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Mpox-AISM: AI-mediated super
monitoring for mpox and like-mpox

Yubiao Yue,3,4 Minghua Jiang,1,4 Xinyue Zhang,3 Jialong Xu,3 Huacong Ye,3 Fan Zhang,1,* Zhenzhang Li,2,3,5,*

and Yang Li3,*
SUMMARY

Swift and accurate diagnosis for earlier-stagemonkeypox (mpox) patients is crucial to avoiding its spread.
However, the similarities between common skin disorders and mpox and the need for professional diag-
nosis unavoidably impaired the diagnosis of earlier-stage mpox patients and contributed to mpox
outbreak. To address the challenge, we proposed ‘‘Super Monitoring’’, a real-time visualization technique
employing artificial intelligence (AI) and Internet technology to diagnose earlier-stage mpox cheaply,
conveniently, and quickly. Concretely, AI-mediated ‘‘Super Monitoring’’ (mpox-AISM) integrates deep
learning models, data augmentation, self-supervised learning, and cloud services. According to publicly
accessible datasets, mpox-AISM’s Precision, Recall, Specificity, and F1-score in diagnosing mpox reach
99.3%, 94.1%, 99.9%, and 96.6%, respectively, and it achieves 94.51% accuracy in diagnosing mpox,
six like-mpox skin disorders, and normal skin. With the Internet and communication terminal, mpox-
AISM has the potential to perform real-time and accurate diagnosis for earlier-stage mpox in real-world
scenarios, thereby preventing mpox outbreak.

INTRODUCTION

Monkeypox, also known as mpox, is an infectious disease caused by the mpox virus.1,2 In 2022, the World Health Organization (WHO)

declared the global mpox outbreak a public health emergency of international concern. Since May 2022, over 90000 cases of mpox have

been reported worldwide.3 Given the increasing number of cases of mpox, it is urgent to quickly and timely diagnose the mpox virus. poly-

merase chain reaction (PCR) is the primary clinical technology for mpox diagnosis.4 Although its diagnosis result is credible, it is still not the

best solution to forestall mpox spread. This is because the clinical features of mpox patients initially show symptoms resembling the flu,5 fol-

lowed by skin rashes, which first appear on the face and then gradually spread to the extremities.6 From the appearance, symptoms of these

rashes are easily confused with measles, chickenpox, eczema, and other skin diseases.7,8 Furthermore, mpox symptoms usually start within

three weeks of exposure to the virus, yet the mpox virus spreads to others from the time symptoms begin or even during the incubation

period.9 When patients actively seek testing, they are usually in the later stage of conditions, which may have caused the widespread spread

of the virus among the public.

The above facts demonstrate that employing traditional diagnostic techniques to diagnose late-stage mpox is not conducive to prevent-

ing mpox spread, particularly at crucial places like border customs or in high-risk areas with dense crowds such as hospitals and schools.

Notably, PCR technology necessitates specialized operating equipment, skilled medical personnel, and significant costs. For areas with

limited medical resources, such as the wild and rural areas in underdeveloped regions, timely and efficient mpox testing is often inaccessible.

Meanwhile, the diagnostic results of PCR are often incorrect since the viremia lasts for a short span of time in relation to the time specimens are

generally collected after symptoms begin.8 Furthermore, earlier-stage mpox rash resembles common skin diseases, frequently resulting in

misdiagnosis and wrong treatment. Even more worryingly, most of the cases of mpox outbreak have been reported in locations that have

historically been free from the infection,7 thereby highlighting the fact that developing an easy-to-use, low-cost, rapid and accurate method

for the diagnosis of earlier-stagempox is critically significant for swiftly preventing the spread of the outbreak and avoiding the deterioration

of patients’ physical conditions.8

Given the above issues, artificial intelligence (AI) offers a reliable solution.10 Recently, deep learning (DL) models in AI have achieved sig-

nificant success in various fields, includingmachine vision,medical imaging, and driverless vehicles. They have become sophisticated tools for

addressing previously unknown and challenging problems. Moreover, AI-based innovations have reduced the cost of expensive equipment

and professional knowledge required in the clinical diagnosis process, thereby helping overcome resource-constrained environments.11 In
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Figure 1. Application process and settings of Mpox-AISM

(A) Application process of Mpox-AISM.

(B–E) Application settings in different situations.
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this work, we employed the Internet, popular DL algorithms, data augmentation and a novel self-supervised learning (SSL) strategy, i.e., ‘‘A

Simple Framework for Contrastive Learning of Visual Representations’’ (SimCLR),12 to design a real-time and online strategy for diagnosing

mpox. Our strategy considers the clinical characteristics of mpox rash and its high similarity to common skin diseases and helps diagnose

earlier-stage mpox conveniently and swiftly (Figure 7). We validated the effectiveness of Mpox-AISM using publicly available datasets.

