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Introduction

Specialized biomaterials1–3 have been used in conjunction 
with extracellular matrix (ECM) proteins to introduce a 
variety of replacement cell types4–7 into damaged and/or 
injured retina8,9 via transplantation therapy. The microen-
vironments within such transplantable biomaterials pro-
vide structural and chemical cues that influence nearly all 
aspects of the cells that populate them, including de/dif-
ferentiation,10 migration,11 intercellular connectivity,12 and 
long-term survival.13 Reported advancements14 in the sur-
vival and integration of transplanted photoreceptor pro-
genitors have inspired dramatic innovation in contemporary 
transplantation strategies, including elastomeric grafts15 
and protein-coated, electrospun fibers,16 whose properties 
mimic in vivo cues affecting cell fate, behavior, and 
response in host retina.17,18

A significant, but largely understudied, group of physi-
cal cues guiding biomaterial design for retinal transplanta-
tion are those which support and/or influence the migratory 
behavior of transplantable cells. This is surprising because 

the migration of transplanted cells is fundamental to cel-
lular and synaptic integration within host retina. As illus-
trated in Figure 1, cells transplanted into the sub-retinal 
space must exit the biomaterial and navigate the complex 
retinal architecture via the outer nuclear layer in order to 
connect with neuronal targets of the host.8,19 Few studies 
have explored how properties of biomaterials affect 
outward cell migration into host retinal laminae. Such 
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migration processes are complex because they include 
movement of individual cells as well as the collective 
migration of neuroclusters. Collective behaviors of trans-
planted cells are particularly important because donor cells 
are explicitly derived to mimic earlier developmental 
states, where cells largely interact as neuroclusters.20,21 
The mechanisms of collective cell adhesion and migration 
are also acutely affected by factors such as population den-
sity and interstitial interactions,20 both of which are rou-
tinely altered in order to increase the integration of 
transplanted cells.22,23

Our group has previously evaluated the collective11,24 and 
individual25–27 migration of retinal progenitor cells (RPCs) 
and photoreceptor precursor cells (PPCs) toward ligand gra-
dients derived from light-damaged retina. In this article, we 
quantify the clustering, adhesion, and displacement of RPCs 
in response to four ECM substrates present in developing 
and mature retina, and/or used extensively in the develop-
ment and testing of transplantable biomaterials as described 
in Table 1: fibronectin (FN),28–30 laminin (LM),15,31–34 hyalu-
ronic acid (HA),35–40 and Matrigel (MG).41–45,51 RPC behav-
ior upon these substrates was also compared against 
poly-l-lysine (PLL).46–50 This study also incorporated con-
trolled microfluidic systems to evaluate behaviors of indi-
vidual and clustered RPCs at the microscale, comparable to 
the sub-retinal spaces that replacement cells encounter dur-
ing transplantation. Results illustrate that ECM substrates 
affected the size of individually adhered cells, the ratio of 

collectively to individually adhered cells and the displace-
ments of both. These data suggest that ECM substrates used 
in cell replacement strategies affect cell migration in specific 
ways that should be considered in the development of 
enriched biomaterials for retinal transplantation.

Methods and materials

Cell isolation and culture

Mouse RPCs were isolated from dissociated retinas of 
post-natal (P4) C57BL/6J mice, homozygous for expres-
sion of enhanced green fluorescent protein under control 
of the beta actin promoter (EGFP+/+) (gift from Dr Young, 
Harvard University52). RPCs were expanded and main-
tained at 37°C in a 5% CO2 incubator in neurobasal com-
plete medium (Invitrogen-Gibco, Rockville, MD) 
containing 2 mM l-glutamine, 100 mg/mL penicillin-strep-
tomycin, B27 and N2 neural supplements, and 20 ng/mL 
epidermal growth factor (Promega, Madison, WI) as 
described previously by our group.11,27 For testing, cells 
were detached with trypsin-EDTA, re-suspected in culture 
medium, counted, and seeded as described below.

