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Braid Entropy of Two-Dimensional 
Turbulence
Nicolas Francois1, Hua Xia1, Horst Punzmann1, Benjamin Faber2 & Michael Shats1

The evolving shape of material fluid lines in a flow underlies the quantitative prediction of the 
dissipation and material transport in many industrial and natural processes. However, collecting 
quantitative data on this dynamics remains an experimental challenge in particular in turbulent flows. 
Indeed the deformation of a fluid line, induced by its successive stretching and folding, can be difficult 
to determine because such description ultimately relies on often inaccessible multi-particle information. 
Here we report laboratory measurements in two-dimensional turbulence that offer an alternative 
topological viewpoint on this issue. This approach characterizes the dynamics of a braid of Lagrangian 
trajectories through a global measure of their entanglement. The topological length NE of material fluid 
lines can be derived from these braids. This length is found to grow exponentially with time, giving 
access to the braid topological entropy SBraid. The entropy increases as the square root of the turbulent 
kinetic energy and is directly related to the single-particle dispersion coefficient. At long times, the 
probability distribution of NE is positively skewed and shows strong exponential tails. Our results 
suggest that SBraid may serve as a measure of the irreversibility of turbulence based on minimal 
principles and sparse Lagrangian data.

More than a century ago, O. Reynolds showed that watching the dynamics of coloured fluid lines in a flow was a 
powerful way to uncover the turbulent fabric of the underlying fluid motion1. This pioneering study provides a nice 
illustration that the problem of transport in turbulence is intimately connected to its Lagrangian description, the 
trajectory-based representation of hydrodynamics. Describing and characterizing Lagrangian properties of fluid 
turbulence is important for a better understanding of many natural and industrial processes, including turbulent 
mixing, the distribution of plankton in the ocean, or the spreading of pollutants in the atmosphere2,3. Despite the 
elegance of Reynolds approach, even now, unravelling the internal fluid motion in natural flows is not a trivial 
matter because the deformation of fluid lines is usually extremely convoluted3,4. This observation is not intrinsic 
to turbulence. Indeed, very complex patterns can be observed when a marker is advected in seemingly simple 
Stokes flows5,6, a phenomenon known as chaotic advection7. The “chaoticity” of the Lagrangian transport strongly 
hinders our ability to forecast the consequences of disasters such as volcanic eruptions or pollutant spills on the 
sea surface. Although basic Lagrangian quantities such as the single particle dispersion offer valuable informa-
tion, there is a growing realization that multi-particle measurements are instrumental in better describing global 
transport properties of natural flows3,8–10.

The merger of ideas from Lagrangian hydrodynamics with those of dynamical systems has been a key route 
to unraveling the complexity of chaotic advection in periodic flows6,11–13. Crucially, it has been demonstrated that 
topological features of flows are not abstract mathematical concepts but are an essential part of fluid motion12–15. To 
date, the application of mathematical tools from topology or dynamical system theory has been largely restricted 
to idealized maps or simple flow configurations11–14.

Recent advances in laboratory modeling of turbulent flows, the development of experimental particle tracking 
techniques, as well as the availability of new mathematical methods have made it possible to extend the investi-
gation to non-periodic and turbulent flows3,15–21. The combination of particle tracking velocimetry (PTV) and 
topological tools has recently offered insights into mixing, transition to chaos, and irreversibility in flows4,22–25. 
However, when it comes to measuring key features of Lagrangian transport such as the long-time dynamics of 
fluid lines in turbulent flows26, experimental investigations still encounter numerous problems. Among them is the 
formidable task of describing the trajectories of many particles that become entangled with a growing complexity. 
Braid theory and the topology of surface mappings offer interesting means to tackle these questions6,14,26,27,28. It 
provides topological tools to measure the entanglement of braids made of Lagrangian trajectories. This approach 
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is capable of capturing the deformation of fluid elements using topological considerations and a limited number 
of Lagrangian trajectories. The method is suitable for studying two-dimensional (2D) flows. So far, the potential 
of the braid method has been rarely investigated experimentally5,6,14,29–31.

