbiome is not well described. However, certain studies indicate a potential neu-

rotoxic effect [84].

Even though the overall bacterial diversity and composition in the gut microbiome appear

to re-establish relatively soon, certain specific alterations may as already mentioned, persist for

longer time [19]. Our results demonstrated that three weeks past end of treatment, several tax-

onomic groups remained significantly altered in the gut of amoxicillin treated mice (Fig 6).

Akkermansia appeared lower in all amoxicillin-treated mice compared to the control-group.

The difference was statistically significant between group B and it’s control group. Akkerman-
sia has been suggested to protect against obesity due to its modulating capacity on glucose

metabolism [85] and is considered positive for human gut health. Bacteria within Candidatus

Saccharimonas are lactate and acetate producers and has been suggested to harbour protective

capabilities in the development of allergic asthma [86]. Our results demonstrated a significant

lower relative abundance of this genus in mice treated with amoxicillin for two weeks and the

control group. Interestingly, the abundance of Candidatus Saccharimonas was also signifi-

cantly higher in mice receiving amoxicillin for only three days, compared to the two-week

treatment. Genera Negativibacilus and Harryflintia remained eliminated in mice exposed to

amoxicillin three weeks after end of treatment. There was no statistical difference in abun-

dance of genus Oscillibacter between the treatment groups and the control groups on the final
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day of the experiment (S5 Fig). However, in mice treated with amoxicillin for 7 and 14 days,

the abundance appeared to increase over time (from day one to three weeks past end of treat-

ment), in contrary to mice in the control group and mice treated for only 3 days whereas the

abundance appeared more stable or declining over time. Oscillibacter has previously been

demonstrated to increase with deteriorating kidney function [87].

Our data also demonstrated that several ASVs were significantly altered in abundance both

one and three weeks after end of amoxicillin treatment (Fig 7). Five ASVs affiliated with Muri-
baculaceae was significantly higher than the control group one week after end of treatment,

and two was still elevated three weeks after. Further, these ASVs was significantly higher in

group D (receiving amoxicillin for 14 days), compared to group B and C (receiving amoxicillin

for 3 and 7 days respectively). As mentioned in the previous sections report of both a signifi-

cant positive correlation between Muribaculaceae abundance and rodent life span [76], a sig-

nificant negative correlation between Muribaculaceae abundance and obesity [77]. A higher

abundance of two ASVs affiliated with family Prevotellaeceae was still significantly higher in

amoxicillin-treated samples one week after end of treatment, with an elevated abundance in

group D. This may indicate a possible link to an increased risk of gut inflammations with lon-

ger treatments, since this family has been demonstrated to significantly increase in patients

with Ulcerative colitis and Chron’s disease.

Some studies have assessed the effect of a combination of amoxicillin and clavulanic acid, a

β-lactamase inhibitor that may be combined with amoxicillin to increase the antimicrobial

effect. In an experiment using amoxicillin/clavulanic acid for 20 days, profound effects were

observed during treatment, but only minor one month past end of treatment [88]. A further

study administrating the combination of amoxicillin and clavulanic acid for seven days, which

is comparable to treatment group C in the current study, also demonstrated significant shifts

in the microbiota family composition during antibiotic intake [89]. However, one week after

end of treatment, the microbiota showed induced recovery to the original composition.

Experimental considerations

We observed variation among replicate samples, also on day 1, prior to antibiotic intake (Figs

2, 4 and 5). This is expected, as other studies have also reported individual differences in bacte-

rial diversity of murine microbiome samples [18,26], and mice do not harbour an identical gut

microbiome composition, despite living in highly similar environmental conditions. The gut

microbiome is shaped and influenced by a range of factors, e.g. being born by separate moth-

ers, genetics and other biological differences [8]. Hence, studying cause and effect on microbial

diversity and composition in the gut is challenging and require sufficient replicates, sampling

over time and/or detailed metadata. This is particularly important when studying human gut

microbiomes as they may live in highly variable environments, on different diets and under

highly diverging exposure to other life-style determinants. In our study, we included five repli-

cate mice in each treatment group. We further sampled relatively frequently over a period

of� 37 days. Our results from the beta-dispersion test suggested sufficient homogeneity

among the replicate samples.