ECM substrates

Mouse laminin (LM, Sigma-Aldrich, St. Louis, MO) 
and human fibronectin (FN, Thermo fischer, Waltham, 

Figure 1.  Cell-seeded biomaterials in photoreceptor transplantation. Retinal progenitor cells (RPCs) are embedded within 
biomaterials and transplanted into the sub-retinal space in the eye posterior. Viable cells exit the biomaterial and navigate into and 
within the host outer nuclear layer to achieve synaptic integration with neuronal targets.
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MA) were dissolved and diluted to 10 μg/mL and 
100 μg/mL, respectively, in phosphate-buffered saline 
(PBS). Growth factor-reduced MG (BD Biosciences, 
Franklin Lakes, NJ) was diluted to 100 μg/mL in PBS. 
HA (Alfa Aesar, Ward Hill, MA) was added to PBS at 
30 mg/mL with thorough sonication and allowed to dis-
solve for 24 h at room temperature. PLL53 was used as 
a control substrate. Wells were coated with a 15 ng/mL 
solution in PBS at 5°C overnight and left to air dry in a 
laminar flow hood for 1 h prior to study. Surfaces of 
12-well culture plates (VWR International, Bridgeport, 
NJ) were functionalized with a 1 mL volume of LM, 
FN, or MG per well and 0.5 mL of HA for 1 h. All wells 
were washed afterward with 1 mL of PBS. Substrates 
were functionalized at room temperature (25°C) for all 
solutions except LM, which was performed on ice as 
per vendor protocols. All wells were used on the day of 
surface functionalization.

Morphology and adhesion density of individual 
RPCs

RPCs were plated at (1) low cell density of 104 cells/well; 
(2) moderate, but sub-confluent, density of 105 cells/well; 
and (3) high cell density of 106 cells/well that approached 
confluence in 12 well plates (~1 mL/well). The size and 

morphology of individually adhered cells were evaluated 
using the cell shape index, CSI, defined in equation (1) as 
a dimensionless parameter that quantitatively represents 
cell asymmetry54–56

	 CSI
A
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where AS represents the surface area of individually 
adhered cells and P represents the cell perimeter. Values of 
CSI range from 1.0 for an idealized circular shape to 0.0 
for cells that exhibit a perfectly linear elongation, as shown 
in the schematic of Figure 2. In this study, individual cells 
(i.e., not part of a neurocluster) were defined as those 
whose contact with neighboring cells was limited to either 
(1) extended, continuous interfacial contact with a single 
cell along the plasma membrane (e.g., daughter cells fol-
lowing mitosis) or (2) discrete point contacts via processes 
or extensions with one or more other cells. In addition, the 
average cell density of individually adhered cells was 
quantitatively represented by the cell adhesion density, 
πADH, defined in equation (2)
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Table 1.  Extracellular matrix (ECM) compounds selected: a summary of significant ECM properties and their recent applications in 
vitro and in vivo.

Substrate Biochemistry In vivo significance In vitro systems Biomaterials and 
transplantation

Fibronectin 
(FN)

230–270 kDa 
glycoprotein

Component of vascular 
basement membrane 
and retinal pigment 
epithelium (RPE)28

Enhanced cell adhesion of 
cultured retinal cells29

Injectable cell delivery for 
retinal transplantation30

Laminin (LM) 400–900 kDa 
glycoprotein

Major component of 
retinal laminae31

Testing of scaffold polymer-
blended materials for 
photoreceptors32

Transplanted retinal sheets 
of stem cells33

Coatings on transplantable 
elastomeric membranes15

Transplanted electrospun 
nanofiber meshes34

Hyaluronic 
acid (HA)

106 Da Linear 
polysaccharide

Principal component 
of interphotoreceptor 
matrix (IPM)35,36

Component of biomimetic 
hydrogels37

Transplantable material 
from de-cellularized 
retina38

Injectable hydrogels39,40

Matrigel (MG) Trade name for 
pmixture secreted 
by Engelbreth-Holm-
Swarm (EHS) mouse 
sarcoma