Furthermore, we classified the mpox rash images into four grades (I, II, III, and Others) and two stages (earlier and later) based on dataset

characteristics and the clinical evolution trend of thempox rash. In detail, Grade-Imeans body parts aremore prone to pox rash, i.e., the faces,

necks, and hands.13,14 At the same time, Grade-II contains the arms and legs, which are not easily covered by clothing and other articles of

daily use.We retestedMpox-AISM and found that it still performswell in diagnosingmpox images in different parts and stages. Particularly, to

improve the reliability and security of mpox-AISM, we also visualized and explained its decision-making process and results.

Based on the advantages above, we have named this strategy AI-mediated ‘‘Super Monitoring’’ (Abbreviated as mpox-AISM, Figure 1A).

Mpox-AISM has the potential to diagnose earlier-stage mpox in various settings, such as entry-exit inspection in airports and customs (Fig-

ure 1B), family doctors (Figure 1C), a rural area in an underdeveloped region (Figure 1D), the wild and other settings (Figure 1E). By deploying

mpox-AISM in these settings, users only need to capture images of human skin using networked devices with lenses and upload them to our

cloud server via the Internet, and then mpox-AISM will then return the results to the user in real-time (Figure 1A). In the end of the work, we

have also developed a smartphone application based on mpox-AISM (mpox-AISM App) to provide free mpox testing services to the public

and healthcare providers.
RESULTS

Mpox-AISM design workflows

In this study, we selected ten classical classification models from the field of computer vision, namely VGG-19, GoogLeNet, ResNet101,

ResNeXt101_64x4D, DenseNet201, EfficientNet_B0, RegNetY_16GF, RegNetX_32GF, Vision Transformer Base, and Swin Transformer Base.

Before trainingand testing thesemodels, weexpandedData_A intoData_C throughdata augmentation. Subsequently,Data_Cwasused to train

and test each model under identical experimental conditions. Owing to the requirements for SSL, the EfficientNet-B0 and ResNeXt-101_64x4D

models were selected as final candidate models based on their superior performance. To further improve model performance, SimCLR and the

SSLDatasetwereemployed topre-train these twomodels. FollowingSSL,Data_Cwasutilized to retrain and retest thepre-trainedmodels. Exper-

imental results reveal that ResNeXt101_64x4D with SimCLR achieved state-of-the-art (SOTA) performance. The SOTAmodel was ultimately de-

ployed to the cloud server, and Mpox-AISM was constructed. Mpox-AISM is capable of interacting with smartphones, webcams, and other

network devices via the Internet. Users need only capture images of the lesioned skin area using the lenses of networked devices and upload

them to Mpox-AISM. Subsequently, a real-time primary diagnosis result will be provided. The specific workflow is shown in Figure 2.
Model screening, self-supervised learning, retraining and retesting

The Test Accuracy and Train Loss were used to evaluate the candidate models. The Test Accuracy and Train loss of each candidate model

were recorded during 300 epochs (Figure 3A). Among all models, EfficentNet_B0 had the highest Accuracy (90 $ 57%, 273th epoch), followed
2 iScience 27, 109766, May 17, 2024



Figure 2. The workflow of this study
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by Resnext101_64x4D (84 $ 97%, 258th epoch), and their trends were also similar in terms of Train loss (Figure 3B). Typically, higher Accuracy

means better performance. However, due to the use of SSL, the structure of the model architecture was also considered. Like supervised

learning, SSL benefits from deeper and wider networks,7 which means that although the Accuracy of Resnext101_64x4D is not as good as

EfficientNet_B0, Resnext101_64x4D with SimCLR may outperform EfficientNet_B0 with SimCLR due to its deeper and wider model architec-

ture. Considering this fact, we chose these two models as the encoders of SimCLR.

During the SSL, we adjusted the size of input images to 2243 224 pixels and uniformly used stochastic gradient descent (SGD) to optimize

model parameters. Data augmentation in SimCLR was set as random crop and resize + random color jitter. We recorded the NT-Xent Loss

values after each epoch and plotted the trend of NT-Xent Loss (Figure 3A). The experimental results indicate that the NT-Xent Loss of

Resnext101_64x4D is lower than that of EfficientNet_B0 throughout the whole process, which signifies Resnext101_64x4D benefits more

from SSL when NT-Xent Loss is only compared.

