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+e clinical scores are applied to determine the stage of cognitive function in patients with end-stage renal disease (ESRD).
However, accurate clinical scores are hard to come by. +is paper proposed an integrated prediction framework with GPLWLSV
to predict clinical scores of cognitive functions in ESRD patients. GPLWLSV incorporated three parts, graph theoretic algorithm
(GTA) and principal component analysis (PCA), whale optimization algorithm with Levy flight (LWOA), and least squares
support vector regression machine (LSSVRM). GTA was adopted to extract features from the brain functional networks in ESRD
patients, while PCAwas used to select features. LSSVRMwas built to explore the relationship between the selected features and the
clinical scores of ESRD patients. Whale optimization algorithm (WOA) was introduced to select better parameters of the kernel
function in LSSVRM; it aims to improve the exploration competence of LSSVRM. Levy flight was used to optimize the ability to
jump out of local optima in WOA and improve the convergence of coefficient vectors in WOA, which lead to an increase in the
generalization ability and convergence speed ofWOA.+e results validated that the prediction accuracy of GPLWLSVwas higher
than that of several comparable frameworks, such as GPSV, GPLSV, and GPWLSV. In particular, the average of root mean square
error (RMSE), mean absolute error (MAE), and mean absolute percentage error (MAPE) between the predicted scores and the
actual scores of ESRD patients was 2.40, 2.06, and 9.83%, respectively. +e proposed framework not only can predict the clinical
scores more accurately but also can capture imaging markers associated with decline of cognitive function. It helps to understand
the potential relationship between structural changes in the brain and cognitive function of ESRD patients.

1. Introduction

In recent years, the mortality rate of patients with end-stage
renal disease (ESRD) has been increasing year by year. ESRD
is the second highest increase of any disease, which is one of
the top risks to human health. Although ESRD patients
represent 0.1% of the global population, World Public
Health Organization spends 2%-3% of its total expenditure
on the treatment of ESRD. ESRD not only places a severe
economic burden on society and families but also places a
significant mental burden on patients [1]. Cognitive im-
pairment is common in ESRD patients, especially in the
aspects of orientation, attention, and executive ability [2].
Bugnicourt et al. [3] found that the incidence of cognitive

impairment in patients undergoing hemodialysis was as high
as 30%∼ 60%. Cognitive impairment may affect late treat-
ment of ESRD patients, such as dietary adjustment and
medication compliance. Cognitive impairment in ESRD
patients is often ignored in clinical practice, and its path-
ophysiological mechanism has not been fully elucidated [4].
In consequence, it is of great significance to study the
cognitive impairment mode of patients with ESRD and
clarify the exact pathophysiological mechanism.

As neuroimaging technology develops by leaps and
bounds, the neuropathological mechanism of ESRD can be
learned from the perspective of central nervous systems. For
example, Liang [5] et al. observed the brain neural activity of
ESRD patients with the help of resting-state fMRI
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technology. Compared with normal controls, the functional
activity of ESRD patients significantly decreased in bilateral
frontal parietal temporal lobe, suggesting that the abnormal
connection of brain functional networks in ESRD patients
could result in cognitive disorders. In virtue of Diffusion
Tensor Imaging (DTI) technology, Chou et al. [6] pointed
out that long-term hemodialysis would aggravate cerebral
interstitial edema in ESRD patients and cause demyelination
of pontine axons, indicating that hemodialysis may lead to
extensive white matter damage in the brain. Chai et al. [7]
found that the volume of gray matter in the left lobe and
bilateral putamen of ESRD patients was significantly lower
than that of healthy subjects through voxel-based mor-
phometry. +is suggests that changes in the volume of gray
matter in the left lobe bring about cognitive impairment
probably. +ese researches relying on neuroimaging tech-
nology have greatly deepened our understanding of the
cognitive function of ESRD patients, but it is still impossible
to determine the stage of cognitive function of ESRD
patients.

Clinically, neurologists often judge the stage of cognitive
function of ESRD patients according to the scores of the
Montreal Cognitive Assessment Scale (MoCA), also known
as clinical scores. Accurate prediction of clinical scores is
beneficial to estimating the stage of cognitive functions of
ESRD patients. Jiang et al. [8] calculated the correlation
coefficient between topological attribute parameters of brain
functional networks and clinical scores of cognitive func-
tions in ESRD patients by Pearson correlation analysis. +ey
mainly focused on the imaging markers affecting the cog-
nitive function of ESRD patients and could not judge the
current status of cognitive function well. Lu et al. [9] pro-
posed a prediction method of clinical scores based on the
brain functional networks. By virtue of simple definition and
small computation, clustering coefficients in the brain
functional networks were extracted as features to predict
clinical scores, which were referred to judge the current stage
of cognitive function. However, this method is subjective in
the process of extracting features; at the same time, the
influence of other features on the cognitive function of
patients is ignored. Yang et al. [10] predicted clinical scores
by support vector regression machine (SVRM). Regrettably,
SVRM has high volatility and low prediction accuracy in the
process of predicting clinical scores.

