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Abstract: Inhibitors of DNA topoisomerase I (TOP1), an enzyme relieving torsional stress of DNA
by generating transient single-strand breaks, are clinically used to treat ovarian, small cell lung and
cervical cancer. As torsional stress is generated during transcription by progression of RNA polymerase
II through the transcribed gene, we tested the effects of camptothecin and of the approved TOP1
inhibitors Topotecan and SN-38 on TNFα-induced gene expression. RNA-seq experiments showed
that inhibition of TOP1 but not of TOP2 activity suppressed the vast majority of TNFα-triggered genes.
The TOP1 effects were fully reversible and preferentially affected long genes. TNFα stimulation led to
inducible recruitment of TOP1 to the gene body of IL8, where its inhibition by camptothecin reduced
transcription elongation and also led to altered histone H3 acetylation. Together, these data show
that TOP1 inhibitors potently suppress expression of proinflammatory cytokines, a feature that may
contribute to the increased infection risk occurring in tumor patients treated with these agents. On the
other hand, TOP1 inhibitors could also be considered as a therapeutic option in order to interfere
with exaggerated cytokine expression seen in several inflammatory diseases.
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1. Introduction

Transcription is controlled by chromatin regulation that involves direct modification of DNA and
histones, but increasing evidence suggests that also the topological properties of the DNA itself have the
capacity to affect mRNA expression [1]. According to the “twin supercoiled domain model”, positive
supercoils occur in front of the advancing RNA polymerase II (RNAPII) and negative supercoils trail the
enzyme [2]. The resulting torsional stress in the DNA can be relieved by topoisomerase I (TOP1) which
generates transient single-strand breaks, topoisomerase II (TOP2) that induces transient double-strand
breaks or further enzymes such as APOBEC3B (apolipoprotein B mRNA editing enzyme catalytic

Cancers 2019, 11, 883; doi:10.3390/cancers11060883 www.mdpi.com/journal/cancers

http://www.mdpi.com/journal/cancers
http://www.mdpi.com
https://orcid.org/0000-0002-0583-4456
https://orcid.org/0000-0002-8501-043X
https://orcid.org/0000-0002-6984-7192
http://www.mdpi.com/2072-6694/11/6/883?type=check_update&version=1
http://dx.doi.org/10.3390/cancers11060883
http://www.mdpi.com/journal/cancers


Cancers 2019, 11, 883 2 of 19

subunit 3B) [3–5]. TOP1 and TOP2 have well documented roles in DNA replication, but increasing
evidence suggest also their importance for efficient transcription [6–8]. TOP1 is a type IB enzyme
that can relax both negative and positive supercoils by transient single-strand breaks using a process
involving the covalent attachment of TOP1 to the double stranded DNA called topoisomerase cleavage
complex (TOP1cc). One DNA strand is then cleaved, allowing the helical duplex to freely rotate
around the unbroken strand followed by re-joining of the phosphodiester backbone of the DNA via
the ligase activity of TOP1 [9]. TOP1 inhibitors such as camptothecin (CPT) inhibit re-ligation and
stabilize the TOP1cc by intercalating at the TOP1-DNA interface [9]. CPT and its clinically used
derivatives topotecan (TPT) or SN-38 are used for treatment of colon cancer, gynecologic malignancies
and small-cell lung cancers [10,11], but also serve as tools to study the role of TOP1 in gene expression.
TOP1 plays an important role in the regulation of basal and inducible gene expression by a variety
of mechanisms. The enzyme was found at gene promoters where it participates in the release of the
paused RNAPII by BRD4 (bromodomain containing protein 4)-dependent phosphorylation of RNAPII
which stimulates TOP1 activity and thereby transcription elongation [12]. TOP1 was also found to be
relevant for transcription elongation [13], suggesting that TOP1 can positively affect transcription at
multiple levels. Overrepresentation of TOP1 has also been observed at super-enhancers where TOP1
can bind to transcription factors such as AIRE [14] and contributes to the synthesis of enhancer RNA
(eRNA) at androgen-receptor-regulated enhancers [15].

Inducible gene expression is not only triggered by steroid hormones, but also by inflammatory
processes where cytokines such as tumor necrosis factor α (TNFα) elicit a profound transcriptional
response to trigger the expression of further inflammatory mediators such as interleukin 8 (IL8)
and C-X-C Motif Chemokine Ligand 2 (CXCL2) in order to amplify the immune response [16,17].
Binding of TNFα to TNF receptor 1 enables the assembly multi-protein complexes which finally
lead to the activation of the inducible transcription factor nuclear factor-κB (NF-κB), a complex
process that depends on inducible degradation of the inhibitory IκBα protein [18]. NF-κB activity is
subsequently terminated by a variety of autoregulatory feedback loops that involve the re-synthesis
of IκBα proteins [19]. Inducible expression of inflammatory cytokines by NF-κB depends on the
strongly transactivating p65 subunit, which harbors two transactivation domains (TADs) in its
C-terminal region [20]. These TADs contact components of the basal transcription machinery and
translate p65-DNA binding into productive transcription executed by RNAPII [21–23]. Subsequently,
the C-terminal domain (CTD) of the largest RNAPII subunit is dynamically phosphorylated to
coordinate the recruitment of factors allowing transcription initiation and elongation [24]. Following
transcription and translation, cytokines such as interleukin 1 (IL-1) and TNFα are secreted from cells
to coordinate both, locally and systemically the inflammatory host cell response to tissue damage
and infection [25]. However, dysregulation of cytokine expression including a slight but permanent
elevation of cytokine production can lead to chronic smoldering inflammation, while exaggerated and
overshooting inflammation as it occurs for example in sepsis results in a "cytokine storm" that may
result in tissue damage and even organ failure [17,26–28].