Data_Cwas utilized to retrain and retest twomodels pre-trained by SimCLR. The experimental equipment and the hyperparameters of the

training process were the same as before. Meanwhile, themodels were comprehensively evaluated using fivemetrics, i.e.,Accuracy, F1-score

(Fi3. 4C), Precision (Figure 3D), Recall (Figure 3E), Specificity (Figure 3F) and confusion matrix (Figures 3G–3J). Meanwhile, the above metrics

were also used to evaluate the models without SimCLR to demonstrate the potential of SSL. In terms of Accuracy, Resnext101_64x4D

improved from 84 $ 96% previously to 94 $ 51% and EfficientNet_B0 improved from 90 $ 51% previously to 92 $ 5%. In terms of F1-score (Fig-

ure 3C), Resnext101_64x4D pre-trained by SimCLR was the most advanced in six categories (i.e., Bullous, Chickenpox, Eczema, mpox, Urti-

caria, and Vasculitis), reaching 90 $ 4%, 96 $ 8%, 95 $ 7%, 96 $ 6%, 93 $ 3%, and 88 $ 1% respectively. In terms of Precision (Figure 3D),

Resnext101_64x4D pre-trained by SimCLR is the most advanced in the six categories (i.e., Bullous, Eczema, mpox, Normal, Urticaria, and

Vasculitis), reaching 88 $ 8%, 95 $ 5%, 99 $ 3%, 98 $ 2%, 94 $ 2%, and 86 $ 9% respectively. Regarding Recall (Figure 3E), Resnext101_64x4D

pre-trained by SimCLR learning was the most advanced in five categories (i.e., Bullous, Eczema, Measles, mpox, and Vasculitis), reaching 92 $

0%, 96 $ 0%, 97 $ 8%, 94 $ 1%, and 89 $ 4% respectively. In terms of Specificity (Figure 3F), Resnext101_64x4D pre-trained by SimCLR was the

most advanced in the six categories (i.e., Bullous, Eczema, mpox, Normal, Urticaria, and Vasculitis), achieving 98 $ 5%, 99 $ 0%, 99 $ 9%, 99 $

8%, 99 $ 3%, and 98 $ 4%, respectively. Consistent with our considerations, Resnext101_64x4D benefited more from SSL and was superior on

the confusion matrix (Figures 3G–3J). Based on the results of these metrics, Resnext101_64x4D with SimCLR was eventually deployed in

Mpox-AISM.
Mpox-AISM grading assessment

To enableMpox-AISM to be conveniently deployed in various real-world settings, we, according to the characteristics of the dataset, the evo-

lution trend of mpox rash and clinical features of most cases, further classified images of mpox rashes into four grades and evaluated the
iScience 27, 109766, May 17, 2024 3



Figure 3. Training and testing performances of various models

(A and B) Test Accuracy and Train loss trends for the ten models, respectively.

(C) F1-score for test set of Data_C.

(D) Precision for test set of Data_C.

(E) Recall for test set of Data_C.

(F) Specificity for test set of Data_C.

(G–J) Confusion matrix of Renext101_64x4D with SimCLR, Renext101_64x4D, Efficientnet_B0 with SimCLR and Efficientnet_B0 for test set of Data_C (‘‘+’’ means

‘‘with’’).
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Figure 4. Sample categories and division styles

(A) Diagrams of mpox rash (Grade-I, Grade-II, Grade-III and Others).

(B) Diagrams of human body parts.

(C) Diagrams of mpox rash at earlier-stage and later-stage.
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performance of the model in predicting these images (Figures 4A and 4B): Grade-I (faces, necks and hands) is a body part that is not easily

covered and has high incidence; Grade-II (arms and legs) is a body part that is easier to check; Grade-III (back and chest); These three grades

photos were taken from a distance. Grade-IV, orOthers, is taken at close range. After evaluating these images viaMpox-AISM, the Recall rates

of Grade-I, Grade-II, Grade-III, and Others are 98 $ 59%, 100 $ 00%, 94 $ 59% and 99 $ 33%, respectively.

Accurate diagnosis for earlier-stage mpox helps curb the epidemic’s spread. However, the symptoms of mpox rash are not severe in the

earlier-stage and are easily confused with other skin diseases. So, we specially testedMpox-AISM’s performance using rash images of earlier-

stagempox patients (Figure 4C). Experimental result shows thatMpox-AISMachieves 100% Recall in testing the images of earlier-stagempox

patients and has excellent diagnosis performance in diagnosing the images of later-stagempox patients too. Most importantly, theAccuracy

of the earlier-stage mpox means that even in the earlier-stage of mpox rash, Mpox-AISM can also make a primary diagnosis of the sus-

pected case.

Mpox-AISM interpretability

Deep learningmodels have exhibited superior performance in various tasks. However, due to their over-parameterized black-box nature, it is

often difficult to understand the prediction results of deep models.15 The lack of interpretability raises a severe issue about the trust of deep

models in high-stakes prediction applications, such as autonomous driving, healthcare, criminal justice, and financial services.16 Especially in
iScience 27, 109766, May 17, 2024 5



Figure 5. Heat maps for eight categories of skin diseases generated by the Grad-CAM method

(A) Normal.