Evaluated angiogenic 
compounds41

Injected in rabbit 
retinas for 
vascularization42

Tested photoreceptor 
morphology prior to 
transplantation43

Comparison for 3D transplant 
scaffolds44

Examined stem cell differentiation 
prior to transplantation45

Stem cell culture 
to achieve desired 
morphology prior to 
retinal transplantation45

Poly-l-lysine 
(PLL)

Synthetic polymer 
that enhances 
electrostatic 
interactions

Used for nanoparticle 
delivery in retina46

Constituent of tunable retinal 
hydrogels47,48

Coating for implants used 
in rat optic tract49

Sub-macular injection in 
rat50
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where ASC denotes the area of individually adhered cells 
within a substrate region of interest, i, and ASA,i denotes the 
surface area of that region of interest.

Mean size and adhesion ratio of retinal 
neuroclusters

Retinal neuroclusters were defined as groups of three or 
more cells with continuous and extended interfacial con-
tact along their plasma membranes,24 as described per 
Figure 2. The mean size of each neurocluster, XCL, was 
measured using its projected substrate surface area. The 
ratio of neuroclusters to individually adhered cells was 
assessed via a parameter called the adhesion ratio, RADH, 
defined in equation (3)

	 R
A

A AADH
NC

SC NC
=

+

×100% 	 (3)

where ANC is the projected surface area of adhered neuro-
clusters within a substrate region and ASC represents the 
total surface area of singly adhered cells. In this way, RADH 
denotes the percentage of total cell-adhered surfaces that 
contain neuroclusters.

Expression of adhesion receptors

Expression levels of four genes encoding adhesion recep-
tors were measured using quantitative polymerase chain 
reaction (qPCR) for integrin α3, integrin α7, integrin β3, 
and the adhesion molecule CD44 with primers shown in 
Table 2. Primer specificity was verified using Basic Local 
Alignment Search Tool (BLAST), which confirmed the 

selected forward and reverse primers listed. RNA was iso-
lated from cells using Trizol (Sigma-Aldrich, St. Louis, 
MO) and measured photometrically. First-strand comple-
mentary DNA (cDNA) synthesis was performed using ran-
dom hexamers followed by amplification with specific 
primers on a Rotor Gene 6000 thermal cycler (Qiagen, 
Inc., Germantown, MD) as per manufacturer instructions. 
The following amplification conditions were used: 95°C 
denaturation for 10 min, followed by 40 cycles of 95°C for 
15 s and 60°C for 1 min, followed by a hold at 4°C. Raw 
data were analyzed with Software version 2.2.3 (Qiagen 
Inc.) to determine the cycle threshold (CT) setting for 
assigning baseline and threshold CT determination. 
Relative expression (RE) of the sample gene was calcu-
lated using the conventional ΔΔCT method.57–59

Adhesion and displacement within microfluidic 
environments

A previously described microfluidic system from our 
group, the µLane,56 was used in this study to evaluate 
RPC adhesion and displacement upon different ECM pro-
tein substrates. As shown in Figure 3, µLane systems 
comprised channels of 150-µm diameter and 12-mm 
length, as fabricated via conventional lithography, PDMS 
(poly(di)methyl-siloxane) micromolding, and glass bond-
ing. The µLane inner surfaces were functionalized with 
LM, FN, HA, or MG at the concentrations described ear-
lier. Solutions of RPCs at three different seeding densities 
of 104, 105, or 106 cells/mL were then inserted into the 
µLane interstitial spaces. Cells within the µLane were 
imaged every 24 h for 3 days using phase-contrast 
microscopy.

Figure 2.  Morphology of adhered cells. Schematic representation of different cell morphologies with corresponding values of cell 
shape index (CSI): (a) idealized circular cell (CSI = 1.0), (b) typical rounded cell (CSI = 0.9), (c) typical elongated cell with process 
extensions (CSI = 0.3), and (d) idealized linearly elongated cell (CSI = 0). Cell clusters were defined as (e, f) groups of three or more 
cells in direct and continuous interfacial contact along common plasma membranes. (g, h) Cells in direct contact with neighbors 
along only one interface or extension were not evaluated as clusters.
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Cell imaging and analysis