Here, we report new experimental measurements of topological braids in 2D turbulent flows. Experiments 
have been carried out in a broad range of the turbulence kinetic energy by using both electromagnetically forced 
and Faraday wave driven 2D turbulence. The topological “length” NE of material fluid lines is derived from the 
behavior of Lagrangian trajectories, measured using high-resolution PTV techniques. After a transient period, the 
statistical average of NE grows exponentially with time and its probability density function (PDF) becomes posi-
tively skewed with strong exponential tails. The braid entropy Sbraid of the flow is measured. We show that Sbraid 
increases as the square root of the turbulent kinetic energy. This study also reveals that Sbraid is directly related to 
the single-particle diffusion coefficient D. Since quantifying the degree of irreversibility in turbulent flows32–35 is 
still a matter of active debate, our results suggest that Sbraid could be a promising alternative measure based on 
topological considerations and sparse Lagrangian data.

Results
The experiments are carried out in two different experimental setups used to produce homogeneous two-dimensional 
(2D) turbulent flows. First, we take advantage of the remarkable similarity between the horizontal motion of particles 
on the surface of a fluid perturbed by Faraday waves and the fluid motion in 2D turbulence17–20. Though the fluid 
particle motion has a vertical component, these similarities stem from the ability of Faraday waves to generate 
lattices of horizontal vortices17. These vortices interact with each other and fuel the turbulent motion. In these 
experiments, the Faraday wave driven turbulence (FWT) is formed on the water surface in a vertically shaken 
container. The forcing is monochromatic with a frequency set to f0. Above a certain vertical acceleration threshold, 
parametrically forced Faraday waves appear with a dominant frequency of = /f f 20  and a wavelength λ. Tracer 
particles move erratically in the wave field. The forcing scale of the horizontal fluid motion is roughly λ/2. In the 
second set of experiments, we generate electromagnetically forced turbulence (EMT) in a layer of electrolyte by 
running an electric current J across the fluid cell36,37. A spatially periodic vertical magnetic field B is generated by 
placing a matrix of magnetic dipoles underneath the cell. The Lorenz J × B force produces local vortices at the 
forcing wave number k f  which fuel the turbulent motion. An important aspect of both methods is that energy is 
injected at an intermediate scale (determined either by the distance between the magnets37 or by the oscillon size17) 
in the wave number spectrum, leaving it to the inverse energy cascade to spread energy over a broad range of scales.

Eulerian energy spectra. To visualize the horizontal fluid motion, the liquid-air interface is seeded with 50 
μ m diameter particles. The Eulerian velocity field is measured by using particle image velocimetry (PIV) tech-
niques. Figure 1 shows wave number spectra of the horizontal kinetic energy measured in both experiments for 
different parameters. The spectral scaling is consistent with the Kolmogorov-Kraichnan prediction of ∝ − /E kk

5 3 
at wave numbers <k k f , revealing the presence of the inverse energy cascade38. At higher wave numbers, >k k f , 
some spectra follow the direct enstrophy cascade scaling ∝ −E kk

3, while others are steeper, due to larger dissipa-
tion. The use of these two distinct methods allows us to study isotropic 2D turbulence in a broad range of kinetic 
energies, ∼ = ( − ⋅ )− −E u 10 2 102 5 3  m2s−2 and forcing scales = ( . − . )L 3 3 9 5f  mm.