Here we investigated the consequences of TOP1 and TOP2 inhibition for TNFα and IL-1-induced
gene expression. The use of various and also clinically used TOP1 inhibitors strongly interfered
with a large part of TNFα-triggered gene expression in a fully reversible fashion. TOP1 inhibition
preferentially inhibited long proinflammatory genes. As exemplified by the TNFα-induced and
TOP1 sensitive IL8 gene, TNFα leads to the recruitment of TOP1 to the gene body, thus facilitating
transcription elongation. The clinical implications for cancer patients treated with TOP1 inhibitors and
for patients suffering from exaggerated cytokine production are discussed.
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2. Results

2.1. Effects of Various Clinically Used TOP1 and TOP2 Inhibitors on TNFα-Triggered Gene Expression

To test a potential contribution of TOP1 or TOP2 on TNFα-induced expression of inflammatory
genes, we measured the impact of specific TOP1 inhibitors on TNFα-triggered gene expression in
human diploid colon cancer HCT116 cells. Incubation of cells with the TOP1-selective inhibitor
CPT [29] resulted in a strong and dose-dependent inhibition of inducible IL8 expression, while the
inhibitory effects on CXCL2 transcription remained moderate (Figure 1A). In contrast, interference with
TOP2 activity by ICRF193 did not affect TNFα-triggered expression of these two genes (Figure 1B).

Control experiments ensured that the inhibitory effect of CPT was not attributable to reduced
cell viability in HCT116 and KB cells (Figure S1A). It was then interesting to test whether also further
approved TOP1 and TOP2 inhibitors display similar effects. Administration of TPT or SN-38, a biological
active metabolite of irinotecan [30,31], strongly interfered with the TNFα-induced expression of IL8,
NFKBIA (NF-κB inhibitor α), TNFAIP3 (TNFα Induced Protein 3) and ICAM1 (intercellular adhesion
molecule 1), while inhibition of CXCL2 and CXCL10 expression was less pronounced (Figure 1C).
Preincubation of cells with the TOP2 inhibitors teniposide or etoposide failed to interfere with
TNFα-triggered expression of IL8, NFKBIA, TNFAIP3, CXCL2, CXCL10 or ICAM1 (Figure 1D), thus
revealing that the observed effects are not restricted to one specific inhibitor. To investigate the
effects of TOP inhibitors on untransformed cells we used conditionally immortalized human foreskin
FS4-LTM fibroblasts that only proliferate in the presence of doxycycline. Also the TNFα-triggered
gene expression in these FS4-LTM fibroblasts was efficiently inhibited by TOP1 inhibitors (Figure 1E).
The effect of CPT on inducible gene expression was also seen at the protein level. HCT116 cells
showed rapid IκBα phosphorylation and degradation upon short-term exposure to TNFα, followed
by re-synthesis of IκBα after 60 min (Figure 1F). This re-synthesis of IκBα was completely absent in
the presence of CPT. Also upstream signaling events were mildly affected by CPT, as detected by a
reduction of TNFα-induced p65 Serine 468 phosphorylation in the presence of this TOP1 inhibitor
(Figure 1F).