Phase-contrast images of adhered RPCs and neuroclusters 
were evaluated using a 20× objective lens (Nikon TE2500 
microscope, Morrell Instruments, NY). Images from well 
plates were gathered from five non-overlapping fields via 
a conventional checkerboard pattern,55 while images from 
µLane systems were captured from five channel and reser-
voir areas. Size and morphology of individual RPC and 
cell aggregates were quantitated using ImageJ shareware 
(NIH, Bethesda, MD) as described previously by our 
group.24

Statistical analysis

Differences among adherent cell groups were evaluated 
using one-way analysis of variance (ANOVA) and post 
hoc test (Tukey). A one-way ANOVA test at the 95% con-
fidence interval assessed statistical significance across 
biomaterial substrates and cell seeding densities, while the 
post hoc test (Tukey) determined the disparity among dif-
ferent groups. Calculated p-values < 0.05 were considered 
statistically significant and denoted by an asterisk. The 
numbers of experiments performed for each test were at 
least 10 per condition.

Results

Adhesion of RPCs

Adhered RPCs were evaluated 2 days post-seeding upon 
substrate surfaces of PLL, FN, LM, HA, and MG, as 
shown in Figure 4. RPCs adhered to all substrates in differ-
ent combinations of single cells and neuroclusters (defined 
in Figure 2), each with varying morphology and mean size. 
No significant differences in viable cell numbers were 
observed among RPCs adhered to substrates, individually 
or within neuroclusters, as measured via MTT assays and 
conventional DAPI staining (data not shown).

Retinal progenitor morphology (CSI) and 
adhesion density (ΠADH)

Cells that did not adhere as part of neuroclusters exhibited 
varying cell morphology and density with biomaterial sub-
strate. Changes in cell morphology were measured via the 
CSI shown in Figure 5(a). As seen, only morphology 
changes measured upon LM were statistically significant 
(p < 0.05), as RPCs became increasingly elongated with 
higher seeding density. RPCs upon LM demonstrated the 
only statistically significant elongation, as average values 
of CSI upon LM decreased dramatically from CSI = 0.67 at 
low seeding density (104 cells/mL) to CSI = 0.33 for high 
seeding density (106 cells/mL). There was no statistical 

Table 2.  Gene regulation examined via quantitative polymerase chain reaction (qPCR): a listing of the genes encoding cell and 
surface adhesion molecules studied, alongside primer sequence, size in base pairs (bp), and accession number.

Gene Primer sequence (5′-3′) bp Accession

Integrin α3 (ITGA3) F: ACTACAGGCGGAACATCACC
R: AAGAAGCCGTGGAAGACAGA

20 NM_001306071.1

Integrin α7 (ITGA7) F: TTGCTGTTAGCCACGATCAG
R: TGATGTTGAGGAACGCAGAG

20 NM_008398.2

Integrin β3 (ITGB3) F: TGACATCGAGCAGGTGAAAG
R: GAGTAGCAAGGCCAATGAGC

20 NM_016780.2

CD44 (CD44) F: TGGATCCGAATTAGCTGGAC
R: AGCTTTTTCTTCTGCCCACA

20 NM_001177787.1

GAPDH F: AACTTTGGCATTGTGGAAGG
R: ACACATTGGGGGTAGGAACA

20 NM_001289726.1

Figure 3.  The µLane system. (a) Projection images of µLane 
construction, comprising two layers of PDMS polymer ((1), 
(2): poly-dimethyl siloxane) ozone-bonded upon a (3) glass 
coverslip. The µLane systems has a channel length of l = 1.2 cm, 
reservoir volume of V = 0.5 mL, and PDMS thickness of 
th = 0.75 cm. (b) Image of closed µLane system with highlighted 
microchannel. Scale = 1 mm.
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Figure 4.  Aggregation and adhesion of retinal progenitor cells (RPCs). Images of RPCs at a cell density of 105 cells/mL adhered as 
individual cells and neuroclusters upon surfaces of: (a) poly-l-lysine (PLL), (b) fibronectin (FN), (c) laminin (LM), (d) hyaluronic acid 
(HA), and (e) Matrigel (MG). Representative cell clusters are outlined per image and arrows point to individually adhered cells. Scale 
bar = 200 µm. Representative images of RPCs evaluated as (f, g) individually adhered cells, (h) RPCs adhered with close adhesion 
spacing but not as neuroclusters, and (i) RPCs adhered as part of neuroclusters. Scale bar = 20 µm.

