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ABSTRACT

Treatment of infectious diseases is often long and requires patients to take drugs even after they have seemingly recovered.
This is because of a phenomenon called persistence, which allows small fractions of the bacterial population to survive
treatment despite being genetically susceptible. The surviving subpopulation is often below detection limit and therefore is
empirically inaccessible but can cause treatment failure when treatment is terminated prematurely. Mathematical models
could aid in predicting bacterial survival and thereby determine sufficient treatment length. However, the mechanisms of
persistence are hotly debated, necessitating the development of multiple mechanistic models. Here we develop a
generalized mathematical framework that can accommodate various persistence mechanisms from measurable
heterogeneities in pathogen populations. It allows the estimation of the relative increase in treatment length necessary to
eradicate persisters compared to the majority population. To simplify and generalize, we separate the model into two parts:
the distribution of the molecular mechanism of persistence in the bacterial population (e.g. number of efflux pumps or
target molecules, growth rates) and the elimination rate of single bacteria as a function of that phenotype. Thereby, we
obtain an estimate of the required treatment length for each phenotypic subpopulation depending on its size and
susceptibility.

Keywords: persistence; antimicrobial; treatment length; mathematical model; bacteria; antibiotic

INTRODUCTION

Antibacterial treatments can be lengthy for certain diseases. An
extreme example is tuberculosis, where the treatment lasts be-
tween 6 and 24months (Lawn and Zumla 2011; Horsburgh, Barry
and Lange 2015). As the treatment length increases, patient ad-
herence can dramatically drop (Burnier et al. 2013), which in turn
can increase the treatment length even further while also in-
flating its costs. A major barrier in reducing treatment length is
the risk of relapse: if bacterial populations are below detection

limit but not eliminated, bacteria may regrow resulting in treat-
ment failure (Fig. 1). This can be due to various different mech-
anisms, for example bacteria hiding in ‘sanctuary sites’ (Claudi
et al. 2014; Kaiser et al. 2014), in cells (Prajsnar et al. 2012), granu-
lomas (Monack, Bouley and Falkow 2004; Lawn and Zumla 2011)
or the phenomenon of persistence in a single bacterial popula-
tion (Balaban et al. 2004; Lewis 2007; Ankomah and Levin 2014;
Abel zur Wiesch et al. 2015; Bergmiller et al. 2017). In this work
we focus on the latter, specifically in bacterial populations.
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Figure 1. Persistence lengthens treatment. A and B, Shows the change in the number of bacteria (colony forming units, CFU) over time. The curve is a typical biphasic
kill-curve associated with persistence. In these cases, a fraction of the population may be below the detection limit. Therefore, if the treatment is terminated at the

expected treatment length based on only initial elimination rates; a fraction on the population might survive. As these bacteria are still viable, they might regrow and
cause relapse. As the Y-axis is logarithmic, exponential decays are straight lines that cross the X-axis at one individual bacterium. We assume that at this time point
the population is eliminated. B, Illustrates how persisters below the detection limit can complicate treatments by making it difficult to assess whether it is safe to end
a treatment.

Persistent bacteria survive prolonged exposure to antibiotics,
despite being genetically susceptible. This phenomenon is of-
ten characterized by bi- or multi-phasic kill-curves: after the
initial rapid elimination of bacteria, the rate of elimination slows
down. Therefore, as depicted in Fig. 1, bacteria can survive for a
longer time than one would expect based on the initial elimina-
tion rates.

The nature and cause of bacterial persistence during antibi-
otic therapy is hotly debated (Balaban et al. 2013). Antibiotic per-
sistence models can be divided into two (nonexclusive) groups.
First, the ‘classical’ models that assume a distinct phenotype
or state that causes persistence. Here, the minority of persis-
ter cells and the majority of normal cells are clearly distinct
(Balaban et al. 2004; Lewis 2007) and antibiotic susceptibility in
the bacterial population follows a bimodal distribution (in the
extreme case no antibiotic susceptibility for persisters and full
susceptibility for ‘normal’ cells). Second, ‘heterogeneity’ based
models that assume a (unimodal) distribution in bacterial sus-
ceptibility. Here, persisting bacteria are not distinct, but are at
the tail of the susceptibility distribution (Wakamoto et al. 2013;
Fridman et al. 2014; Abel zur Wiesch et al. 2015). We have pre-
viously demonstrated that minor heterogeneities in drug-target
binding are sufficient to explainmultiphasic kill-curves and thus
persistence as we currently understand it (Abel zur Wiesch et al.
2015). Moreover, our work made the prediction that a larger
variance in molecular heterogeneity increases persister-like be-
havior that has now been confirmed experimentally (Rego,
Audette and Rubin 2017).