On the above considerations, we propose an integrated
framework to predict clinical scores of ESRD patients. +e
main work is as follows: firstly, fMRI data were preprocessed
to construct the brain functional networks, and graph
theoretic algorithm (GTA) was adopted to extract features.
Secondly, principal component analysis (PCA) was used to
select features. +en, the least squares support vector re-
gression machine (LSSVRM) was built to explore the rela-
tionship between the selected features and the clinical scores
of ESRD patients. Meanwhile, the whale optimization al-
gorithm (WOA) was introduced to select better parameters
of kernel function in LSSVRM so as to enhance the ex-
ploration competence of LSSVRM. Finally, Levy flight

replaced the traditional selection of WOA and in the
meantime optimized the ability to jump out of local opti-
mum in WOA. +e framework called GPLWLSV was
constructed to predict the clinical scores of ESRD patients
and then determine their current stage of cognitive function.

2. Data and Methods

2.1. Research Framework. Figure 1 shows our prediction
framework, which mainly includes the following steps: (1)
+e original resting-state fMRI images were preprocessed by
Data Processing Assistant for Resting-State fMRI
(DPARSF). (2) Time series from preprocessed images were
abstracted to construct the brain functional networks. (3)
+e area under the curve (AUC) of topological attribute
parameters in the brain functional networks was extracted as
features through GTA. (4) PCA was used to filter redundant
features and to retain important features. (5) LSSVRM was
built to retain features. (6) WOA was improved by Levy
flight to optimize the selection strategy of kernel function
parameters in LSSVRM. (7) GPLWLSV was constructed to
predict clinical scores of cognitive functions in ESRD
patients.

2.2. Experimental Data and Pretreatment. A total of 50
patients with ESRD were admitted to Changzhou Second
People’s Hospital Affiliated to Nanjing Medical University
from May 2021 to March 2022, including 27 male and 23
female individuals aged 49.12± 8.23 years. Synchronously, a
total of 40 normal controls were also admitted to the same
hospital, including 22 male and 18 female individuals aged
47.26± 7.01 years. +ere were no significant differences
(P> 0.05) in the gender ratio, age, and education level be-
tween them. One hour before fMRI examination, the stage of
cognitive function of all subjects was assessed by trained
neurologists who did not know the data of subjects via
clinical scores of cognitive functions. Table 1 gives the de-
mographic information of these two groups of subjects.

All subjects were scanned with GE Discovery MR 750W
3.0T superconducting MR scanner with 32-channel head
and neck joint coil. +e head of subject was fixed with a
cushion to reduce the artifacts produced by head movement.
Gradient echo plane echo imaging (GRE-EPI) sequence was
used to collect fMRI images. During the collection process,
subjects were required to keep quiet and awake and try not to
think. Machine scanning parameters are as follows: repe-
tition time (TR)� 2000ms, echo time (TE)� 40ms, field of
view (FOV)� 24 cm, flip angle (FA)� 90°, matrix
size� 64× 64, and layer thickness� 6mm.

After achieving the fMRI images of all subjects, DPARSF
(available at http://rfmri.org/dpabi) participated in pre-
processing. +e specific steps are as follows: (a) Image
format was transformed: the correct format can only be
opened by DPARSF. (b) +e first 10 time points were de-
leted: errors may occur when the instrument and subjects
were not in a stable state. (c) Time points were corrected:
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data of time points at different levels were corrected to the
same time point to maintain consistency. (d) Brain positions
were corrected: the brain must remain in the same position
throughout the examination. (e) Space was normalized: put
the brain of subject into a standard space for the convenience
of follow-up statistics and reports. (f ) Spatial structure
differences were reduced through smooth: better image
results were beneficial to the validity of statistical tests. (g)
Linear drift was removed: changes in time and temperature
caused errors in the inspection instrument. (h) Filtering was
performed: the frequency range is 0.01∼0.08Hz. +e resting
fMRI signal after low-frequency filtering has important
physiological significance and may reflect spontaneous
neural activity. (i) Final time series was obtained: the mean
BOLD time series of head motion parameters, white matter,
and cerebrospinal fluid were regression and removed.