Figure 1. Two-dimensional turbulent flows: kinetic energy spectra measured by PIV. (a) 
Electromagnetically driven flows (EMT): if the flow is weakly forced, forcing scale vortices interact weakly and 
the spectral energy is localized in a narrow wave number range about k f . At higher forcing levels, vortices 
interact in the process of energy cascades and the energy spectrum spreads over a broad range of scales. A 
continuous Kolmogorov-Kraichnan spectrum is formed that shows a scaling of − /k 5 3 at <k k f . (b) Faraday 
wave driven flows (FWT): Kinetic energy spectra of the horizontal fluid motion. The forcing wave number k f  
can be changed easily by tuning the forcing frequency f0 : ≈k 800f  −m 1 at =f 300  Hz, ≈k 1500f  −m 1 at 
=f 600  Hz. (c) Energy spectra versus wave numbers normalized by the forcing wave number k f .
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Topological braids and topological fluid loops. The turbulent fluid motion is also characterized here by 
using PTV which allows us to measure simultaneously the Lagrangian trajectories of hundreds of particles in the 
horizontal x-y plane17,18. A few examples of the 2D trajectories are shown in Fig. 2(a,d). In these experiments, 
tracer particles are tracked with high resolution for long times ( >t T10 L, where TL is the measured Lagrangian 
velocity autocorrelation time). We use tools from braid theory and the topology of surface mappings to charac-
terize, in a topological sense, the deformation with time of fluid elements6,14,26–29. In the following, we broadly 
refer to these different tools as the braid description. This method is built upon basic topological considerations 
and a limited number of Lagrangian trajectories. The connection between Lagrangian trajectories and the topo-
logical description of fluid lines is based on two minimal assumptions: i) particles act as local mixers for the sur-
rounding fluid, and ii) fluid lines are impenetrable material objects. In physical terms, it emphasizes that the 
interaction of a fluid line with the stirring motion of surrounding particles determine completely its temporal 
evolution.

In this approach, 2D trajectories are viewed as 3D strands, with time t being the third coordinate, Fig. 2(b,e). 
The 3D x-y-t trajectories are projected onto the x-t (or y-t) plane, Fig. 2(c,f). In this plane, trajectories create a 
physical braid made of over- and under-crossings of strands. The crossings are the key topological information 
upon which the braid description hinges. The crossings of trajectories in 2D turbulence are qualitatively illustrated 
in Fig. 2(c,f). The braid approach then relies on two distinct objects (Fig. 2(g)):

 - the topological braid which is really the sequence of crossings of the trajectories previously described.
 - the topological loop which is like a fluid ribbon entangled within the braid.
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Figure 2. Physical and topological braids in FWT and EMT. Two-dimensional fluid particles trajectories are 
tracked experimentally by using PTV techniques in the x-y plane for ≥t T10 L in fully turbulent flows (a) driven 
by Faraday waves ( = .T 0 1L  s, = .L 4 4f  mm) or (d) electromagnetically forced ( = .T 0 6L  s, = .L 9 5f  mm). 
(b,e), Perspective view of the three-dimensional x-y-t strands (time is the third coordinate) built upon the 2D 
trajectories shown in (a,b). (b) also shows a 3D view of the surface elevation of the disordered Faraday wavefield 
measured at t =  0 s. (c,f), the physical braids obtained by the projection of the 3D strands onto the x-t plane. (g) 
Left. Schematics of a topological braid made of 3 Lagrangian trajectories. Right. Schematics of the temporal 
evolution of a topological fluid loop (blue line) entangled in the same braid. For clarity, the braid is represented 
as red, blue and green dots at the time of crossing of the 3 particle trajectories. The time evolution of the 
topological loop “length” NE is indicated (see Methods section for computation).
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The topological braid is based only on the relative position of tracer particles and as such it does not require 
geometrical information such as the actual distance between strands (Fig. 2(g)_left panel and ref. 14). The topo-
logical loop can neither intersect itself nor pass through the braid (Fig. 2(g)_right panel). The degree of entangle-
ment of the loop around the impenetrable strands of the braid can be quantified via a descriptor called the 
topological “length” NE which is also referred to as the braiding factor (see details on the computation of NE in 
Methods). In the course of time, each crossing along the braid distorts the loop and forces it to stretch or coil around 
the strands Fig. 2(g). If these deformations are irreversible, the degree of entanglement NE will increase. The time 
evolution of NE can be computed from the sequence of crossings in a given braid. The topological growth rate 
∂ /∂N tE  of the loop is expected to capture some features of the behavior of real material lines in a flow6,14.

Braid entropy of 2D Turbulence. We measure the temporal evolution of the topological length NE of the 
fluid loop in FWT and EMT. Measurements are carried out over a broad range of the turbulent kinetic energy of 
the flow, = ( − ⋅ )− −u 10 2 102 5 3  m2s−2 and for various forcing scales L f . The probability distribution function 
(PDF) of NE and the statistical mean NE  are estimated over at least 10 different braids and up to 100,000 initial 
topological loops.