The purpose of this work is to estimate the impact of persis-
tence on the time required until all bacteria are cleared by antibi-
otics. Specifically, we develop a generalized framework that can
be used on various mechanisms of persistence, including per-
sistence against antimicrobial peptides or other agents of the
host’s immune system. While the principles can be applied to
all types of distributions of persister phenotypes, we focus on
bacterial persistence due to heterogeneity in susceptibility that
follows a Gaussian distribution. Having a common framework
allows the comparison of various mechanisms, as well as ap-

plying them in the same model, and consequently investigating
their combined effects on treatment length. While persistence
against antibiotics in bacteria has receivedmost attention, there
is also evidence that elimination by the immune system can also
result in bi- ormulti-phasic kill-curves. For example, the dynam-
ics of antibodies binding to the epitopes of HIV virions (Magnus
and Regoes 2011; Magnus et al. 2013), cell-to-cell variability in the
apoptosis of cancer cells (Spencer et al. 2009), persisters’ toler-
ance towards serum-complement mediated killing (Putrinš et al.
2015), or local adaptation to-, and heterogeneity in the immune
clearance of bacterial colonies (Bumann 2015).

Here, we present a mathematical modeling framework that
allows translating population heterogeneity in antibiotic sus-
ceptibility (uni-, bi- or multi-modal) into time–kill curves and
the required treatment time to eradicate a bacterial population.
This modeling framework consist of two parts: first, a simplified
model that allows translating drug target binding in homoge-
neous bacterial subpopulations into elimination rates. The sim-
plifiedmodel is applicable to anymechanism of pathogen killing
where step-wise binding or molecular recognition is involved.
Second, estimating prolongation of treatment length in bacte-
rial populations with heterogeneities in elimination rates. This
part of the modeling framework is independent of the mecha-
nism responsible for the heterogeneity in elimination rates and
can be used to infer the heterogeneities’ effects on treatment
prolongation. We also show this with an experimental dataset
as an example on how to use our methodology.

MATERIALS AND METHODS

In the following, we first describe the response of a single bac-
terium to successive binding of a killing agent and then the re-
sponse of a bacterial population (elimination rate) to an increas-
ing number of mean bound target molecules. Finally, we show
how heterogenous elimination rates of individual subpopula-
tions can be used to estimate the increase in treatment length
caused by persisters.
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Inferring bacterial elimination rates from drug-target
binding

Response of single bacteria to antibiotic binding
Whether bacteria are killed by antibiotics, the immune system
or even viruses by antivirals, molecular binding and recognition
is arguably involved in all cases. Therefore, models that incorpo-
rate subsequent binding events are useful for understanding the
response to drugs or the immune system (Magnus and Regoes
2011; Shen et al. 2011; Magnus et al. 2013). Previously, we have
demonstrated (Abel zur Wiesch et al. 2015), that bacterial pop-
ulations with heterogeneity in the number of targets can show
persistent behavior. The first aim here is to generalize and sim-
plify this model.

In (Abel zur Wiesch et al. 2015), we set up a mathematical
model, where we calculated the following for multiple subpop-
ulations with different number of targets (Fig. 2, and Equation
1): first, number of antibioticmolecules inside each cell based on
external antibiotic concentrations. Second, the number of bacte-
riawith x bound targets (within each subpopulation), and finally
the replication and elimination for bacteriawith x bound targets
(for each x in each subpopulation). In that model, we assumed
that the antibiotic concentration is the same inside and outside
the cells. Therefore, the number of antibiotic molecules inside
each bacterium can be estimated based on the average volume
of a bacterium and the external concentration.

Our model describes successive binding steps, meaning
that each compartment/differential equation (Bx ) contains and
keeps track of the number of bacteria with the given number of
bound targets (x ) (see Fig. 2).

The differential equations of the binding kinetics are:

dBx

dt
= k∗

f A(t) Bx−1 (n− (x − 1)) − kr x Bx

− k∗
f A(t) Bx (n− x) + kr (x + 1) Bx+1, (1)

where:

- k∗
f = kf

Vi ·nA
is the adjusted forward reaction rate to accommo-

date working with the number molecules inside the cells in-
stead of concentrations. Here, kf is the forward reaction rate,
Vi = 10−15 [l] is the average cell volume, and nA = 6 · 1023 is
the Avogadro number,

- kr is the reverse reaction rate,
- A (t) is the concentration of antibiotics in or around the bac-
terium,

- x is the number of bound targets,
- n is the number of targets,
- Bx is the number of bacteria with x bound targets.