2.2. A General and Supportive Role of TOP1 for the Induction of the TNFα-Triggered Gene Response

So far, the experiments revealed a gene-specific effect of TOP1 inhibitors on TNFα-triggered gene
expression. This gene specificity might be due to various reasons including the differential involvement
of distinct pro-inflammatory transcription factors such as NF-κB or activator protein 1 (AP1), which
cooperate to trigger expression of inflammatory genes [32,33]. In order to investigate the relative
contribution of the strongly transactivating NF-κB p65 subunit on TNFα-triggered gene expression
and its modulation by CPT, we generated p65-deficient HCT116 cells using the CRISPR-Cas9 system
(Figure S3A). Two single-cell clones lacking p65 expression showed defect TNFα-triggered expression
of IL8, CXCL2 and NFKBIA (Figure S3B) and also no IκBα re-synthesis following its TNFα-induced
proteasomal degradation (Figures S3C,S4), showing the successful elimination of NF-κB function.
The single-cell clone 32 lacking p65 and also HCT116 wildtype (WT) cells were used to determine
the effects of CPT and ICRF193 on basal and TNFα-induced gene expression by RNA-seq. Treatment
with TNFα resulted in the induction of well-known target genes [34] and accordingly a gene ontology
(GO) analysis revealed the involvement of these target genes in biological processes associated with
infection and immunity (Figure S5).
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Figure 1. Effect of TOP1 and TOP2 inhibitors on TNFα-induced inflammatory gene expression in
HCT116 and FS4-LTM cells. (A,B) HCT116 cells were pre-treated for 2 h with increasing (0.5 µM, 1 µM,
5 µM, 10 µM) concentrations of CPT (A) or ICRF193 (B) or vehicle (DMSO) in the controls and then
additionally stimulated for 1 h with TNFα. Cells were subsequently analyzed for IL8 and CXCL2 gene
expression by RT-qPCR, error bars show SEMs obtained from at least two independent experiments
performed in duplicate. (C,D) HCT116 cells were pre-treated for 2 h with 5 µM of various TOP1- (C) or
TOP2- (D) inhibitors as shown, followed by the addition of TNFα (20 ng/mL) for 1 h. Expression of
various indicated inflammatory NF-κB target genes was assessed via RT-qPCR. Error bars show SEMs
obtained from three independent experiments performed in duplicate. (E) Primary human FS4-LTM
fibroblasts where treated and analyzed as described for HCT116 cells in (C,D). SEMs were obtained
from three independent experiments performed in duplicate. (F) HCT116 cells were pre-treated for
2 h with 5 µM of CPT or DMSO, followed by the addition of TNFα (20 ng/mL) for various periods.
Protein lysates were prepared and equal amounts of protein were analyzed by Western blotting for the
occurrence or phosphorylation of the indicated proteins. The positions of molecular weight markers
are indicated. Normalized intensity ratios are given for each band, the intensity of the DMSO-treated
control was set as 1. β-Actin was used as housekeeping protein to ensure equal protein loading, one out
of three experiments is shown, the full blots are shown in Figure S2.
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TNFα-triggered gene expression was strongly reduced in the presence of CPT, while ICRF193
had no inhibitory effect in HCT116 WT cells. NF-κB p65-deficient cells showed almost complete
abolishment of TNFα-inducible gene expression and thus did not allow to measure the effects of CPT
and ICRF193, as visualized in a box plot (Figure 2A) and heat map (Figure 2B). Therefore, the subsequent
bioinformatic analysis was only conducted for the analysis of HCT116 WT cells. A PCA of all genes
revealed no effect of ICRF193 on basal gene expression in the absence of TNFα stimulation, while CPT
already caused changes in basal and also in TNFα-induced transcription (Figure 2C). A PCA analysis
of all TNFα-regulated genes showed the general inhibition of most TNFα-regulated genes by CPT
(Figure 2A–C), while it exerted both activating as well as inhibitory functions on basal gene expression
(Figure 2D). A GO analysis of the biological processes exerted by CPT-regulated genes revealed the
involvement of upregulated genes in sensory perception and receptor signaling, while downregulated
genes often participate in the (epigenetic) regulation of gene expression (Figure S6). 42 genes showed
>2-fold upregulation by TNFα, but only 40 of them were found under all conditions (listed in Table S1).
In the presence of CPT only 6 of these 40 genes were still induced >2-fold, showing that only a minor
fraction of the TNFα-induced mRNAs escapes from the inhibitory effect of CPT, as visualized in the
Venn diagram displayed in Figure 2E. In contrast, 24 of the 40 genes were still upregulated >2-fold in
the presence of ICRF193, reinforcing the notion that TOP2 inhibitors have only marginal effects on
inflammatory gene expression. Previous studies suggested that especially long genes critically rely on
the enzymatic activity of TOP1 [35–37]. Indeed, the analysis of TNFα-stimulated cells showed that the
inhibitory effect of CPT had a tendency to be more pronounced in long genes (Figure 2F).

In contrast, the minor effects of ICRF193 on the stimulatory effects of TNFα showed no correlation
with gene length (Figure 2F). Interestingly, the correlation with gene length was only seen for
TNFα-regulated genes, while this correlation was statistically below significance for the effects of CPT
and ICRF193 on basal gene expression (Figure 2G).

2.3. The Positive Effect of TOP1 on Gene Expression Does Not Strictly Correlate with the Magnitude of
Gene Induction

The inhibitory effect of CPT in HCT116 cells was more pronounced for strongly induced genes
(Figure 3A), raising the possibility that increased supercoiling and torsional stress in genes undergoing
strong upregulation may result in an increased need for TOP1 activity.