Figure 3 shows the PDF of /N NE E  as a function of time at a flow kinetic energy = −u 102 3 m2s−2. The initial 
loop is randomly entangled in the braid; as a consequence, at =t 0 s the PDF is a Gaussian function. After a tran-
sient period, the PDF becomes skewed and develops strong exponential tail at large values of NE. No saturation 
in the growth of the exponential tail could be observed in the temporal observation window (up to 30 TL for some 
runs).

Figure 4 shows the temporal evolution of the statistical average NE  in FWT and EMT as the flow energy is 
increased. After a transient state, NE  grows exponentially with time and its growth rate increases with the flow 
energy. This behavior was observed in all our experiments as long as a sufficient number of trajectories compose 
the braid. The time evolution of NE  reflects the non-trivial nature of braids made of Lagrangian trajectories in 
2D turbulence.

To further characterize this complexity, we measure the braid entropy Sbraid as the growth rate of the logarithm 
of NE at long times: = 〈 ( )〉S Nlogbraid

d
dt E , >t T L. Sbraid is closely related to the notion of topological entropy14. 

Its definition as the exponential growth rate of topological loops is inherited from the work of Thurston on surface 
mappings (see ref. 39 and references therein). Basically, Sbraid measures the evolution of the number of irreversible 
deformations that topological loops undergo in the flow.

In these experiments, Sbraid increases as the square root of the flow kinetic energy ~E u2, as shown in Fig. 5(a). 
We observe no appreciable difference between data collected in different experiments, suggesting that Sbraid is 
independent on both the turbulence generation method and on the details of the energy injection. In particular, 
we detect no dependence of Sbraid on the energy injection scale L f . Figure 5(b) shows that the relation ≈S Ebraid  
is measured for a number of trajectories Ntraj in the braid as low as =N 30traj .

Discussion
Recently the concept of chaotic advection was further enriched by considering topological chaos6. The character-
ization of topological chaos hinges on the Thurston-Nielsen classification of surface mappings and on the concept 
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Figure 3. PDF of the topological length NE of fluid lines in 2D turbulence. Time evolution of the PDFs of NE 
normalized by the statistical average NE  at fixed flow energy ≈ = −E u 102 3 m2s−2 ( = .T 0 1L  s). The PDFs are 
averaged over 15 different braids (made of 80 trajectories) and statistics are collected over 100,000 topological 
loops.
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of topological braids6,14,26. Our experimental work concerns topological chaos and explores the potential of the 
braid description to characterize 2D turbulence. For instance, Fig. 3 shows that the PDF of /N NE E  presents 
growing exponential tails, a feature commonly associated with out-of-equilibrium systems.

The main results of this paper appear in Fig. 5(a), which shows that the braid entropy Sbraid is an increasing 
function of the flow kinetic energy ~E u2, independent of the forcing scale of the turbulent flows. Moreover Sbraid 
grows as E  with no sign of saturation. It is expected that the more particles are included in the braid, the better 
Sbraid approximates the stretching rate of a “real” fluid line14. Batchelor showed that the exponential growth of fluid 
line in homogeneous turbulence is governed by the deformation of the small fluid elements of which it is com-
prised26. To further test the robustness of our results, we have measured the exponential stretching rate of small 
fluid elements in our turbulent flows. We have used the finite time Lyapunov exponent method8 and found that 
the average exponential stretching rate Λ  of fluid elements follows: Λ ∼ E , this result40 supports strongly the 
behavior for Sbraid observed in Fig. 5(a). It is quite remarkable that Sbraid can record the actual behavior of fluid 
elements from scarce Lagrangian data (in our measurements, as low as 30 trajectories for which the average 
inter-particle distance is larger than L f ), while the computation of the Lyapunov exponents require high spatial 
resolution measurements of the entire velocity field.