(B) Bullous.

(C) Chickenpox.

(D) Eczema.

(E) Measles.

(F) Urticaria.

(G) mpox.

(H) Vasculitis.
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the healthcare field, the results predicted by the models will affect the patient’s subsequent treatment, so it is imperative to interpret these

results. In addition, theWHO’s Ethics andGovernance of Artificial Intelligence for Health:WHOGuidance, published in 2021, specifies that AI

should be intelligible or understandable to developers, users and regulators.17 Therefore, it is necessary to provide interpretable techniques

in model prediction.

In our work, we employed Gradient-weighted Class Activation Mapping (Grad-CAM) to explain the Mpox-AISM’s decision-making pro-

cess. Grad-CAM is a result visualization and interpretation technique thatmakes prediction resultsmadeby deep learningmodelsmore trans-

parent. Grad-CAM helps in visualizing the regions of the image that are important for a particular classification. The gradient information is

used to calculate the activation map of CNN for the input image, and the magnitude of the activation map can indicate the degree of influ-

ence of the image classification result on each part of the original image. Figure 5 shows the heat maps of the diagnosis results generated by

the Grad-CAM method where red stands for high relevance, yellow stands for medium relevance, and blue stands for low relevance. From

Figure 5, it can be seen that our model focuses well on the lesion region.
Mpox-AISM application

We designed PC (Figure 6B) and mobile (Figure 6A) application pages corresponding to Mpox-AISM for ease of use. The PC terminal com-

bines the terminal camera to capture the target image for diagnosis, which can be applied to entry-exit inspection in airports and customs
6 iScience 27, 109766, May 17, 2024
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Figure 6. Mobile and PC application styles

(A) Mobile application page.

(B) PC application page.

(C) Box distribution diagram of prediction probability of each category.
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(Figure 1B). Mobile terminals, such as mobile phones, users only need to upload skin images frommobile phone lens or album by clicking the

button located at the center of the screen, and then the categories of skin lesion area can be predicted, which provide a primary diagnosis to

the user. The mobile terminal can be applied to family doctors, rural areas in underdeveloped regions, the wild and other settings

(Figures 1C–1E). TheMpox-AISM corresponding terminal in this study is highly convenient and imposes no strict restrictions on the operator’s

photographing angle or distance thanks to multiple data augmentation strategies.

To further improve the reliability of the application system, we carried out prediction probability distribution statistics on the test set

(Illustration in Figure 6C). It was found that in the test set, the proportion of samples with prediction probability R0 $ 6 is 94%, and the

Accuracy of Mpox-AISM for these samples is almost 95 $ 9%. For mpox images in these samples, Precision, Recall, Specificity, and F1-score

achieve respectively 99 $ 3%, 95 $ 9%, 99 $ 9%and 97 $ 6%. Besides, the proportion of samples with a prediction probability <0 $ 5 is 5 $ 4%, and

the error is >98%. So, we set the prediction threshold at the application terminal to 0 $ 6. If the application displays a case with a prediction

probability value less than 0 $ 6, the application will give a prompt thatmanual intervention is required. In addition, we tested themodel using

ten images of our normal skin and images (23 bullous images, 13 eczema images, two chickenpox images, two measles images, eight vascu-

litis images and 12 urticaria images) of 60 cases in the dermatology atlas. The results show that the prediction results of the model are almost

consistent with the ground truth. That is, the model accuracy achieved 93%.

Notably, the application also provided confidence in results and typical pathological images of various parts to improve the interpretability

of results and the vigilance of patients. Our application can help suspected patients and doctors preliminarily screen and diagnose lesion

areas anytime and anywhere without cost. In particular, during the outbreak of mpox, such applications can provide specific technical support

for limiting the spread of the epidemic.

DISCUSSION

In this study, we aimed to develop an efficient and real-time mpox diagnosis technology to help control the spread of mpox. In view of the

unique appearance characteristics of mpox, we proposed mpox-AISM, an innovative diagnosis strategy integrating AI and Internet technol-

ogy. With the help of the Internet, mpox-AISM can swiftly realize the visual diagnosis of mpox through the captured a skin rash image and

distinguish it from six common like-mpox skin diseases and normal skin. The widely recognized public dataset was utilized to verify mpox-

AISM. The experimental results showed that the accuracy of mpox-AISM reached 94.51%. Especially in the diagnosis of mpox, the Precision,

Recall, Specificity, and F1-score of mpox-AISM reached 99.3%, 94.1%, 99.9%, and 96.6%, respectively, showing its excellent diagnosis

performance.