2.3. Principle of GP

2.3.1. Features Were Extracted by GTA. +e construction of
brain functional networks is as follows. Firstly, the brain of
each subject was divided into 90 brain regions on the basis of
Automated Anatomical Labeling (AAL). Secondly, the
Pearson correlation coefficient was calculated between the
time series of two brain regions;K-matrix was born, which is
a 90× 90 symmetric matrix with all 1 s on the diagonal.
Finally, the Fisher-Z transformation is performed on the
elements in the K-matrix divided by the diagonal, which is
converted to the Z-value close to the normal distribution to
generate the Z-matrix:

K �

1 p(1,2) · · · p(1,90)

p(2,1) ⋱ ⋮

⋮ ⋱ ⋮

p(90,1) · · · · · · 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (1)

Z �

1 z(1,2) · · · z(1,90)

z(2,1) ⋱ ⋮
⋮ ⋱ ⋮

z(90,1) · · · · · · 1

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (2)

zij �
1
2

ln 1 + pij􏼐 􏼑 − ln 1 − pij􏼐 􏼑􏽨 􏽩(i≠ j), (3)

where pij represents the Pearson correlation coefficient
between the time series of the i-th brain region and the j-th
brain region.

Takingmatrix sparsity as the threshold, the preprocessing
for Z-matrix was binary. +e matrix sparsity was set to
0.1–0.4 with a span of 0.01. Within the threshold range of the
matrix sparsity, the AUC of topological attribute parameters
was calculated by GTA as features, which reflected the overall
change of brain functional networks and reduced the in-
fluence of individual differences. +ese features include the
AUC of global efficiency (Eglobal), local efficiency (Elocal),
clustering coefficient (Cp), characteristic path length (Lp),
standardized clustering coefficient (c), standardized char-
acteristic path length (λ), and small-world properties (σ).
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Figure 1: A flowchart of prediction framework.

Table 1: Demographic information of subjects.

Gender (male/female) Age (years, x ± s) Education years (years, x ± s) Clinical scores (points, x ± s)
ESRD patients (n� 50) 27/23 49.12± 8.23 11.13± 2.05 21.47± 2.75
Normal controls (n� 40) 22/18 47.26± 7.01 11.24± 2.13 27.38± 1.35
t/χ2 0.009 1.133 0.387 −13.412
P >0.05 0.260 0.778 0.000
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2.3.2. Features Were Selected by PCA. In the process of
machine learning, a large number of features need to be
extracted and converted into various data that can be
processed by computers [11]. Increasing the number of
features can improve the effect of machine learning. +e
trouble is that as the number of features increases, the di-
mension of feature vectors will also add.+is not only makes
machine learning more difficult but can also lead to over-
fitting, affecting the final accuracy. In view of this situation, it
is necessary to filter out some unimportant features or
combine some related features [12]. Features were selected
by PCA that keep the information contained in the original
data as much as possible while reducing the dimension. +e
specific steps are as follows.

+e first step is to standardize the matrix. +e AUC of
Eglobal, Elocal, Cp, Lp, c, λ, and σ of ESRD patients was
marked as α1∼α7. Constructing a matrix called A, A� [α1,
α2, α3, α4, α5, α6, α7], and αj � [x1j, x2j, x3j. . .. . . xnj]T.

B-matrix is the normalization of A-matrix, B� [β1, β2,
β3, β4, β5, β6, β7], and βj � [ y1j, y2j, y3j. . .. . . ynj] T [13]:

yij �
xij − x

�����������������

xij − x􏼐 􏼑
2
/(n − 1)􏼒 􏼓

􏽲 ,
(4)

where x is the mean value of samples in αj and n is the
number of samples.

+e second step is to construct the covariance matrix of
B-matrix. Computing the covariance between βi and βj in
β1∼ β7,

rij � cov(X, Y)

�
􏽐

n
i�1 Xi − X( 􏼁 Yi − Y( 􏼁

n − 1
,

(5)

where Xi is the value of the i-th sample; X represents the
mean value of samples; n is the number of samples.

Constructing the covariance matrix called R,

R �

r11 r12 · · · r1m

r21 ⋱ r2m

⋮ ⋱ ⋮

rm1 rm2 · · · rmm

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (6)

wherem represents the number of features and its value is 7.
+e third step is to extract the original features. Computing

the eigenvalues and eigenvectors of the R-matrix, the principal
component is the eigenvector of the R-matrix, and the mag-
nitude of the corresponding eigenvalue indicates the impor-
tance of the eigenvector. Calculating the weight of the features,
λ1∼λ7 are the eigenvalues of the R-matrix, λj represents the
dominance of αj in the A-matrix, and the weight of αj in the
whole feature set called α1∼α7 can be expressed as [14]

wi �
λi

􏽐
7
j�1 λj

. (7)

+e weight of extracted features is higher than 0.6 set in
this paper.