A recent study41 reported another type of entropy in 2D turbulent flows, namely the information entropy hSh. 
This entropy quantifies the complexity of turbulence in terms of its predictability. Measurements were performed 
in turbulent flows in soap films; hSh was computed from Eulerian velocity fluctuations. In these experiments, hSh 
was a decreasing function of ≈E u2. This is in sharp contrast with the behavior of Sbraid which increases with E in 
our work. This discrepancy highlights the fact that the relationship between the Eulerian and Lagrangian 
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Figure 4. Topological length NE  of fluid lines in 2D turbulence. Time evolution of NE  over the range of 
turbulent kinetic energy of the flow, u2 =  ( −10 5 −  ⋅ −2 10 3) m2s−2 and for various energy injection scale L f .  
(a) FWT at =f 600  Hz, = .L 4 4f  mm, (b) EMT at = .L 9 5f  mm, (c) FWT at =f 1100  Hz, = .L 3 3f  mm,  
(d) FWT at =f 300  Hz, = .L 7 7f  mm, (e) FWT at =f 450  Hz, = .L 5 1f  mm. In (a–c), NE  is averaged over at 
least 15 different braids. Each braid is made of 80 different Lagrangian trajectories. In (d,e), NE  is averaged 
over at least 10 different braids. Each braid is made of 60 different Lagrangian trajectories. Dashed lines are 
exponential fits.
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descriptions of turbulence remains an outstanding problem3,41. It also raises questions as to whether there are 
connections between different types of entropies in turbulent flows39,42.

Sbraid is a global topological quantity. Although it is connected to transport properties of the underlying flow, 
its connection to a “metric” descriptor of turbulent transport is not trivial. One of the most basic properties of 
Lagrangian trajectories is the single-particle dispersion δ = ( ) − ( )

 r r t r 02 2  of a particle moving along the 
trajectory ( )r t . In 2D turbulence, at long times, single-particle dispersion is similar to a Brownian motion, and it 
reads: δ =r Dt22  where D is the diffusion coefficient18,35. Recent experiments showed that ≈D u L f

2  in 2D 
turbulence, where L f  is the energy injection scale of turbulence18. The fact that ≈S ubraid

2  has therefore a 
remarkable consequence: the braid entropy Sbraid is a linear function of D (see Fig. 6). Quantitatively, we have 
measured: ≈ /S D Lbraid f . The forcing scale L f  links a single-particle metric characteristic D, to a multi-particle 
topological descriptor Sbraid.

Although such a connection between single and multi-particle descriptors might sound surprising, it may 
originate from the uncorrelated motion of the particles that compose the braid. Indeed, we emphasize that the 
transition to the exponential growth regime of NE  is observed for time scales >t T6 L (see Fig. 4). At these time 
scales, both the single18 and pair dispersion computed on the braided trajectories (with inter-particle distance 
being larger than L f ) show Brownian statistics. To our knowledge, there is as yet no theoretical understanding as 
to why the entanglement of independent Brownian trajectories results in an exponential growth of the topological 
length NE . We note that 2D turbulence plays an important role in this phenomenology since the r.m.s velocity 
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u2 depends on the kinetic energy accumulated in the inertial range. The relation linking Sbraid to D could be useful 
in oceanography to identify the energy injection scale L f  from Lagrangian data43.

Much interest lies in determining Lagrangian tenets of turbulence irreversibility that would complement the 
Kolmogorov energy flux relations formulated in the Eulerian frame32–35. The braid entropy Sbraid is a promising 
topological measure of the irreversible deformation of fluid lines in 2D turbulence. On a practical note, the braid 
approach is particularly suitable for the analysis of natural flows in the ocean for which only sparse data are avail-
able. Much work is yet to be done to test the properties and potential applications of the braid entropy in fluid 
turbulence.

Methods
Turbulence generation. In these experiments, turbulence is generated using two different methods. In the 
first, 2D turbulence is generated electromagnetically in stratified layers of fluid36. A 4 mm thick layer of an elec-
trolyte solution (Na2SO4 water solution, SG =  1.03) is placed on top of a 4 mm thick layer of heavier (specific 
gravity SG =  1.8) non-conducting fluid (FC-3283). The fluid cell has a square section of 300 ×  300 mm2. A matrix 
of 30 ×  30 magnetic dipoles spaced in a checkerboard fashion 10 mm apart is placed under the bottom of the fluid 
cell producing spatially varying vertical magnetic field B. Electric current J  flowing across the cell generates the 
Lorenz ×J B force, which drives 900 horizontal vortices in the top (conducting) layer of fluid18,36,37. The interac-
tion between these vortices, through the inverse energy cascade process, provides the energy that drives the tur-
bulent flow. The bottom layer reduces the bottom drag and makes the flow in the top layer two-dimensional.