The rapidly developing AI has made significant contributions to simplifying clinical processes and decision-making in health care.11 How-

ever, the performance of an AI model largely depends on the quality of the dataset.18 For healthcare professionals, collecting a large number

of medical images with accurate labels is facing great challenges, while obtaining unlabeledmedical images is relatively easy.19 Especially for

diseases such as mpox, it is particularly difficult to establish a high-quality dataset, because it requires dermatologists to spendmuch time on

image acquisition and the accurate diagnosis of skin lesions in numerous patients. Facing this challenge, we employed data augmentation

technology to simulate the image changes that the model may encounter in real-world settings. It is worth noting that we have introduced

SSL, an innovative unsupervised learning paradigm aimed at enhancing the performance of the deep learning model in diagnostic tasks. Re-

searchers generally believe that the use of SSL in medical image processing is of great significance because it can build proxy tasks to repre-

sent and learn large-scale unlabeled data, thereby effectively improving the performance of downstream tasks (such as image classification).20

Our experimental results show that the performance of the deep learning model using SSL in diagnosing various types of images has been

significantly improved, which is consistent with the previous research results.21–23 Due to the implementation of SSL, we can also use a large

number of captured unlabeled data to quickly iterate and optimize the deep learning model when mpox-AISM is used to diagnose patients

with skin rashes in real-world settings.24 To our knowledge, we adopted the SSL strategy in mpox diagnosis research for the first time and

verified its effectiveness.

The outbreak of infectious diseases may spread rapidly around the world and bring huge risks to global public health.25 Consequently,

enhancing the management of infectious diseases is crucial for preventing infection and mitigating associated risks. Research shows that

mHealth technology can assist people in better detecting, monitoring, and managing infectious diseases, thus facilitating the rapid identi-

fication of potential epidemics.26 The WHO defines mHealth as the medical and public health practice supported by mobile devices. Statis-

tical data reveal that approximately 2.5 billion individuals globally possess smartphones, and about 4.9 billion individuals have access to the

Internet.27,28 Simultaneously, advancements in optical technology, materials, and software engineering are making smartphones increasingly

compact and powerful. Smartphone-basedmHealth applications hold significant potential in facilitating unparalleled professional clinical di-

agnoses and treatments.27 Particularly, AI enables smart tools (such as smartphones) to assist primary healthcare providers in helping with a

rough screening at the doorstep and in peripheral areas having poor doctor-patient ratios.11 In light of these considerations, we have devel-

oped an Internet-enabled smartphone application (mpox-AISM App) based on the proposed mpox-AISM strategy. Given the widespread

adoption of smartphones and the Internet, the mpox-AISM App could be pivotal in maintaining public health safety and controlling the
8 iScience 27, 109766, May 17, 2024
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mpox outbreak. Despite the application’s functions (reading images, sending images to the cloud server, and displaying diagnostic results to

users) being straightforward and fundamental, it serves as an invaluable resource for both the public and primary healthcare providers in high-

risk areas with limitedmedical resources. Thempox-AISM app not only accelerates the preliminary screening of suspected cases and reduces

reliance on professional medical facilities but also offers a dependable and accessible tool for healthcare providers and the public to manage

the mpox outbreak more effectively. In the future, the mpox-AISM app can aid individuals in high-risk areas and primary healthcare providers

lacking specialized knowledge (such as community doctors, general practitioners, rural doctors, and family doctors) in swiftly conducting pre-

liminary screenings for skin rashes, thereby urging at-risk individuals to seek professional medical care promptly and reducing the risk of trans-

mitting the mpox virus. The mpox-AISM app can significantly enhance the speed and efficiency of public health responses, particularly in

communities requiring rapid diagnosis and response, thereby combating the spread of mpox, safeguarding public health, and curbing

the outbreak.

The early diagnosis of mpox patients holds critical importance, as it not only markedly enhances the effectiveness of treatment and

mitigates the long-term impact on the patient’s health but also significantly curtails the speed of disease transmission.29 Building upon

this foundation, we specifically evaluated the potential of mpox-AISM in diagnosing earlier-stage mpox rash. This endeavor aims to enhance

the confidence of users affected by earlier-stagempox inmpox-AISM. Clinically, mpox rashes, with significantmorphological differences, can

manifest across various body parts. Additionally, when deploying systems based on mpox-AISM in public spaces, these systems are typically

restricted to capturing individuals’ facial and hand areas. Therefore, a grading assessment strategy has been implemented. Our dataset is

divided intomutually exclusive subsets based on body parts, and themodel subsequently predicts each subset. Using this evaluation strategy

affords users comprehensive insight into the model’s performance in diagnosing rashes across various body parts. The significance of inter-

pretable AI in medical image processing has grown, as it not only bolsters the trust and comprehension of medical professionals in the AI

decision-making process but also enhances the model’s transparency and reliability. Here, we employed Grad-CAM (Gradient-weighted