Figure 5.  Metrics of individual cell adhesion. The (a) average cell shape index (CSI) of retinal progenitor cells (RPCs) adhered as 
individual cells upon poly-l-lysine (PLL), fibronectin (FN), laminin (LM), hyaluronic acid (HA), and Matrigel (MG) at cell densities of 
104, 105, and106 cells/mL. (b) Average values of single cell adhesion density, ΠADH, upon the same biomaterial substrates. Statistical 
significance within bracketed values is denoted by an asterisk. The “#” symbol indicates a cell monolayer on FN.
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significance in CSI values among and across the other bio-
material groups (p > 0.5).

In contrast, the density of cells adhered as individuals 
rather than in clusters, ΠADH, varied depending on both the 
biomaterial substrate and the initial number of cells plated. 
Changes in ΠADH were statistically significant across cell 
seeding density for LM, HA, and MG, as per Figure 5(b). 
Average ΠADH values were greatest upon LM and HA at 
moderate seeding density (105/mL), but steadily increased 
upon MG. By contrast, increases in ΠADH were most pro-
nounced upon PLL and FN, where at high seeding density 
(106/mL) the largest ΠADH value was measured upon PLL, 
and a complete RPC monolayer was observed upon FN. 
Mean values of calculated parameters are summarized in 
Table 3.

Size ( )XCL  and extent (RADH) of RPC 
neuroclusters

Neuroclusters in Figure 4 exhibited a range of mean sizes, 
XCL, as measured by projected surface area. Qualitatively, 

RPC neuroclusters appeared compact and circular upon 
PLL and LM, but more diffuse and irregularly shaped neu-
roclusters upon FN, HA, and MG. The data in Figure 6(a) 
illustrate that the highest mean cluster sizes were measured 
upon MG and HA at high (106/mL) and moderate (105/mL) 
seeding densities, respectively (excluding the FN mon-
olayer). Mean sizes of retinal neuroclusters, XCL, rose 
with increasing cell density (p < 0.05) on PLL, FN, LM, 
and MG, but were highest at moderate seeding density 
upon HA. Furthermore, values of XCL  were statistically 
different between each biomaterial substrate across all 
seeding densities studied.

The percentage of cell-occupied area containing neuro-
clusters (vs individually adhered cells) also varied with 
both biomaterial substrate and cell seeding density, as 
measured by the adhesion ratio, RADH, in Figure 6(b). 
Values of average RADH increased with cell seeding density 
upon FN, HA, and MG and decreased with seeding density 
upon PLL and LM. The highest values of RADH were meas-
ured upon both HA and MG at the highest seeding densi-
ties (106/mL), where 85% of adhered surface areas 
contained neuroclusters. As previously noted, RPCs 

formed a complete monolayer on FN at high seeding den-
sity rather than discrete neuroclusters. Conversely, the 
lowest adhesion ratio of RADH = 31% was measured upon 
FN at low cell seeding density (104/mL), where less than a 
third of cells adhered as part of neuroclusters. Furthermore, 
RPCs within adherent neuroclusters exhibited similar mor-
phologies upon all biomaterials, with an average 
CSI = 0.82 ± 0.4 that was significantly higher (indicative of 
more rounded cells) than that measured for any individu-
ally adhered cell group (Figure 5(a)). Mean values of cal-
culated parameters are summarized in Table 3.