We observed certain significant changes in taxonomic composition in the control group A

(Figs 3 and 4). This is however not surprising, since the gut microbiome is known to change

with increasing age, and may also be influenced by a range of other variables, e.g. infection,

changes in maintenance routines and hormone cycle. A recent study investigating microbiome

effects of antibiotics on mice also reported of alterations in the control group [26]. A further

study demonstrated that different housing facilities may affect the gut microbiome [90]. Most

studies investigating effects of antibiotics on the microbiome include only a limited number of
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temporal sampling points. Our study assessed the changes over time with frequent samplings

points. The observed alterations in the control group underlines the importance of including

sufficient sampling points over time.

Food additives, both synthetic and natural, have been demonstrated to have an impact on

gut microbiomes [91]. In this study, we used amoxicillin with added fruit flavour to avoid

mice resenting the water due to bitterness in taste from amoxicillin. It is possible that certain

changes observed in the microbiome may be caused by these additives rather than by amoxicil-

lin itself. There are no studies investigating the specific flavouring compounds added to the

amoxicillin published. However, studies assessing the effects of amoxicillin on gut micro-

biomes report of results comparable to several of the results shown in this study [88,89].

The murine gut microbiome has frequently been used as a model for the human gut micro-

biome system [92–94] and mice have been involved in studies investigating the impact of anti-

biotics on gut microbiomes [26,30,95,96]. However, it is important to emphasize that there are

differences between the two systems [reviewed in 68]. In both the human and the murine gut

microbiome, most bacteria belong to the two phyla Firmicutes and Bacteriodetes. However,

when assessing the microbial composition at lower taxonomic levels, e.g. family and genus, the

differences are more evident, both in terms of taxonomic composition and abundance. This

can be exemplified by Prevotella, Faecalibacterium and Ruminococcus which are demonstrated

as more abundant in the human microbiome, while Lactobacillus, Alistipes and Turicibacter
are more abundance in the murine microbiome [reviewed in 68]. Despite such differences, we

believe these results are relevant for assessing changes in parameters such as richness, diversity

and evenness, induced by antibiotic treatments of different durations, and to investigate rever-

sion rates of the microbiome after different treatments. Further, changes in specific taxonomic

groups may provide indications of how amoxicillin may impact the human gut system and

health status, and serve as valuable suggestions for what to assess further in studies involving

human samples.

An advantage of using mice in such experiments is the possibility to control the environ-

ment and external factors that also may affect bacterial diversity in the gut. This increases the

likelihood of detecting alterations induced by antibiotics. A further consideration, which

should be taken into account when interpreting the results with the human gut in mind, is that

mice live in close contact with both its own faeces and the faeces of mice living in the same

cage. This may facilitate reintroduction of microbes and increase reversion rates in terms of

bacterial diversity and composition. Further, in this study we used only female mice. This

means that potential gender-specific effects on male microbiome composition is not revealed

by the data in this study. Studies have demonstrated that certain microbiome related effects

may be gender-dependent [97,98], also in terms of antibiotic-induced effects [99]. Investigat-

ing such effects would be highly interesting in a further study.

Another factor which should be mentioned is the addition of fruit flavour which was added

to the water bottles in cages housing mice receiving amoxicillin to limit the risk of bitter taste

and reduced water-intake. During the experiment, we carefully monitored the water-intake

and found no difference between treatment groups.

Conclusion

In this study, we demonstrated a significant change in diversity, richness and evenness in

microbiome communities of mice receiving amoxicillin. Alterations lasted for the whole treat-

ment period. The results suggested a reversion of the microbiome in terms of diversity, com-

position and overall taxonomy. However, a longer restitution time was indicated for the group

that received amoxicillin for 14 days. A significantly affected ASV-composition was suggested
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for phylum Firmicutes and phylum Patescibacteria never seemed to fully recover. Further,

despite that several aspects of the overall diversity and composition appears to be insignif-

icantly different from the original state relatively soon after treatment, alterations in specific

taxa, with important functions or potential harmful effects may still occur, and we detected

several taxonomic groups (Rhodospirillales, Negativibacillus, Akkermansia, Harryflintia and

Candidatus Saccharimonas), and ASVs (affiliated with several genera and families within Fir-

micutes and Bacteroides) with significantly altered abundance in the gut samples from amoxi-

cillin treatment groups, three weeks after exposure. Some of the identified taxa have been

suggested to impose health implications in previous studies. We also identified significant dif-

ferences between the treatment groups which was linked to amoxicillin treatment length. This

combined with the drastic changes to the microbiome during the whole treatment period,

emphasize the importance of reducing antibiotic treatment durations, to limit the induction of

negative health implications due to microbiome disturbances. This being considered, our find-

ings may have implications for designing rational antibiotic treatment regimens that limit

unnecessary exposure to antibiotics.