Finally, the extracted features are transformed to new
features. Finding the eigenvector vj in the R-matrix cor-
responding to αj, the new feature cj is transformed from vj

[15]:

cj � B · vj. (8)

2.4. Principle of LSSVRM. +e principle of SVRM is to map
data vectors from low-dimensional space to high-dimen-
sional space. SVRM constructs decision functions with the
aid of the principle of risk minimization. SVRM is suited to
solve nonlinear problems of small samples and high di-
mension of feature vectors. LSSVRM is simplified on the
basis of SVRM. +ere are two main points: (1) changing
constraints in SVRM to improve computing efficiency; (2)
selecting different decision functions to reduce the operation
time. LSSVRM maps nonlinear vector Φ(x) to high-di-
mensional space and transforms it into a linear regression
problem, as shown in formula (9) [16]:

y � ωTΦ(x) + b, (9)

where ω is the n-dimensional weight vector; b is the
deviation.

Following the principle of risk minimization, linear
regression can be transformed into an optimal problem [17]:

min J(ω, ξ) �
1
2
ωTω +

1
2

J 􏽘
m

i�1
ξ2i , (10)

yi � ωTΦ xi( 􏼁 + b + ξi, (11)

where J represents the normalization function; ξi represents
the error; i represents the i-the dimension of the space
vector; ω represents the weight vector. Since ω belongs to the
high-dimensional space, it cannot be solved directly, so the
kernel function is introduced [18]:

y � 􏽘
n

i�1
aiK x, xi( 􏼁 + b. (12)

In order to ensure the efficiency of operation, RBF is
chosen as the kernel function, and its function is expressed
as follows [19]:

K xi, xj􏼐 􏼑 � exp −
|xi − xj|

􏼌􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌􏼌

2σ2
⎛⎝ ⎞⎠. (13)

It can be seen from the above process that J and σ2 have
the greatest influence on the LSSVRM. In searching for
optimal J and σ2, WOA is replaced by LWOA to seek the
optimal solution.

2.5. Principle of LWOA. WOA is a new optimization algo-
rithm that simulates the predatory behavior of whales.
Whales locate and surround prey through their scent. We
can define a certain number of virtual whales as search
agents, assuming that the location of the scent of prey is at or
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near the current optimal location. We look for the optimal
solution as the next location of the whale by comparing the
feasible solutions of various search agents. Other search
agents update their location to complete the strategy of
finding the optimal solution.

Whales constantly adjust their position according to the
position of prey during hunting. To describe this strategy of
hunting, the following mathematical model is presented
[20]:

M1&9; � CX∗(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

X(t + 1)&9; � X∗(t) − HM1,
(14)

where t is the number of current iterations; X(t) is the
coordinate vector of the current whale; X(t+1) is the target
coordinate vector after the next iteration; X∗(t) is the co-
ordinate vector of the best solution at present. If there is a
better feasible solution, X∗(t) should be updated immedi-
ately. C and H are coefficients, which are acquired by for-
mulas (22) and (23) [21]:

H&9; � 2hr1 − h,

C&9; � 2r2,
(15)

where r1and r2 are random numbers between 0 and 1; h is
computed from formula (24) [21]:

h � 2 −
2t

Tmax
. (16)

For purpose of finding a better target position to ap-
proach the prey, the whale will randomly use any whale
coordinate vector to replace the whale coordinate vector of
the next iteration so as to achieve the purpose of deviating
from the prey. +is avoids falling into local optimality. +e
following mathematical model is shown [22]:

X(t + 1)&9; �

X∗(t) − HM1, |H|< 1, p< 0.5,

Xrand(t) − HM2, |H|⩾1, p< 0.5,

X∗(t) + M3e
bl cos(2πl), p⩾0.5,

⎧⎪⎪⎪⎨

⎪⎪⎪⎩

M1&9; � CX∗(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

M2&9; � CXrand − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

M3&9; � X∗(t) − X(t)
􏼌􏼌􏼌􏼌

􏼌􏼌􏼌􏼌,

(17)

where t is the current iteration times; X∗(t) is the optimal
position vector so far; Xrand is the random position vector of
whale; X(t) is the current position vector of whale; b is the
constant, and default is 1; the role of b is to control the
hunting path shape; l is acquired by the following formulas:

l&9; � h2 − 1( 􏼁r3 + 1,

h2&9; � −1 −
t

Tmax
,

(18)

where r3 is a random number between 0 and 1; t represents
the current iteration number; Tmax represents the maximum
iteration number. When t≥ 0.5Tmax, H is always less than 1.

At this point, the whale enters the attack mode and no longer
deviates from the prey through search agents.

Due to the few adjustment parameters of WOA, it has a
fast rate of convergence and a certain ability to jump out of
the local optimum. It is worth noting that WOA can be
optimized further. +e reasons are as follows: Firstly, WOA
searches by means of random system. Excessive reliance on
random system limits the convergence speed of WOA.
Secondly, WOA is subject to coefficient vector. WOA will
lose the ability to jump out of the local optimum when the
number of iterations reaches half of the maximum number
of iterations set earlier. Consequently, WOA is accompanied
by a certain risk of falling into the local optimum, leading to
inaccurate results of prediction [23].