To address this possibility in a more systematic fashion, we employed an experimental system
allowing scalable gene expression. Towards this goal we used different fusion proteins where
the DNA-binding domain of the yeast transcription factor Gal4 was fused to different parts of the
transactivating C-terminus of the NF-κB p65 protein (Figure 3B). These fusion proteins are characterized
by different transactivation capacities [20] and were expressed in a HEK293 cell line containing a
stably integrated luciferase reporter gene driven by five Gal4 binding sites [38], correct expression
was ensured via western blot (Figure 3C). In this experimental system CPT reduced luciferase gene
expression about 50% and this effect occurred to a comparable extent irrespective of the strength of
gene induction (Figure 3D). Again, TOP2 inhibition had only mild effects on reporter gene expression
(Figure 3D). These data suggest that the relative strength of gene expression per se is not sufficient to
explain the gene-specific effects of CPT, which may rely on additional parameters such as gene length,
chromatin state or further factors.
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Figure 2. RNA-seq analysis of CPT effects on TNFα-triggered gene expression in HCT116 WT and
p65-deficient HCT116 cells. (A) HCT116 and p65-deficient HCT116 cells were pre-treated for 2 h with
CPT or ICRF193 (5 µM each), followed by stimulation for 1 h with TNFα (20 ng/mL). RNA-seq analysis
results are depicted in a boxplot, each dot represents a regulated gene measured by ≥ 20 reads in at least
one condition and undergoing an upregulation of > 1 log2 fold change (LFC) upon TNFα-stimulation.
The boxed area displays the region containing the second and third quartile, the median is indicated.
(B) Heat map visualization of the RNA-seq experiment, only genes with a LFC >1 and ≥ 20 reads in
at least one condition are displayed (40 genes). (C) The upper part shows a two-dimensional PCA
analysis of the RNA-Seq data for the indicated conditions in HCT116 WT cells. The lower part shows a
PCA analysis for the 40 genes that are upregulated >2-fold in response to TNFα treatment. (D) Heat
map visualization of CPT and ICRF193 effects on basal gene expression of HCT116 WT cells. As these
TOP1 inhibitors can potentially affect housekeeping genes used for normalization, read counts are
displayed. Gene counts are normalized by DESeq2 and filtered for significant (p value < 0.05) expressed
CPT regulated genes (0 h TNFα + CPT versus 0 h TNFα (500 genes)). (E) Venn diagram visualizing the
distribution of genes undergoing a >2-fold induction of TNFα-triggered gene expression in the absence
or presence of the indicated inhibitors. (F) Correlation of the TNFα-induced changes in gene expression
(in log2 scale) in the absence (left) or presence of inhibitors for TOP1 (middle) and TOP2 (right) versus
the gene length. Only genes with a LFC >1 and ≥ 20 reads in at least one condition are displayed.
The colored central line represents the linear smooth, the colored area displays the confidence interval
around the smooth. (G) HCT116 WT cells were treated for 2 h with CPT or ICRF193 (5 µM each). Genes
showing a LFC > 1 upregulation or downregulation and showing a p-value < 0.05 were not correlated
with gene length.
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Figure 3. The contribution of TOP1 for gene expression is not correlated with the strength of gene
induction. (A) Correlation of the strength of the inhibitory effects by CPT (upper; spearman correlation:
−0.56, coefficients p-value: 2 × 10−4) or ICRF193 (lower; spearman correlation: −0.06, coefficients
p-value: 0.8668) versus TNFα-induced changes in gene expression. All genes were selected for being
TNFα-induced targets (LFC > 1 and ≥ 20 reads). The colored central line represents the linear smooth,
the colored area displays the confidence interval around the smooth. (B) Schematic visualization of
Gal4-p65 constructs containing either full-length p65 (aa 1-551) or truncated forms of p65. The position of
the Rel homology domain (RHD) and of the transactivation domains (TADs) are indicated. (C) HEK293
cells with a stably integrated Gal4-driven firefly luciferase reporter gene were transfected with the
various Gal4 constructs that are visualized in (B). Cellular extracts were used to confirm expression of
the Gal4-p65 proteins by immunoblotting. The positions of molecular weight markers are indicated,
normalized intensity ratios are given for each band. β-Actin was used as housekeeping protein,
the whole blots are displayed in Figure S7. (D) The cells transfected as described in (C) were treated
one day later for 8 h with 10 µM CPT, ICRF193 or DMSO or left untreated. Cell extracts were used to
determine the luciferase activity which is displayed either as -fold activation (left) or alternatively as %
reduction (right). Error bars show SEMs from three independent experiments.
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2.4. IL-1-Triggered Gene Expression Is Also Supported by TOP1

Can TOP1 inhibition also interfere with inducible gene expression triggered by further cytokines
such as IL-1? To address this question, we used human epithelial KB cells, which respond well
to IL-1 [39]. KB cells were pre-treated with CPT and then stimulated either with TNFα or with
IL-1, followed by the quantitative analysis of the inflammatory target genes IL8, CXCL2 or NFKBIA
using RT-qPCR (Figure 4A). CPT interfered with the expression of all these cytokine-induced genes
irrespective of the inducing stimulus, though to a lesser extent as in HCT116 cells (Figure 1A–D).
Accordingly, the inhibiting function of CPT is not restricted to one specific cytokine. Additionally,
the clinically relevant TOP1 inhibitors TPT and SN-38 interfered with IL-1-induced expression of
NFKBIA and TNFAIP3, but remained without impact on CXCL10 expression (Figure 4B), similar to the
observations in HCT116 cells (Figure 1C). In contrast, the TOP2 inhibitors ICRF193, amsacrine and
etoposide showed no inhibitory function on IL-1-triggered gene expression in KB cells (Figure 4C),
reinforcing the notion that TOP2 is without significant relevance for inflammatory gene expression,
regardless of stimulus or cell type. Control experiments ensured that the inhibitory effect of CPT was
not attributable to reduced cell viability (Figure S1B).
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Figure 4. Effect of TOP1 inhibitors on IL-1-induced inflammatory gene expression in KB cells. (A) KB
cells were pre-treated for 2 h with CPT and then stimulated for 1 h either with TNFα (20 ng/mL) or
with IL-1 (10 ng/mL). Cells were harvested and analyzed by RT-qPCR for expression of IL8, CXCL2 and
NFKBIA as shown. To facilitate comparison, maximal gene expression for the respective genes was set
as 100%, error bars display SEMs obtained from three independent experiments performed in duplicate.
(B,C) KB cells were pre-treated for 2 h with 5 µM of various TOP1 (B) or TOP2 (C)-inhibitors as shown,
followed by the addition of IL-1 (10 ng/mL) for 1 h. Expression of various indicated inflammatory
NF-κB target genes was assessed via RT-qPCR. Error bars show SEMs obtained from three independent
experiments performed in duplicate.

2.5. The Effect of TOP1 on Inflammatory Gene Expression Is Fully Reversible and Preferentially Affects Early
Induced Genes