Class Activation Mapping) to highlight the areas in rash images that contribute most significantly to the model’s predictions, thus offering

an intuitive visual explanation for the model’s decision-making process. The reason for choosing grad cam is that compared with other inter-

pretable AI technologies, grad cam can be applied without modifying the model architecture and can be applied to various deep learning

models.30

At the outset of this work, numerous studies have successfully employed AI and rash images to diagnose mpox swiftly. We conducted a

comprehensive review of these studies, detailing their findings and the advantages of our research in Table 1. Our analysis revealed that

despite progress in previous research, numerous limitations persist. Specifically, previous studies predominantly focus on differentiating

mpox from non-mpox cases, as well as diagnosing mpox, chickenpox, measles, and normal skin conditions. Indeed, an efficient model ought

not only to diagnosempox accurately but also to identify various non-mpox rashes accurately, thereby offering detailed preliminary screening

results for the public in areas with limitedmedical resources and alleviating the workload of clinicians. Furthermore, from a clinical standpoint,

the model’s efficacy in the early diagnosis of mpox is crucial for controlling the outbreak. However, previous studies have overlooked eval-

uating the model’s diagnostic capabilities for earlier-stage mpox. Additionally, most previous studies only developed and validated deep

learning models, neglecting the development of corresponding applications. The most crucial thing is that all previous work only used

data augmentation and supervised learning strategies to address the challenge of insufficient medical images, which may lead to the

following drawbacks: (1) Model performance depends on the number of annotated images used; (2) the model is susceptible to the impact

of imbalanced datasets31; and (3) overuse of data augmentation may lead to overfitting of the model. In contrast, our work effectively ad-

dresses the aforementioned shortcomings.32 Firstly, our model can not only diagnose mpox, chickenpox, measles, and normal skin but

also diagnose four common skin diseases in daily life: eczema, urticaria, bullae, and vasculitis. Therefore, the mpox-AISM App can serve

as a skin disease screening tool for most patients with rashes and primary healthcare providers. Secondly, we specifically evaluated the per-

formance of the model in diagnosis earlier-stage mpox and developed corresponding networked smartphone applications. Most impor-

tantly, for the first time, we adopted a joint strategy based on SSL and supervised learning to develop the model. We not only demonstrated

for the first time that SSL can effectively improve the performance of mpox diagnostic models but also trained high-performance diagnostic

models using a small number of labeled images.

In conclusion, this work utilized AI technology and the Internet to develop an innovative mpox diagnosis strategy called mpox-AISM suc-

cessfully. By reading digital images captured by the lenses of networked devices, mpox-AISM can not only accurately diagnose mpox, but

also recognize common like-mpox skin diseases and normal skin conditions. It is worth emphasizing that mpox-AISM has demonstrated

excellent performance in diagnosing early mpox, providing strong technical support for controlling the mpox outbreak. The unique design

ofmpox-AISMallows it to bewidely deployed on everyday electronic devices, enabling rapidmpox screening in various real-world settings. In

addition, the mpox-AISM App, tailored for smartphones, has shown great potential for application, especially in environments with limited

medical resources. In daily life, the mpox-AISM App can serve as a skin disease management tool for the public and healthcare providers,

thereby significantly reducing the risk of the mpox virus to public health safety.
Limitations of the study

We acknowledge that this study has several limitations. First, although data augmentation and SSL strategies have alleviated the model per-

formance degradation caused by insufficient images, the diversity of our dataset still needs to be strengthened. Therefore, future researchwill

seek to collaborate with professional institutions to obtain more clinical images to improve the diagnostic performance and robustness of

mpox-AISM. Second, the model used by mpox-AISM has many parameters, which puts significant pressure on the computing resources
iScience 27, 109766, May 17, 2024 9