+e defects of WOA can be solved by an improved
WOA with Levy flight named LWOA. Levy flight is a kind
of random search that relies on Levy distribution, which
has been applied many times in the optimization field in
recent years. Levy flight is able to improve cuckoo and
particle swarm optimization algorithms [23–25] and so on.
LWOA owns a faster convergence speed and higher con-
vergence accuracy; LWOA has a better ability to jump out
of the local optimum.+e specific steps of improvement are
as follows.

WOA is improved by Levy flight, and formula (22) is
replaced by the following formula [16, 26]:

H � 2hLevy(λ) − h, (19)

where Levy(λ) means that it obeys the Levy distribution with
parameter λ [16, 27]:

Levy ∼ μ � t
− λ

. (20)

Due to the complexity of Levy flight, the Mantegna
algorithm is adopted to simulate it, and its mathematical
expression is as follows [16, 28]:

s �
μ

|]|
(1/β)

, (21)

where μ and v obey the normal distribution with parameters
σμ and σv [16, 29]:

μ ∼ N 0, σ2μ􏼐 􏼑,

] ∼ N 0, σ2]􏼐 􏼑,

(22)

σμ �
Γ(1 + β)sin(πβ/2)

Γ(1 + β/2)β2(β−1/2)

⎧⎨

⎩ , (23)

σ] � 1. (24)

For higher operation efficiency of the algorithm, β is a
constant 1.5, and σμ is a constant 0.7.

+e coefficient vectorH in WOA converges linearly with
certain limitations. WOA should be promoted to jump out
of local optimum; formula (24) changed by the following
formula [16]:
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h � 2e0.15 − log 10t/Tmax( )
4( 􏼁

, (25)

where t represents the current iteration number and Tmax
represents the maximum iteration number.

In the early stage of iteration, the value of h will decrease
slowly as the increase of iteration times, which is conducive
to the global search out of local optimum. At the end of
iteration, the value of h will decrease exponentially to im-
prove the ability of rapid local search.

3. Results

3.1. Experimental Settings. Table 2 shows the AUC of to-
pology attribute parameters of the brain functional networks
of ESRD patients and normal controls calculated by GTA.
Within the whole matrix sparsity threshold range, the AUC
of c, σ, and Elocal in ESRD patients was significantly lower
than that in normal controls, with statistical significance
(P< 0.05). Nevertheless, there were no significant differences
(P> 0.05) in the AUC of λ, Cp, Lp, and Eglobal.

Table 3 shows the corresponding weight of each feature
in the feature set. +e proportion of AUC of Elocal was the
highest, up to 65.31%.+e proportion of AUC of Eglobal was
next to Elocal, accounting for 30.89%. +e proportion of
AUC of c, λ, σ, Cp, and Lp was less than 5%.+e proportion
of c was the lowest, only 0.03%.

+e experimental results can be seen from Tables 2 and 3.
+e AUC of Elocal in ESRD patients was significantly lower
than that in the normal controls, with statistically significant
differences (P< 0.05). Meanwhile, the AUC of Elocal
accounted for the highest proportion in the feature set.
Obviously, the AUC of Elocal was selected as the feature to
construct GPSV [30], GPLSV [31], GPWLSV [32], and
GPLWLSV for predicting the clinical scores of cognitive
functions in ESRD patients [33].

+e prediction accuracy of various frameworks was
evaluated by a tenfold cross-validation method. Firstly, the
AUC of Elocal of 50 ESRD patients and the corresponding
clinical scores were collected as data set calledD. Secondly,D
was divided into 10 mutually exclusive subsets of the same
size, D�D1∪D2∪ D3∪D4∪D5∪D6∪D7∪D8∪D9∪D10, and
Di∪Dj �∅. Each subset Di was separated from D through
stratified sampling, which ensures consistency of data dis-
tribution. Each subset Di contains five samples. Taking the
union of 9 subsets as the training set and the remaining
subset as the test set, 10 groups of training sets and test sets
are formed. Different frameworks were trained and tested
for 10 times, and the average of 10 groups of test results was
calculated.

3.2. Experimental Results. +e root mean square error
(RMSE), mean absolute error (MAE), and mean absolute
percentage error (MAPE) were selected as the testing
standards of prediction accuracies. Table 4 shows the pre-
diction accuracies of some representative frameworks. All
the comparable predictive frameworks were evaluated by
tenfold cross-validation method. +e test results show that
the prediction accuracy of GPLWLSV is higher than that of

GPSV, GPLSV, and GPWLSV. +e average of RMSE of
GPLWLSV was 2.40, 1.04, 0.93, and 0.46 points lower than
that of GPSV, GPLSV, and GPWLSV, respectively. +e
average of MAE of GPLWLSV was 2.06, which was 0.82,
0.74, and 0.42 points lower than that of GPSV, GPLSV, and
GPWLSV, respectively. MAPE can reflect the relative errors
of frameworks better than MAE. +e average of MAPE of
GPLWLSV was 9.83%, lower than 10%, which was 4.10%,
3.75%, and 1.93% lower than that of GPSV, GPLSV, and
GPWLSV, respectively. +e bar chart in Figure 2 shows that
the prediction accuracy of GPLWLSV is better than that of
GPSV, GPLSV, and GPWLSV intuitively.