In the second setup, Faraday surface waves are used to generate 2D turbulence19,20. The horizontal fluid motion 
on the surface of such parametrically excited waves shows strong similarities with the fluid motion in 2D turbu-
lence. In these experiments, Faraday waves are formed in a circular container (178 mm diameter) filled with a 
liquid whose depth (30 mm) is larger than the wavelength of the perturbation at the surface (deep water approxi-
mation). An electrodynamic shaker is used to vertically vibrate the container. The forcing frequency f0 is mono-
chromatic and is set to 30, 45, 60 or 110 Hz. The wavelength λ of the sub-harmonic Faraday waves is a function of 
= /f f 20 . We have recently demonstrated that Faraday waves can generate lattice of horizontal vortices whose 

characteristic scale is roughly λ/2. The interaction between these vortices produces a turbulent flow. This method 
represents a versatile tool of laboratory modeling of 2D turbulence since Faraday wave turbulence can be produced 
in a broad range of kinetic energy level and forcing scales λ≈ /L 2F , by tuning either the vertical accelerations or 
the vibration frequency f 0.

The use of these two laboratory-modeling methods allows us to study 2D turbulence in a broad range of kinetic 
energies ∼ = ( − ⋅ )− −E u 10 2 102 5 3  m2s−2 (u2 is the mean squared velocity fluctuations) and forcing scales 
L f  =  (3.3–9.5) mm.

Flow characterization. The flows are visualized by placing 50μm diameter polyamide particles on the fluid 
surface. The use of surfactant ensures that particles do not aggregate on the surface and it facilitates the homoge-
neous spatial distribution of the particles. Videos are recorded at high frame rate (60 ~ 600 Hz) and a 16 bit reso-
lution using the Andor Neo sCMOS camera. The flows are characterized using both particle image velocimetry 
(PIV) and particle tracking velocimetry (PTV) techniques. We use PIV to compute the Eulerian energy spectra 
of the flows shown in Fig. 1. The PIV velocity fields are computed on a 90 ×  90 spatial grid (8 ×  8 cm2 (FWT), 
10 ×  10 cm2 (EMT) field of view) with a time step of 0.008 s (FWT) or 0.033 s (EMT). The 2D Lagrangian trajec-
tories used in the braid analysis are tracked by PTV techniques using a nearest neighbor algorithm17,18. In a highly 
turbulent flow (kinetic energy = −u 102 3 m2s−2 and integral characteristic timescale = −T 10L

2 s), hundreds of 
particles can be tracked simultaneously for 4 s at 120 fps over a 8 ×  8 cm2 field of view.

The braid method. Topological fluid loops. In the course of time, each crossing along the braid distorts the 
topological loop and forces it to get more and more entangled in the impenetrable strands of the braid, see 
(Fig. 2g). It has recently been demonstrated that the level of entanglement of a loop can be described by a quantity 
NE called “topological length” or braiding factor14. NE is equal to the number of times the loop crosses a imagined 
line (horizontal dashed line in Fig. 2(g)_right panel) ) passing through all the particles that compose the braid at 
time t. Although it is named topological length, NE is a topological quantity that ultimately does not require the 
notion of “distance”. Its time evolution is completely described by the sequence of crossings along a braid.

Experimental measurements. To compute the topological braids made of fluid tracers trajectories and their cor-
responding braiding factor NE, we use tools from the braidlab library14,44 which have been modified to allow the 
computation to be carried out on a large number of trajectories. The analysis was performed over braids that are 
composed of =N 10traj  up to =N 100traj  Lagrangian trajectories for which the inter-particle distance is larger 
than energy injection scale L f . The experimental capacities allow the computation of the single particle diffusion 
coefficient D and the braiding factor NE over large statistical samples (~3000 trajectories).
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