It was then interesting to determine the kinetics of reversible TOP1 inhibition using an experimental
set-up that is schematically displayed in the upper part of Figure 5A.
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qPCR, error bars show SEMs from five individual experiments. Target genes were grouped according 
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Figure 5. Reversibility and kinetic analysis of the CPT effect on TNFα-triggered gene expression.
(A) Upper part: schematic of experimental design. HCT116 cells were treated for 2 h with 5 µM CPT or
DMSO and cells were either directly stimulated with TNFα for 1 h or alternatively cells were washed
with PBS and the medium was replaced by inhibitor-free medium. After the indicated time periods
post-treatment, cells were stimulated for 1 h with TNFα. The lower part shows the quantification of
mRNA expression levels of the indicated inflammatory genes using RT-qPCR. Error bars show the
SEMs from five individual experiments. (B) HCT116 cells were either treated with TNFα for 5 h and
additionally with 5 µM CPT, ICRF193 or DMSO for 3 h (8 h TNFα; 3 h CPT/ICRF193/DMSO treatment
in total) or were treated for 2 h with CPT, ICRF193 or DMSO and additionally for 0 h and 1 h with TNFα
(3 h of CPT/ICRF193/DMSO treatment in total). Gene expression levels were analyzed by RT-qPCR,
error bars show SEMs from five individual experiments. Target genes were grouped according their
kinetic behavior (group 1: maximal expression early, group 2: comparable expression early and late,
group 3: maximal expression late).
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HCT116 WT cells were incubated with CPT or vehicle for 2 h prior to TNFα stimulation, followed
by washing of cells and further incubation in normal medium for various periods. Subsequently the
cells were stimulated for 1 h with TNFα, followed by the analysis of several early induced genes by
RT-qPCR. The inhibitory effect of CPT on gene induction was lost in a time-dependent manner and
already strongly diminished at 4 h after washout of the inhibitor (IL8, CXCL2 and NFKBIA), or even
completely vanished 2 h after CPT removal (TNFAIP3) (Figure 5A). These data points are in good
agreement with studies determining the clinical pharmacokinetics of TPT showing a mean elimination
half-life of ~3 h [40].

The inflammatory gene response occurs in a timely coordinated manner with genes expressed at
early, intermediate and late time points [41]. To test whether CPT preferentially affects early or late
genes, HCT116 cells were stimulated for 1 or 8 h with TNFα in the absence or presence of DMSO,
CPT or ICRF193, followed by the analysis of gene expression by RT-qPCR. For the analysis of TOP
effects on early induced genes, cells were pre-treated for 2 h with the respective TOP inhibitors, prior to
additional TNFα-treatment for 1 h. For the analysis of late induced genes which might also require the
de novo synthesis of transcriptional regulators, cells were stimulated for 5 h with TNFα, followed by
the intermittent, additional administration of TOP inhibitors and further incubation, as schematically
shown on the top of Figure 5B. These analyses showed that genes having their maximal expression
after 1 h of TNFα (type 1 genes) and genes having comparable levels of gene expression after 1 or 8 h
(type 2 genes) showed a strong inhibitory effect by CPT after 1 h, but no inhibition at the late time
points (Figure 5B). In contrast, the type 3 genes represented by CXCL10 and Ccl5 reached their maximal
expression after 8 h and showed no statistically relevant CPT-mediated inhibition of gene expression
(Figure 5B). These experiments raise the possibility that CPT preferentially affects expression of early
induced genes, but general conclusions on this require the systematic analysis of many genes in various
cell types on a genome-wide level.

2.6. CPT Interferes with TNFα-Induced Histone H3 Acetylation and Transcription Elongation

The inhibitory effects of TOP1 inhibitors on gene expression may rely on several mechanisms,
such as impaired DNA-binding of NF-κB p65, RNAPII or on defects in transcription initiation and
elongation. To distinguish between these possibilities, we performed chromatin immuno-precipitation
(ChIP) experiments covering various upstream and transcribed regions of the well characterized and
CPT-sensitive IL8 gene, as schematically displayed in Figure 6A. HCT116 cells were stimulated for
1 h with TNFα in the absence or presence of CPT and subjected to ChIP using antibodies recognizing
p65, RNAPII, elongating (phospho-serine 2 CTD) and initiating (phospho-Serine 5 CTD) RNAPII as
well as TOP1. TNFα stimulation caused the association of p65 to its binding sites at the enhancer
and the promoter of the IL8 gene in a CPT-independent fashion (Figure 6B). In support to this result,
fractionation experiments showed that TOP1 and TOP2 inhibitors had no impact on the TNFα-induced
translocation of NF-κB p65 to the nuclear and the chromatin fraction (Figures S8 and S9). While TNFα
caused the recruitment of RNAPII to the promoter and the downstream transcribed regions in exons
1 and 2, the inhibition of TOP1 resulted in a slight inhibition of RNAPII occupancy at these sites.
TNFα increased the amount of initiating RNAPII at the promoter and the downstream transcribed
introns and exons in a CPT-independent fashion. In contrast, CPT prohibited the TNFα-induced
occurrence of elongating RNAPII at the transcribed regions of the IL8 gene (Figure 6B), suggesting
that the inhibitory effect of CPT on inflammatory gene expression also depends on interference with
transcription elongation rather than transcription initiation. Intriguingly, TNFα stimulation also led to
a slight but consistently observed increase of TOP1 association with the transcribed region at exons 1
and 2 and intron 1. This TOP1 association was less pronounced in the presence of CPT (Figure 6B).
TOP1 participates in re-shaping the chromatin structure of its target genes and shows enrichment
at chromatin marks such as H3K4me3 [42,43]. As inflammatory cytokines subsequently also lead
to changes in histone modifications at inflammatory genes including IL8 [39], it was interesting to
test whether CPT might also affect these events. HCT116 cells were treated for 1 h with TNFα in the
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absence or presence of CPT, followed by ChIP experiments using antibodies recognizing the active
enhancer mark H3K27ac [44], and H3K9ac, a modification indicating the switch from transcription
initiation to elongation on promoters [45]. TNFα caused the enrichment of H3K27ac and H3K9ac
at the enhancer-flanking regions while H3K9ac was also induced at exons 1 and 2 and intron 1.
All TNFα-induced H3 acetylations were impaired in the presence of CPT (Figure 6C), suggesting that
TOP1 inhibitors either also affect chromatin modifications or vice versa that changes in gene expression
also affect chromatin modifications.
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Figure 6. Effects of TOP1 inhibitors on transcription elongation, association of regulatory proteins
and histone modifications. (A) Schematic display of the analyzed region covering parts of the IL8
locus. Exons are shown by the filled boxed areas, 3′ and 5′ UTR are indicated by shaded boxes and
the positions of the regions detected by PCR are shown in red. (B) HCT116 cells were either treated
for 2 h with 5 µM CPT and additionally for 1 h with TNFα or were treated for 0 or 1 h with TNFα
alone. Cells were subsequently subjected to ChIP analysis using the indicated antibodies, chromatin
binding of the various proteins was quantified via qPCR. Error bars show SEMs from three individual
experiments. (C) The experiments were done as in (B) with the difference that the levels of H3K27ac
and H3K9ac-bound DNA were determined.
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3. Discussion