Figure 3 shows the comparison between the predicted
scores of various frameworks and the actual scores.+e solid
blue line represents the actual scores, and the solid purple
line represents the predicted scores. As can be seen from the
figure, different from GPSV and GPLSV, GPWLSV and
GPLWLSV can fit most of the scores of tests set well, and the
predicted scores are closer to the actual scores in the case of
large fluctuation. +e strong fluctuation of actual scores will
lead to a large error between the actual scores and the
predicted scores of GPSV and GPLSV, while the predicted
scores of GPWLSV and GPLWLSV are stable relatively. +is
is due to the powerful optimization ability of WOA.

Specifically, WOA optimizes the penalty factor and
kernel parameters of LSSVRM, and we only need to adjust
two parameters to improve the generalization ability and
prediction accuracy of LSSVRM. +e prediction accuracy of
GPLWLSV is higher than that of GPWLSV for two reasons.
Firstly, WOA adjusts parameters through a random system,
and excessive reliance on a random system limits GPWLSV.
Secondly, WOA is subject to coefficient vector. When the
number of iterations reaches half of themaximum set earlier,
WOA will lose its ability to jump out of the local optimum.
At this time, WOA may fall into local optimum to some
extent, which will lead to inaccurate prediction results.
LWOA replaces the random adjustment of WOA with Levy
flight; LWOA improves the convergence mode of coefficient
vector of WOA; LWOA optimizes the ability of WOA to
jump out of local optimum and thus improves the gener-
alization ability and convergence speed of WOA. As a result,
the prediction accuracy of GPLWLSV is higher than
GPWLSV.

3.3. Discriminative Brain Regions. Node efficiency is one of
the measures of node centrality. +e higher the node effi-
ciency is, the stronger the capacity of information trans-
mission of the node is and the more important its position in
the network is. +e higher the efficiency of a node is, the
stronger the information transmission capacity of the node
is and the more important the node is in the network [34].
For the sake of finding out the key brain regions which affect
the cognitive function of patients with ESRD [35], the
multiple regression method was taken to analyze the rela-
tionship between the node efficiency and clinical scores of
ESRD patients [36]. +e results showed that the node effi-
ciency of the left amygdala (AMYG.L) was negatively cor-
related with the clinical scores (r� −0.562, P � 0.014)
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significantly, as shown in Figure 4(a), while the node effi-
ciency of the right parahippocampal gyrus (PHG.R) was
positively correlated with the clinical scores (r� 0.551,
P � 0.035) significantly, as shown in Figure 4(b). In addi-
tion, no correlation was found between node efficiency and
clinical scores in other brain regions (P> 0.05). +e
amygdala is mainly involved in emotional processing [37],
and previous studies have also shown that depression of
varying degrees is common in patients with ESRD [38].

Given the above, it can be speculated that the amygdala
node efficiency may be related to the depressed mood of
ESRD patients, and the emotional instability and intense
reaction of patients may lead to the increase of amygdala
node efficiency. Qin et al. [39] found that patients with type 2
diabetes had multiple brain regions with increased node
efficiency. +is phenomenon is explained as the compen-
satory mechanism of the network. +e right para-
hippocampal gyrus is associated with learning and memory
functions [40], and its reduction of node efficiency may be
connected with cognitive impairment in ESRD patients.

To find out the relationship between each brain region
and the cognitive function of ESRD patients, the node ef-
ficiency of 90 brain regions was calculated and contrasted d
between the patients and the normal controls. +e brain
regions with significant differences were found; the result is
shown in Figure 5. Blue nodes represent the brain regions
with reduced node efficiency in ESRD patients compared to
the normal controls. +ese included left insula (INS.L), right
insula (INS.R), left median cingulate and paracingulate
gyrus (DCG.L), right median and paracingulate gyrus
(DCG.R), left hippocampus (HIP.L), right hippocampus
(HIP.R), left parahippocampal gyrus (PHG.L), right para-
hippocampal gyrus (PHG.R), right transverse temporal
gyrus (HES.R), left superior temporal gyrus (STG.L), left
temporal pole: superior temporal gyrus (TPOsup.L), right
temporal pole: superior temporal gyrus (TPOsup.R), left
temporal pole: middle temporal gyrus (TPOmid.L), and
right temporal pole: middle temporal gyrus (TPOmid.R).
+e red nodes represent the brain regions with increased
node efficiency in ESRD patients compared to the normal
controls. +ese include left amygdala (AMYG.L), right
amygdala (AMYR.R), right calcarine fissure and sur-
rounding cortex (CAL.R), left cuneus (CUN.L), right cuneus

(CUN.R), left superior occipital gyrus (SOG.L), and left
middle occipital gyrus (MOG.L).