Expression of adhesion receptors

The observed changes in the adhesive behavior of RPCs 
were evaluated in relation to expression of a panel of 
cell surface adhesion molecules known to serve as 
receptors for one or more of the ECM materials used as 
substrates in this study: integrin α3, integrin α7, integrin 
β3, and CD44. As noted in Table 4, integrin α360–65 and 
integrin α766–69 bind to FN and LM, CD4439,75–78 is the 
receptor for HA, and integrin β370–74 is expressed by 
cells of the retinal pigment epithelium (RPE) and highly 
implicated in retinal angiogenesis. We observed that 
RPCs seeded onto substrates identified as ligands 
expressed somewhat higher levels of most receptors 
than when seeded onto PLL. Figure 7 shows that integ-
rin β3 was up-regulated by FN and LM, but down-regu-
lated by HA and MG, and CD44 was down-regulated by 
FN and LM, but up-regulated by HA and MG as per the 
ΔΔCT method.

Attachment and displacement of RPCs

To evaluate RPC adhesion and displacement within the 
microscale of sub-retinal spaces, cell suspensions were 
seeded into µLane devices previously functionalized with 
FN, LM, HA, or MG. RPCs were seen to adhere as neuro-
clusters, individual cells, or combinations of the two, 
depending on the substrate used. As shown in Figure 8, 
RPCs did not aggregate into neuroclusters within µLane 
devices functionalized with FN or MG, but rather adhered 
solely as individual cells. By contrast, RPCs were observed 

Table 3.  Summary of parameters measured for adhered retinal progenitor cells (RPCs).

Matrix used CSI (mean) (ΠADH (mm−2) 
(mean)

XCL  (mm) 
(mean)

RADH (mean)

Poly-l-lysine (PLL) 0.46 ± 0.09 20.8 ± 1.8 5.1 ± 0.55 56.3 ± 3.5
Fibronectin (FN) 0.36 ± 0.02 22.5 ± 2.4 1.8 ± 0.38 22.8 ± 3.9
Laminin (LM) 0.50 ± 0.14 10.2 ± 0.34 4.6 ± 0.75 59.1 ± 4.8
Hyaluronic acid (HA) 0.48 ± 0.04 10.7 ± 0.84 7.6 ± 0.94 72.8 ± 4.0
Matrigel (MG) 0.38 ± 0.04 14.37 ± 0.64 10.1 ± 0.60 72.6 ± 4.74

Average values of individual cell shape index (CSI) and single cell adhesion density (ΠADH) summarized alongside values of mean cluster size, XCL, and 
adhesion ratio, RADH, for RPCs adhered upon PLL, FN, LM, HA, and MG.
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Table 4.  Summary of adhesion molecules examined alongside their applications to neural cells in the retina.

Molecule In vivo significance Biomaterials and testing

Integrin 
α3

Integrins in neuro human retina60,61

Critical for retinal synapses62

Adhesion receptor for LM needed in synaptic transmission63

Adhesion receptor for LM, FN, and collagen64

In vivo injection in therapy for diabetic 
retinopathy65

Integrin 
α7

Adhesion receptor for FN, LM66

Mediates neurite outgrowth67

Implicated in development68

RPC attachment for encapsulating scaffolds69

Integrin 
β3

Inhibition disrupts development70

Expressed by RPE71

Implicated in retinal angiogenesis72,73

Substrate adhesion–derived RPE from stem 
cells74

CD 44 Adhesion molecule within interphotoreceptor matrix75

Critical for retinal development76,77
Improved stem cell survival post 
transplantation in HA hydrogel39

Enriched differentiation of stem cells into 
photoreceptors66

LM: laminin; FN: fibronectin; RPC: retinal progenitor cell; RPE: retinal pigment epithelium; HA: hyaluronic acid.

Figure 6.  Metrics of adhered neuroclusters. The projected surface area of adhered retinal neuroclusters was measured to 
determine (a) mean cluster size, XCL, upon poly-l-lysine (PLL), fibronectin (FN), laminin (LM), hyaluronic acid (HA), and Matrigel 
(MG) at cell densities of 104, 105, and106 cells/mL. (b) The percentage of adhered cell areas occupied by neuroclusters as measured 
by the adhesion ratio, RADH. Statistical significance across and between bracketed values is denoted by an asterisk. The “#” symbol 
indicates a cell monolayer on FN.

to adhere within µLane systems functionalized with LM and 
HA as both single cells and neuroclusters. As summarized in 
Table 5, neuroclusters within µLane systems functionalized 

with LM and HA exhibited net displacements of 18–26 µm 
(i.e., two diameters of individually adhered cells), while that 
of individually adhered RPC within LM- and HA-treated 
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µLane substrates was 3–6 µm, or less than one cell diameter. 
Individual RPCs adhered upon FN- and MG-treated devices 
underwent net displacements of 4–9 µm.