Table 1. Comparison of our work with previous studies

Method Year

Training

Strategy Dataset Size Image Categories

Earlier-stage

mpox Accuracy Application

AICOM-MP33 2024 SL 6124 labeled images mpox, non-mpox 3 96.3% 3

MobileNetV3-large34 2024 SL 400 labeled images mpox, chickenpox,

acne,

normal

3 88.2% 3

PoxNet2235 2023 SL 3192 labeled images mpox,

non-mpox

3 100.0% 3

DenseNet20136 2023 SL 1710 labeled images mpox, chickenpox,

measles,

normal

3 97.6% 3

MobileNetV3-small37 2023 SL 2056 labeled

images

mpox,

non-mpox

3 96.0% 3

ResNet1838 2023 SL 3192 labeled

images

mpox,

non-mpox

3 99.5% 3

Vision Transformer39 2023 SL 3192 labeled

images

mpox,

non-mpox

3 94.7% 3

MonkeyNet40 2023 SL 8689 labeled

images

mpox, chickenpox,

measles,

normal

3 93.2% 3

Xception+DenseNet16941 2022 SL 1754 labeled

images

mpox, chickenpox,

measles,

normal

3 87.13% 3

MobileNetV242 2022 SL 3192 labeled

images

mpox,

non-mpox

3 91.1% U

Mpox-AISM* (this work) 2024 SL + SSL 25331 unlabeled

images +4831 labeled

images

mpox, chickenpox,

measles,

bullous,

eczema,

urticaria,

vasculitis,

normal

100.0% (Recall) 94.5% U

‘SSL’ and ‘SL’ mean self-supervised learning and supervised learning, respectively.
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of cloud servers. Therefore, future research will also focus on developing lightweight models to improve response speed and reduce compu-

tational costs. Third, although mpox AISM can recognize seven types of skin diseases and normal skin, it is still necessary to expand more

disease categories in the dataset to improve its practicality. Finally, conducting a thorough clinical evaluation of AI algorithms before adopt-

ing them in practice is crucial.43 Therefore, further prospective clinical testing is needed to ensure its reliability and safety before the wide-

spread use of the mpox-AISM app. Given that mpox is an infectious disease, it is recommended that primary healthcare providers combine

epidemiological survey results when using the mpox-AISM app to make more accurate diagnoses and guide patients to refer them to pro-

fessional institutions.44 In addition, considering that models based on multimodal inputs have better learning ability compared to single

modal inputmodels,45 we are planning to develop amultimodalmodel that combines rash images and epidemiological survey results, aiming

to improve the diagnostic accuracy and stability of mpox-AISM.
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Figure 7. Some samples of mpox and other rash diseases

(A) mpox.

(B) Measles.

(C) Bullous.

(D) Eczema.

(E) Chickenpox.

(F) Urticaria.

(G) Normal.

(H) Vasculitis.
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KEY RESOURCES TABLE
REAGENT or RESOURCE SOURCE IDENTIFIER

Deposited data

MSID Bala et al.40 https://www.kaggle.com/datasets/dipuiucse/

monkeypoxskinimagedataset

MSLD Ali et al.46,47 https://www.kaggle.com/datasets/nafin59/

monkeypox-skin-lesion-dataset

https://www.kaggle.com/datasets/joydippaul/

mpox-skin-lesion-dataset-version-20-msld-v20

Dermnet Kaggle.com https://www.kaggle.com/datasets/

shubhamgoel27/dermnet

ISIC 2019 Tschandl et al., Noel et al. and Marc et al.48–50 https://challenge.isic-archive.com/data/#2019

Dermatology atlas DXY Website N/A

Software and algorithms

VGG Simonyan et al.51 https://github.com/pytorch/vision/blob/main/

torchvision/models/vgg.py

GoogleNet Szegedy et al.52 https://github.com/pytorch/vision/blob/main/

torchvision/models/googlenet.py

ResNet He et al.53 https://github.com/pytorch/vision/blob/main/

torchvision/models/resnet.py

ResNeXt Xie et al.54 https://github.com/pytorch/vision/blob/main/

torchvision/models/resnet.py

DenseNet Huang et al.55 https://github.com/pytorch/vision/blob/main/

torchvision/models/densenet.py

EfficientNet Tan et al.56 https://github.com/pytorch/vision/blob/main/

torchvision/models/efficientnet.py

RegNet Radosavovic et al.57 https://github.com/pytorch/vision/blob/main/

torchvision/models/regnet.py

Vision Transformer Dosovitskiy et al.58 https://github.com/pytorch/vision/blob/main/

torchvision/models/vision_transformer.py

Swin Transformer Liu et al.59 https://github.com/pytorch/vision/blob/main/

torchvision/models/swin_transformer.py

SimCLR Chen et al.12 https://docs.lightly.ai/self-supervised-

learning/examples/simclr.html

Grad-CAM Selvaraju et al.60 https://github.com/frgfm/torch-cam

Pytorch Version 1.13.0 https://pytorch.org/

Python Version 3.8.0 https://www.python.org/

Mpox-AISM Yue et al. https://github.com/zhenzhang-li/Mpox-AISM
RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources should be directed to and will be fulfilled by the lead contact, Zhenzhang Li (zhenzhangli@

gpnu.edu.cn).
Materials availability

This study did not generate new unique reagents.
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Data and code availability

� All images used in this work are from public datasets.
� The codes and demonstration video are available at https://github.com/zhenzhang-li/Mpox-AISM.
� Any additional information required to reanalyze the data reported in this paper is available from the lead contact upon request.
EXPERIMENTAL MODEL AND STUDY PARTICIPANT DETAILS