+e brain is a highly optimized complex system capable
of integrating information to deal with changes in cognitive
needs. According to research findings, the brain regions with
reduced node efficiency in ESRD patients are mainly located
in the paralimbic network. +e hippocampus (HIP) and
parahippocampal gyrus (PHG) are related to learning and
memory functions [40]; meanwhile, the median and para-
cingulate gyrus (DCG) are involved in cognitive control
function [41]. Chou et al. [42] applied DTI technology to
view the changes in brain functional networks in ESRD
patients, and the results also found that the node efficiency in
the paralimbic network was significantly decreased com-
pared with the normal controls. Notably, ESRD patients had
higher node efficiency in brain regions associated with visual
networks, which are responsible for processing visual in-
formation. +ese regions are about attention, visual mem-
ory, and other neurocognitive functions [43]. Accordingly, it
can be speculated that the increased node efficiency in these
brain regions may also be a compensatory mechanism [39].
In summary, node efficiency can effectively distinguish
ESRD patients from the normal controls, thus achieving
accurate classification.

4. Discussion

+e purpose of this study was to look for imaging markers
related to the decline of cognitive function in ESRD patients,
which could be modeled to predict the clinical scores of the
patients, and the clinical scores could determine the current
stage of cognitive function. As a consequence, the
GPLWLSV is constructed. +e experimental results show
that the GPLWLSV achieves the optimal effect of prediction
than comparable frameworks, indicating its effectiveness.
+e GPLWLSV has three main advantages.

First of all, the imaging markers are accurate. By right of
the principle of GP, GPLWLSV found the imaging markers
related to the decline of cognitive function in ESRD patients.
Compared with the normal controls, ESRD patients showed
a significant decrease in the AUC of c, σ, and Elocal at
multiple sparsity. +is result is consistent with a previous
study based on resting-state fMRI networks [44]. c and

Table 2: Comparison of AUC of global topological parameters between two groups (mean± SD).

Parameter ESRD patients (n� 50) Normal controls (n� 40) t P

c 0.646± 0.071 0.669± 0.056 −1.714 0.004
λ 0.326± 0.123 0.329± 0.024 0.710 0.480
σ 0.589± 0.065 0.607± 0.065 −1.384 0.008
Cp 0.175± 0.014 0.176± 0.016 −0.296 0.768
Lp 0.543± 0.027 0.553± 0.069 −0.966 0.337
Eglobal 0.171± 0.006 0.170± 0.011 −0.477 0.635
Elocal 0.230± 0.007 0.241± 0.006 −0.253 0.001

Table 3: Weight of AUC of global topological parameters of ESRD patients in feature set.

Parameter c (%) λ (%) σ (%) Cp (%) Lp (%) Eglobal (%) Elocal (%)
wi × 100% 0.03 0.07 0.17 0.28 3.25 30.89 65.31
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Elocal mainly affect specific information processing or fault
tolerance rate of the network [45]. +e decrease of c and
Elocal indicates that information transmission efficiency of
different brain regions is reduced in ESRD patients, which
impairs the ability to manage the brain potentially [46]. +is
provides a new perspective and potential imaging markers
for understanding the underlying pathophysiological
mechanisms of cognitive impairment in ESRD patients.

Secondly, the operation speed is faster. GPLSV has a
shorter operation time than GPSV, although the prediction
accuracy is similar. +is is because LSSVRM is an im-
provement on SVRM. It changes inequality constraints into
equality constraints in SVRM and transforms solving qua-
dratic programming problems into solving linear equations,

speeding up the operation speed greatly. In a word, the
LSSVRM enables GPLWLSV to run more efficiently.

Finally, the prediction accuracy is higher. +e prediction
accuracy of GPWLSV and GPLWLSV is higher than that of
GPSV and GPLSV significantly. +is is because WOA
possesses powerful optimization ability; it optimized the
strategy of selecting two parameters in the kernel function of
SVRM and LSSVRM, thus improving the prediction accu-
racy of GPWLSV and GPLWLSV. However, WOA still has
deficiencies. Firstly, WOA adopts a random system to adjust
parameters and relies on random system excessively. Sec-
ondly, WOA is limited by the coefficient vector. When the
number of iterations reaches half of the maximum iterations
set earlier, WOA will lose its ability to jump out of local

Table 4: Prediction accuracies of comparable frameworks.