Here we show that several TOP1 inhibitors interfere with cytokine-induced and NF-κB
p65-mediated inflammatory gene expression in a variety of cell lines. This effect -in combination with
a previously reported loss of white blood cells due to hematological toxicity- may contribute to the
increased risk of infections occurring in cancer patients treated with TOP1 inhibitors [46]. Vice versa,
the reported inhibitory activity of TOP1 inhibitors on the LPS- and virus-induced host response together
with its protective effect in a model of LPS-induced cell death repurposed TOP1 inhibitors as agents
for the treatment of septic shock [47]. Recent evidence also showed an alleviation of LPS-mediated
acute lung injury by TPT [48]. Conditions associated with systemic release of large amounts of
cytokines or even a cytokine storm such systemic inflammatory response syndrome (SIRS), sepsis or
graft-versus-host disease are difficult to treat and can lead to the cytokine-induced lethal multiple
organ dysfunction syndrome [49]. The potent inhibitory effect of clinically used TOP1 inhibitors
on inflammatory gene expression and its full reversibility suggest that TOP1 inhibitors might be
therapeutically used for a limited period to antagonize excessive and damaging cytokine production.

The induction of single-strand breaks by CPT has been reported to activate NF-κB, but interestingly
a robust induction of DNA-binding activity by CPT and other DNA-damaging agents is typically
contrasted by minor changes in the expression of endogenous NF-κB target genes [50–52]. Accordingly,
we found that CPT treatment of cells induced the expression of only two NF-κB target genes (LYRM5
and C18orf32), but both genes were only induced with a LFC <1.

Genetic studies in yeast revealed the strong requirement of TOP1 and TOP2 for the activation
of genes characterized by high transcriptional plasticity [53]. However, some genes only require
the function of one class of topoisomerases. This is exemplified by the transcription of neuronal
early-response genes and hormone-induced estrogen receptor-α (ERα) target genes, which depend on
TOP2β cleavage activity [8,54]. In contrast, this study shows that cytokine-induced inflammatory gene
expression relies exclusively on the activity of TOP1, while TOP2 activity was fully dispensable for
gene activation. The molecular mechanisms responsible for this bias are currently not clear. Of note,
TPT also induces DNA double-strand breaks at sites distinct from Top1cc covalent complexes [55,56],
thus we can formally not rule out a role of double-strand DNA breaks in inflammatory gene expression.

Another interesting implication of our results is the fact that TOP1 inhibition affects the large
majority of TNFα-induced genes. This could be due to several reasons including the fact that many
cytokines are clustered on genomic regions as exemplified by the prototypical CXCL-chemokine
locus on human chromosome 4 [57]. In this case, TOP1-mediated relief of positive and a negative
DNA supercoiling would affect also neighbouring cytokine genes. In support to this concept,
genome-wide chemical probing of the DNA structure has revealed the existence of DNA supercoiling
domains characterized by an enrichment of TOP1, accessible chromatin and a depletion of TOP2 [58].
Another possible mechanism relies on the ability of TOP1 to interact with specific DNA-binding
proteins such as AIRE or NKX3.1 and with chromatin remodelers including SMARCA4 and
BAZ1B-SMARCA5 [14,43,59,60]. In this case, association of TOP1 with master transcription factors of
the inflammatory gene response such as NF-κB or AP1 would blunt a large part of proinflammatory
gene expression program. Furthermore, TOP1 can interact with the AP1 subunit c-Jun [61] and it will
be interesting in future studies to systematically investigate the interactomes and posttranslational
modifications of TOP1 proteins in cytokine-stimulated cells. These experiments could also clarify
the molecular mechanisms allowing for TNFα-inducible recruitment of TOP1 to the bodies of
inflammatory genes.

TOP1 inhibition resulted in the diminished occurrence of elongating RNAPII in the transcribed
region of the IL8 gene. Given the general role of TOP1 for transcription elongation revealed by
sequencing of nascent RNA [13], we speculate that diminished transcription elongation also accounts
for impaired transcription of most other proinflammatory genes. The atypical kinase BRD4 does not
only trigger Serine 2 phosphorylation in the elongating RNAPII CTD, but also stimulates TOP1 activity
to overcome torsional stress [12]. In addition, a stabilized TOP1-DNA complex can impose a physical
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obstacle for elongating RNAPII, thereby hindering its progression through the gene body [62,63].
But also, other components can account for the importance of TOP1 activity, as its inhibition changed
H3 acetylation at the IL8 locus and most probably will also cause changes in chromatin compaction [64]
or the expression of non-coding RNAs which are known to assemble TOP1 containing protein
complexes [15,65,66].