� All images used in this work are from public datasets.
� Download links for all datasets can be found in the key resources table.
METHOD DETAILS

Data usage

In this study, we employed two datasets. One was named Data_A (3100 images, eight categories). Data_A includesMpox (381 images), Mea-

sles (91 images), Chickenpox (107 images), Eczema (881 images), Urticaria (265 images), Bullous disease (561 images, Bullous for short), Vascu-

litis (521 images), and Normal (293 images). Mpox, Measles, Chickenpox and Normal skin images were obtained from the Monkeypox skin

images dataset (MSID)40 andMonkeypox Skin Lesion Dataset (MSLD).46,47 The remaining four categories, i.e., Eczema, Urticaria, Bullous, and

Vasculitis, were obtained from the Dermnet. Figure 7 shows the example for each of the eight disease categories. The other was named

Data_B (25331 images, eight categories). Data_B includes Melanoma (4522 images), Melanocytic nevus (12875 images), Basal cell carcinoma

(3323 images), Actinic keratosis (867 images), Benign keratosis (2624 images), Dermatofibroma (239 images), Vascular lesion (253 images),

Squamous cell carcinoma (628 images). The Data_B was from training data of ISIC 2019 and utilized in self-supervised learning. Generally,

self-supervised learning does not require labeled images. Consequently, wemerged these eight categories of images and randomly shuffled

them.
Data augmentation and SimCLR

Data is the driving force of deep learning, which determines the upper limit of models.61 Data augmentation alleviates the problem that insuf-

ficient samples hinder model performance by generating more data from limited data, enhancing the number and the diversity of samples,

and improving model robustness.62 In the medical field, the dataset’s insufficient sample size and category imbalance are especially prevail-

ing.63 Therefore, it is necessary to perform an appropriate data augmentation strategy. In this study, we performed data augmentation for

these five categories due to the scarcities of Mpox, Chickenpox, Measles, Normal and Urticaria. This work employed ‘‘Gaussian Noise +

Crop and Resize + Affine + Cutout + Flip Horizontal + Flip Vertical + Gamma Contrast + Gaussian Blur (Random order and Random prob-

ability)’’. Data_A was expanded from the original 3100 to 4831 images by augmenting the above five categories. We labeled these 4831 im-

ages as Data_C. Ultimately, the Data_C was divided into a training set (3866 images) and a test set (965 images) in a ratio of 8:2. Here, the loss

function of themodels was uniformly set asCross-Entropy-Loss, and the optimizer uniformlymanipulated Stochastic Gradient Descent (SGD).

This paper’s training and evaluation of models were performed in the Pytorch framework and an Ubuntu system with NVIDIA GeForce

RTX 3090.

si;j =
zTi zj

tkzik
��zj

�� (Equation 1)
lði; jÞ = � log
exp

�
si;j

�

P2N

k = 1

1½k! = i�expðsi;kÞ
(Equation 2)
Loss =
1

2N

X2N

k = 1

½lð2k � 1;2kÞ + lð2k; 2k � 1Þ� (Equation 3)

When using SimCLR, the original input image is first randomly augmented twice, and then the new images generated are fed into the

encoder simultaneously. Later, the encoder transforms the images into two vectors (hi, hj). Next, SimCLR employs a small neural network pro-

jection head to turn (hi, hj) into two new vectors (zi, zj). Finally, the NT-Xent-Loss between the two unknown vectors is calculated. Finally, the

parameter information in the whole framework is updated with a configured optimizer according to the loss value. The NT-Xent loss was

calculated as shown in Equations 1, 2, and 3 and t is a hyperparameter.
QUANTIFICATION AND STATISTICAL ANALYSIS

The objective evaluation for the model is essential. This work adopted five common evaluation metrics for deep learning models, namely

Accuracy, Precision, Recall, F1-score, and Specificity. Equations 4, 5, 6, 7, and 8 define the calculation process for each metric. Concretely,
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Accuracy measures the proportion of both true positives and true negatives in all the samples. Precision represents the proportion of true

positives among the instances that the model identifies as positive. Recall represents the proportion of true positives that are correctly iden-

tified by the model out of all actual positives. Specificitymeasures the proportion of true negatives that are correctly identified. F1-score rep-

resents the harmonic mean of precision and recall, providing a balance between them.

Accuracy =
TP+TN

TP+TN+FP+FN
(Equation 4)
Precision =
TP

TP+FP
(Equation 5)
Recall =
TP

TP+FN
(Equation 6)
Specificity =
TN

TN+FP
(Equation 7)
F1 score =
2Precision3Recall

Precision+Recall
(Equation 8)

In these equations: TP means True Positives;TN means True Negatives;FP means False Positives;FN means False Negatives.
16 iScience 27, 109766, May 17, 2024
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