Discussion

This study examined the ability of biomaterial substrates 
used in transplantable biomaterials to alter RPC adhesion, 
clustering, and displacement. The balance between cell 
adhesion and motility is a critical consideration in the 
design of retinal scaffolds, as insufficient adhesion can 
result in cell death79–81 while overly strong adhesion may 
adversely affect RPC morphology and differentiation or 
prevent cell migration needed to re-establish functional 
connectivity.82–84 Moreover, since RPCs migrate as both 
clusters and individual cells during retinogenesis,85 it is 
also important to know the extent to which retinal scaf-
folds can mimic this behavior.

This study defined two parameters, adhesion ratio, RADH, 
and adhesion density, ΠADH, which quantitatively repre-
sented the ratio of individually adhered cells to adhered 
neuroclusters and the portion of total substrate area covered 
by cells, respectively. Results illustrate that both parame-
ters differed depending on both ECM substrate and seeding 
density used. Of note, increasing the number of RPCs 
seeded on a substrate generally resulted in increased num-
bers of single cells (Figure 5) but did not necessarily yield 
proportionately larger neuroclusters. Rather, larger seeding 

densities produced (1) larger numbers of moderately sized 
neuroclusters upon HA and LM, (2) elicited no change in 
neurocluster size or adhesion upon PLL, and (3) produced 
larger numbers of larger-sized neuroclusters upon MG 
(Figure 6). Interestingly, on most substrates, formation of 
neuroclusters, even at the highest density examined, 
resulted in substantial areas of open space not covered by 
either clusters or single cells. This suggests that the interac-
tions between cells and substrate were notably weaker than 
those between cells. In contrast, cells plated on FN at high 
density formed a complete monolayer, indicating that cell–
substrate interaction was predominant. The implications of 
these differences for RPC adhesion and migration, either as 
single cells or clusters, have yet to be established, although 
the ability to characterize clustering behavior, quantita-
tively, will facilitate this process.

Expression of adhesion receptors as assessed by poly-
merase chain reaction (PCR) was altered when RPCs were 
cultured on their respective ligands (Figure 7). However, 
the substrate-dependent differences in adhesion receptor 
expression were modest. Consequently, while the recep-
tors examined are likely to contribute to changes in cell 
shape, formation of neuroclusters, or the displacement of 
either individual cells or clusters, we could not establish a 
clear relationship between those processes and receptor 
expression levels. That expression of adhesion receptors, 
such as integrins, can be modulated in response to the 
amount of available ligand (substrate) in ECM has been 

Figure 7.  Differences in gene expression of adhered RPCs. Fold change in regulation of the genes ITGA3, ITGA7, ITGB3, and 
CD44 that encode (a) integrin α3, integrin α7, integrin β3, and CD44 upon adhesion with fibronectin (FN), laminin (LM), hyaluronic 
acid (HA), and Matrigel (MG). (b) Schematic representation of up- and down-regulation of encoding genes as measured via the 
ΔΔCT method.



10	 Journal of Tissue Engineering ﻿

well established.86 However, differences in gene expres-
sion may underestimate changes in the number and organi-
zation of adhesion receptors on cell surfaces. In addition, 
averaging techniques like PCR may not be sensitive 
enough to detect subtle expression changes in mixed popu-
lations such as RPCs present both as clustered and indi-
vidually adhered cells. Furthermore, it has been reported 
that cell adhesion even to single-component extracellular 
matrices, such as LM or FN, may involve multiple integrin 
family members87 while CD44 is capable of binding both 
HA and collagen.75,88 Hence, adhesion to the various ECM 
substrates in this study may have activated more than one 
receptor, including some outside the limited group whose 
expression was examined. Future study will examine 
expression of molecules able to mediate cell–cell interac-
tions that aid formation and stabilization of cell clusters, 
for example, cadherins.89–91