4. Materials and Methods

4.1. Cell Culture and Transfections

The human cancer cell lines KB, human embryonic kidney (HEK)293 and diploid HCT116 colon
cancer cells were maintained in DMEM GlutaMAX (TM) (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 10% fetal calf serum and 100 U/mL penicillin and 100 µg/mL streptomycin
at 37 ◦C in a humidified atmosphere containing 5% CO2. NF-κB p65-deficient HCT116 cells were
generated via CRISPR-Cas9 by transfection of 6 µg of the pX459 vector containing a single guide
RNA targeting the third exon of p65 into 2000 cells per 10-cm dish using linear polyethylenimine [67].
After one day the non-transfected cells were eliminated by the addition of puromycin (1 µg/mL).
After 48 h the dead cells were aspirated off and DMEM GlutaMAX without puromycin was added to
allow the growth of single cell-derived clones. Single clones were picked and further analyzed for
expression of Cas9 and p65, the genomic indel mutations were characterized by PCR amplification and
sequencing. Primary human FS4-LTM fibroblasts were grown in huFIB Medium (InSCREENeX GmbH,
Braunschweig, Germany) and their proliferation was induced by addition of (1 µg/mL) doxycycline.

4.2. Cell Extraction and Western Blotting

Cells were washed in PBS and collected by centrifugation. The cell pellet was resuspended in
RIPA lysis buffer (10 mM Tris/HCl, pH 7.5; 150 mM NaCl; 0.5 mM EDTA; 0.1% SDS; 1% Triton X-100;
1% deoxycholate) freshly supplemented with 10 mM NaF, 0.5 mM sodium orthovanadate, 1 mM
phenylmethylsulfonylfluoride, leupeptin (5 µg/mL) and aprotinin (10 µg/mL). Following incubation
on ice for 30 min, the extracts were centrifuged and equal amounts of proteins contained in the
supernatant were further analyzed. Western blotting was performed by SDS-PAGE and semi-dry
transfer to polyvinylidene difluoride membranes. After incubation with primary and secondary
peroxidase-coupled antibodies, proteins were detected using Western-Lightning Plus-ECL solutions
(PerkinElmer, Waltham, MA, USA) according to the instructions given by the manufacturer. All bands
were visualized using the ChemiDocTM XRS+ System (Bio-Rad Laboratories, Munich, Germany).
Relative intensity ratios were calculated using the Bio-Rad Image Lab-software.

4.3. Quantification of Gene Expression by RT-qPCR

Cell were left untreated or pre-treated with TOP1 and TOP2 inhibitors or vehicle, the concentrations,
incubation times and inhibitors are specified in the figure legends. Cell stimulation was done upon
addition of 20 ng/mL of TNFα or 10 ng/mL of IL-1. Total RNA was isolated using the RNeasy kit
(Qiagen, Hilden, Germany) according to the procedure described by the manufacturer. One microgram
of RNA was used for the generation of cDNA using Oligo (dT) 12-18 primers and SuperScript II Reverse
Transcriptase (Thermo Fisher Scientific). The cDNA was diluted and used for the RT-qPCR reactions
using the SYBR green reporter dye. Every reaction was performed as duplicates and quantified with the
∆∆CT-method. Threshold cycles (CT) of target genes were normalized to a housekeeping gene (TPI).
The resulting ∆CT were compared to control samples and relative mRNA expression was calculated
by R = 2−∆∆CT.

4.4. Luciferase Reporter Assays

HEK293 cells with a stably integrated firefly luciferase reporter gene driven by five Gal4 binding
sites [38] were seeded in 6-well plates. The next day, cells were transfected with 1 µg of Gal4-constructs
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together with a plasmid encoding Renilla luciferase. After 24 h cells were treated with 10 µM of
CPT, ICRF193 or vehicle and incubated for another 8 h. Cells extracts were prepared with the Dual
Luciferase Assay Kit (Promega, Madison, WI, USA) and firefly and Renilla luciferase activity was
measured in a luminometer (Duo Lumat LB 9507, Berthold, Bad Wildbad, Germany) as described [32].
All values were normalized to the activity of Renilla luciferase.

4.5. RNA-Seq and Bioinformatics Analysis

HCT116 cells were left untreated or treated for 2 h with 5 µM CPT, ICRF193 or vehicle. 20 ng/mL of
TNFα were additionally added for 1 h as specified in the figure legends. Total RNA was isolated using
the NucleoSpin RNA Kit (Macherey-Nagel, Düren, Germany) and RNA quality was assessed using
the Experion RNA StdSens Analysis Kit (BioRad). RNA-Seq libraries were prepared from total RNA
using the TruSeq Stranded total RNA LT kit (Illumina, San Diego, CA, USA) and the further analysis
was performed as published [32]. The statistical analysis of read counts is given in Table S2, RNA-Seq
fastq files were controlled for quality issues using fastqc (https://www.bioinformatics.babraham.ac.
uk/projects/fastqc/). Trimming and filtering was done by trimmomatic (trimmomatic SE -threads 8
HEADCROP:10 LEADING:3 TRAILING:3 SLIDINGWINDOW:4:15 MINLEN:36) [68]. Gene counts
were called by FeatureCounts [69]. Coverage profiles were created by Deeptools bamCoverage
function using FPKM normalization [70]. Differential gene expression analysis was done with the
R/Bioconductor package DESeq2 [71]. DESeq2 internal Principal Component Analysis (PCA) was used
to show the similarity between different samples. Differentially expressed genes were chosen using the
FDR p-value cut-off < 0.05 and an absolute log2 fold change > 1. The variability between replicates is
modeled by the dispersion parameter of the R/Bioconductor package DESeq2. DESeq2 assumes that
genes of similar average expression strength have similar dispersion. The R/Bioconductor package
ggplot2 was used to plot the heatmaps and calculate the smooth curve with a linear model fitting.
The R/Bioconductor package ggplot2 was used to plot the heatmaps [72] and the package VennDiagram
to plot venn plots (https://CRAN.R-project.org/package=VennDiagram). The data generated in this
study are available at the GEO repository with the accession number (GSE128798). GO analyses were
done using the Bioconductor package clusterProfiler [73].