Prediction framework +e test group RMSE MAE MAPE
GPSV 1 3.5064 2.3835 0.1364
GPSV 2 3.482 3.0951 0.1454
GPSV 3 3.2648 2.8499 0.1267
GPSV 4 3.6154 3.1792 0.1542
GPSV 5 2.5508 2.2965 0.1109
GPSV 6 2.2724 1.7919 0.079
GPSV 7 4.115 3.6825 0.1788
GPSV 8 2.8204 2.659 0.1277
GPSV 9 5.7247 4.0523 0.1999
GPSV 10 3.0707 2.7852 0.1334
Average 3.4423 2.8775 0.1392
GPLSV 1 5.2634 4.197 0.2149
GPLSV 2 4.6628 3.1899 0.1305
GPLSV 3 3.4819 2.8121 0.1491
GPLSV 4 3.1611 2.7837 0.1385
GPLSV 5 2.1046 1.8884 0.0898
GPLSV 6 2.162 2.1246 0.0994
GPLSV 7 3.3545 3.0199 0.1524
GPLSV 8 3.9891 3.725 0.18
GPLSV 9 2.2805 1.7733 0.0812
GPLSV 10 2.8879 2.4838 0.1214
Average 3.3348 2.7998 0.1357
GPWLSV 1 4.2408 3.4782 0.1695
GPWLSV 2 3.3293 2.8178 0.124
GPWLSV 3 3.0657 2.4178 0.1188
GPWLSV 4 3.3027 2.9839 0.1466
GPWLSV 5 1.3125 1.1388 0.0529
GPWLSV 6 1.9272 1.4114 0.0618
GPWLSV 7 2.9412 2.7196 0.1311
GPWLSV 8 2.7899 2.6865 0.1284
GPWLSV 9 2.6758 2.3282 0.1092
GPWLSV 10 3.0313 2.8014 0.1335
Average 2.8616 2.4784 0.1176
GPLWLSV 1 3.9132 3.1026 0.1561
GPLWLSV 2 3.2506 2.8334 0.1258
GPLWLSV 3 2.7307 2.4334 0.1075
GPLWLSV 4 2.9976 2.3738 0.1216
GPLWLSV 5 1.2192 1.1111 0.053
GPLWLSV 6 0.718 0.6497 0.0313
GPLWLSV 7 2.5167 2.1156 0.1036
GPLWLSV 8 2.0709 1.9636 0.0914
GPLWLSV 9 2.1757 1.9467 0.0916
GPLWLSV 10 2.4163 2.0302 0.1007
Average 2.4009 2.056 0.0983
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Figure 2: Average of prediction accuracies of various frameworks. (a)+e RMSE andMAE of various frameworks. (b)+eMAPE of various
frameworks.
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Figure 3: Actual scores and predicted scores of various frameworks. (a) GPSV, (b) GPLSV, (c) GPWLSV, and (d) GPLWLSV.
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optimum. In brief, WOA may fall into local optimum to
some extent, leading to low prediction accuracy. GPLWLSV
chose Levy flight instead of WOA to adjust parameters.
LWOA improved the convergence mode of coefficient
vector of WOA and hoisted the capacity of WOA to jump
out of local optimum, and the convergence speed of WOA
was improved. To sum up, the prediction accuracy of
GPLWLSV was higher than comparable frameworks.

+e prediction framework still has room for further
improvement.+e main reason is that the size of the data set
in this paper is small, which affects the training effectiveness
of GPLWLSV to a certain extent. Researches show that DTI,
DWI, DKI, and other biomarkers of different modes are

complementary to each other to some extent. Compared
with single-mode analysis, multimode analysis can often
achieve better results of prediction by integrating comple-
mentary information of different modes [47]. In future
studies, more clinical data of different modes will be col-
lected, leading to a more in-depth and comprehensive study
on a larger data set.

5. Conclusion

In this paper, an integrated prediction framework with
GPLWLSV was constructed to predict the clinical scores of
cognitive functions in ESRD patients. According to the
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Figure 4: Relationship between node efficiency and clinical scores.
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Figure 5: Brain regions with statistically significant differences in node efficiency between the two groups. (a) Left lateral view, (b) right
lateral view, (c) left lateral view, (d) right lateral view, and (e) dorsal view of the whole brain.
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principle of GP, the framework found the imaging markers
related to the decline of cognitive function in ESRD patients;
meanwhile, GP determined that the AUC of Elocal
accounted for the highest proportion of all the features.
Elocal had a great influence on the cognitive function of
ESRD patients. +e inequality constraints in SVRM are
simplified, and the operation speed is improved. LWOA was
introduced to optimize the parameter selection strategy in
LSSVRM, and the prediction accuracy was improved. In
clinical diagnosis, it is often necessary to analyze the clinical
scores of a large number of patients with ESRD in order to
judge the stage of cognitive function. In general, our
framework can obtain imaging markers related to the de-
cline of cognitive function accurately and give consideration
to work efficiency and accuracy simultaneously.
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