The use of the µLane system to evaluate the microscale 
displacement of mixed (individual and clustered) RPCs 
(Figure 2) within microfluidic environments represents a 

novel application of technology little used in retinal cell 
replacement studies despite widely reported usefulness in 
a variety of cell-based systems87,92 (Figure 3). Our system 
readily enables quantitative study of cell migration over 
sub-retinal distances <50 µm as well as distances 
>1000 µm for chemotaxis driven by extrinsic fields, as 
shown previously by our group.11,26,27 Our studies demon-
strated that RPCs formed neuroclusters and underwent 
displacement both as individual cells and as clusters 
within the interstitial spaces of the µLane functionalized 
with LM or HA, although FN- and MG-treated substrates 
exhibited single-cell adhesion, only (Figure 8). Why 
RPCs did not form neuroclusters on FN and MG in the 
µLane system, as they did in bulk culture, is so far unclear, 
but suggests differences in substrate composition or 
organization between the microfluidic and bulk microen-
vironments that warrant further investigation. In any case, 
the absence of clustering suggests a predominance of 
cell–matrix over cell–cell interactions (Table 3), as previ-
ously noted.

Figure 8.  Displacement of adhered retinal progenitor cells (RPCs) within the µLane microfluidic system. Images describing 
attachment of RPC cells and/or neuroclusters within (a) µLane systems whose inner surfaces were functionalized with (b) 
fibronectin (FN), (c) laminin (LM), (d) hyaluronic acid (HA), and (e) Matrigel (MG). Scale bar = 75 µm.

Table 5.  Retinal progenitor adhesion and displacement within µLane system.

Matrix used Neurocluster formation Single cell displacement (µm) Neurocluster displacement (µm)

Fibronectin (FN) No 4 –
Laminin (LM) Yes 6 18
Hyaluronic acid (HA) Yes 3 23
Matrigel (MG) No 9 –
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Finally, the displacements observed by RPCs as both 
single cells and clusters on LM and HA were clearly meas-
urable and distinct. We also note that those displacements 
were observed in the absence of applied stimuli, indicating 
that chemotactic or chemokinetic responses of RPCs to 
chemical and physical signals are readily amenable to 
study. Why the observed displacement of neuroclusters 
was greater than that of single cells is not known (Table 3). 
While quantitative study of collective migration is beyond 
the scope of this article, the size and composition of neuro-
clusters is known to affect migration modalities20,93,94 
which may directly influence cell distances traveled. 
Furthermore, different ECM substrates may preferentially 
regulate cell adhesion molecules that maintain the cohe-
sion of motile clusters93 and whose interactions may out-
weigh the cell–matrix adhesion studied here. In any event, 
our results suggest that, among the substrates examined, 
LM may be preferred for retinal cell transplantation. LM is 
present in mature and developing retina, RPCs express cell 
surface LM receptors, and LM mediates adhesion both as 
single cells and as neuroclusters. These features suggest 
that LM matrices may enable tuning to achieve both col-
lective and single cell migration with desirable displace-
ment distances. Future study will benefit from using 
known physical and chemical cues of retinal injury and/or 
neurodegeneration to directly evaluate RPC migratory 
behavior into injured and/or damaged laminae.

Conclusion

Composites of ECM substrates and biomaterials have 
evolved to support increasing numbers of cells, extend cell 
survival, and promote cell adhesion as strategies to 
improve outcomes of transplantation therapy. This study 
evaluated the abilities of selected substrates to regulate 
RPC adhesion, shape, and cell displacement as individual 
cells and as aggregates to design and/or enhance trans-
plantable biomaterials. Results illustrate that combinations 
of clustered and individual cells on different substrates led 
to different behaviors that may influence the ability of 
transplanted, or replacement, cells to migrate effectively 
and achieve connectivity with host cells in retinal laminae. 
These findings suggest that by characterizing and/or 
manipulating the migratory behaviors of replacement 
cells, transplantation strategies can be enriched to improve 
cell integration.
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