4.6. Chromatin-Immunoprecipitation (ChIP)

One day prior to the experiment 1x 107 HCT116 were seeded in T175 flasks. The next day, cells
were treated for 2 h with 5 µM CPT or left untreated. TNFα (20 ng/mL) was added for 1 h and cells
were cross-linked with formaldehyde (1% (v/v) final concentration) for 10 min, followed by addition of
glycine (100 mM final concentration) for 5 min. Cells were collected in the medium using a cell scraper
and immediately put on ice. Three flasks from the same condition were pooled. After centrifugation for
5 min at 4 ◦C and 3000 rpm, the supernatant was aspirated off and the pellet was resuspended in 2 mL
ice cold PBS with PMSF (0.5 mM final concentration). Following centrifugation for 5 min at 4 ◦C and
3000 rpm, supernatant was aspirated off and cells were resuspended in ice cold lysis-buffer (1% (w/v)
SDS, 10 mM EDTA, 50 mM Tris/HCl pH 8.1, 0.5 mM PMSF, cOmpleteTM Protease Inhibitor Cocktail
(Roche, Basel, Switzerland)). Lysis took place on ice for 10 min. 1 mL of the lysate was transferred to
milliTube 1 mL AFA Fiber tubes (Covaris, Woburn, MA, USA) and sonicated in a Covaris S220 device
with the following program: peak incident power: 150 W; duty factor: 15; cycles per burst: 500 for
30 s followed by 2.5 W; duty factor: 15; cycles per burst: 500 for 30 s. This program was repeated
20 times and generated DNA fragments in a size ranging between ~150 and ~300 bp. Sonicated lysates
were centrifuged for 15 min at 13,200 rpm at 4 ◦C and supernatants transferred to new reaction tubes.
Aliquots representing 25 µg of chromatin were diluted 1:10 with dilution buffer (0.01% (w/v) SDS, 1.1%
(v/v) Triton X-100, 1.2 mM EDTA, 167 mM NaCl, 16.7 mM Tris/HCl pH 8.1) and subjected to 4 h of
preclearing with an agarose A/G-bead-mixture and 2 µg rabbit IgG antibody at 4 ◦C with end-over-end
tumbling. Supernatants were incubated with the antibodies listed in Table S3. Immunoprecipitation
was carried out over night with end-over-end tumbling at 4 ◦C. A mixture of agarose A/G-beads was
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added for 4 h, followed by successive washing of immunoprecipitated complexes for 5 min at 4 ◦C
with end-over-end tumbling using low-salt buffer (0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM EDTA,
150 mM NaCl, 20 mM Tris/HCl pH 8.1), high-salt buffer (0.1% (w/v) SDS, 1% (v/v) Triton X-100, 2 mM
EDTA, 500 mM NaCl, 20 mM Tris/HCl pH 8.1), LiCl-buffer (250 mM LiCl, 1% (v/v) NP40, 1% (w/v)
deoxycholate, 1 mM EDTA, 10 mM Tris/HCl pH 8.1), and twice with TE-buffer (10 mM Tris/HCl pH
8.1, 1 mM EDTA). Reverse-crosslinking took place in TE-buffer with addition of RNase A for 30 min
and Proteinase K for 2 h at 37 ◦C followed by incubation at 65 ◦C overnight. Free DNA was purified
using NucleoSpin Gel and PCR Clean Up Kit with buffer NTB (Macherey-Nagel) and was eluted in
50 µL Elution buffer. The amount of immunoprecipitated DNA was analyzed via RT-qPCR, calculation
of enrichment by immunoprecipitation relative to the signals obtained for 1% (v/v) input DNA was
performed. The primers used for the detection of the various genomic regions at the IL8 locus were
previously published [39] and are listed in Table S3.

4.7. Antibodies, Plasmids, Oligonucleotides and Reagents

This information is given in Table S3.

5. Conclusions

This study shows a major block of TNFα-induced inflammatory and NF-κB-dependent gene
expression after inhibition of TOP1. Interference with the enzymatic activity of TOP1 at gene bodies
impairs transcription elongation. These findings are of broad biomedical relevance and include cancer
patients treated with TOP1 inhibitors.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-6694/11/6/883/s1,
Figure S1: Determination of the effects of TOP inhibitors on HCT116 and KB cell viability, Figure S2: Blots from
Figure 1F, Figure S3: Characterization of p65-deficient HCT116 cells, Figure S4: Blots from Figure S3A and C,
Figure S5: GO analysis of TNFα-induced genes, Figure S6: GO analysis of upregulated and downregulated genes
in response to CPT under basal conditions, Figure S7: Blots from Figure 3C, Figure S8: Effects of TOP1 and TOP2
inhibitors on nuclear translocation of NF-κB p65, Figure S9: Blots from Figure S8, Table S1: List of all genes with
a log2 fold change >1 upon 1 h TNFα-stimulation and ≥20 RNA-seq reads in at least one condition detected
in samples from HCT116 cells, Table S2: Statistic analysis of the RNA-seq experiments, Table S3: Antibodies,
plasmids and reagents.
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