Supporting information

S1 Fig. Rarefaction analysis based on normalized sequence data from the analysed sample

set, demonstrating the number of ASVs detected at different sequencing depths.

(TIF)

S2 Fig. Changes in diversity during amoxicillin treatment. Observed number of ASVs, rich-

ness (Chao1), diversity (Fisher) and evenness (Evar) and Rarity low abundance indexes

observed in mice treated with amoxicillin for 0 days (control group A), 3 days (group B), 7

days (group C) and 14 days (group D), during antibiotic treatment (day 1–9 of the experi-

ment). The x-axis shows the group (A/B/C/D) and sampling-number (1 = day 1, 2 = day 5,

3 = day 9). Boxes indicate interquartile range (IQR) between the first and third quartiles (25th

and 75th percentiles respectively), and the horizontal line inside the box defines the median.

Whiskers represent the lowest and highest values within 1.5 times the IQR from the first and

third quartiles, respectively. p-values to Kruskal–Wallis test is designated on the figure and

symbols � = p< 0.05, �� = p< 0.01, ��� = p< 0.001, according to Wilcoxon test.

(TIF)

S3 Fig. Comparison of diversity metrics between treatment groups after amoxicillin

intake. Comparison of the following indexes: Observed richness, Chao1, Fisher diversity,

evenness Evar, Dominance Simpson, Rarity low abundance and dominance core abundance,

for mice treated with amoxicillin for 0 days (A), 3 days (B), 7 days (C) and 14 days (D), before

intake of amoxicillin (Time = 0), 1 week past end of antibiotic treatment (Time = 1wp), 2

weeks past end of antibiotic treatment (Time = 2wp), 3 weeks past end of antibiotic treatment

(Time = 3wp). Colours indicates: Grey = no significant difference, red = significant difference;
� = p< 0.05, �� = p< 0.01).

(TIF)

S4 Fig. Stacked bar plots demonstrating the average percentage (y-axis) of each taxonomic

group at bacteria phylum level, in mice treated with amoxicillin for 0 days (control group

A), 3 days (group B), 7 days (group C) and 14 days (group D). Different coloured bars repre-

sent different phyla (as listed in the legend) and sampling day is indicated on the x-axis.

(TIF)
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S5 Fig. Ordination analysis of all samples within individual treatment groups. Non-metric

multidimensional scaling (NMDS) ordination plot based on Bray-Curtis dissimilarity of com-

munity composition, of all samples from mice treated with amoxicillin for a) 0 days (control,

group A), b) 3 days (group B), c) 7 days (group C), and d) 14 days (group D). The colour of

the dots indicates sampling day as described in the legend in the diagram, and samples taken

during antibiotic treatment are indicated by increased size.

(TIF)

S6 Fig. Ordination analysis demonstrating beta diversity for phylum Bacteroidetes and

Firmicutes. Non-metric multidimensional scaling (NMDS) ordination plot based on Bray-

Curtis dissimilarity of Firmicutes and Bacteriodetes community composition, including sam-

ples collected from all four treatment groups, 1, 2 and 3 weeks after end of treatment with

amoxicillin. The colour of the dots indicates treatment group (red = control group A,

green = group B receiving amoxicillin for 3 days, blue = group C receiving amoxicillin for 7

days, group D receiving amoxicillin for 14 days).

(TIF)

S7 Fig. Boxplots demonstrating the average relative abundance of Oscillibacter on day one

(purple) and three weeks past end on treatment (yellow), in mice treated with amoxicillin

for 0 days (control group A), 3 days (group B), 7 days (group C) and 14 days (group D).

Boxes indicate interquartile range (IQR) between the first and third quartiles (25th and 75th

percentiles respectively), and the horizontal line inside the box defines the median. Whiskers

represent the lowest and highest values within 1.5 times the IQR from the first and third quar-

tiles, respectively.

(TIF)

S1 Table. Total number of sequences obtained and number of sequences after sequencing

quality control for all samples.
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