All the models mentioned above (Magnus and Regoes 2010;
Shen et al. 2011; Abel zurWiesch et al. 2015) assume for simplicity
that the elimination rate function for a single bacterium is a step
function. Once a threshold in the number of bound targets is
reached, the bacterium dies or, in the case of virions, becomes
noninfectious.

The model gets significantly simpler if it is sufficient to cal-
culate the mean number of bound targets instead of calculating
the full reaction kinetics model (Equation 1). This can be done if
the binding kinetics and bacterial replication/elimination rates
can be separated from each other. The condition for this is that
the binding rates have to be at least a magnitude faster than
the change of external antibiotic concentrations or the replica-
tion/elimination rates. In other words, they have to be on dif-

ferent time-scales. In these cases, the reaction kinetics will al-
ways reach steady state before any new replication/elimination
‘event’ happens, and the changes in antibiotic concentration is
also closely followed by the reaction kinetics due to the differ-
ences in the timescales the two are acting on. Consequently,
when calculating the binding kinetics, the two other processes
can be regarded as ‘constant’. This is the case for slow grow-
ing bacteria (e.g. Mycobacterium tuberculosis) and when antibiotic
concentrations are well above the minimum inhibitory concen-
tration (MIC), as we have shown in (Abel zur Wiesch, Clarelli
and Cohen 2017). For other cases, this depends on the binding
rates and concentrations of the antibiotics, as well as the repli-
cation of rates of the given bacterium. As we assume that there
is no change in the number of target molecules through bacte-
rial death, our model would also be applicable in cases where
dead bacteria or at least their target molecules are not degraded
and continue participating in drug binding.

With this simplification, the time course of themean number
of bound targets (x̄) can be determined by using classical reac-
tion kinetics (A+ T ↼⇁ AT , Equation 2) between the free targets
(n− x̄ ) and the antibiotics (A ):

dx̄
dt

= kf A(t) (n− x̄) − kr x̄ (2)

If A(t) fluctuates slowly compared to the settling time of the
reaction, the equilibrium of this time course is at:

ν = n
A(t)

kr
kf + A(t)

(3)

After separation of reaction kinetics from the replication and
elimination processes, the binding kinetics reduced to a problem
of calculating the number of bound targets at a constant antibi-
otic concentration. Therefore, the number of mean bound tar-
gets can be determined using Equations (2) or (3) and the distri-
bution of bound targets around it (as depicted on Fig. 2C) can be
approximated with a Gaussian distribution (van Kampen 2007).

In the following, we will investigate how a population of bac-
teria responds to an increasing number of bound targets, which
in turn is dependent on the antibiotic concentration (Equations
2 and 3).

Response of bacterial population to successive drug binding (i.e.
dose-response curves)
On a population-level, we expect a step function in single cell
response to result in a sigmoidal elimination curve: the random
binding and unbinding of antibiotics and their targets creates a
dynamic equilibrium around themean number of bound targets
(x̄ ). Consequently, the number of bound targets will occasionally
reach the threshold for elimination long before the mean num-
ber of bound target reaches it (see Fig. 2). The frequency with
which bacteria reach that threshold by chance and are there-
fore killed increases with the antibiotic concentration and this
results in a sigmoidal curve, as has been observed in experimen-
tal data (Regoes et al. 2004).

Based on the distribution around the mean bound targets,
it is possible to estimate an effective elimination rate curve
for a homogeneous population of bacteria (see Fig. 2D, and
Equation 4). As a result, the only input necessary for the effec-
tive elimination rate curve is now the mean number of bound
targets.

δ∗ (x̄) =
∑

x

δ (x) B (x, x̄) , (4)
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Figure 2. Overview of the mathematical model describing successive binding steps. A, Illustrates how the binding kinetics are calculated (Equation 1). Here, k∗
f is the

adjusted forward reaction rate (see below), kr is the reverse reaction rate, A is the concentration of antibiotics inside the bacterium, x is the number of bound targets,
n is the number of targets and Bx is the number of bacteria with x bound targets. B, Shows how the random binding and unbinding of targets causes a variance in the
number of bound targets around the mean and how this causes the individual bacterium to cross the number of bound targets required for elimination. C, Gillespie
simulation of Equation (1). This plot shows the distribution around the mean. The parameters used are kd = 10−5 (ciprofloxacin, (Spratt 1975; Terrak et al. 1999)),

number of targets n = 100 (gyrase, (Malmström et al. 2009; Maier et al. 2011)). D, Shows how the random binding and unbinding (Figure B and C) will cause a fraction
of population to die earlier than expected that results in a net elimination rate. The curve on Figure D was obtained using Equation (4).

where:

- B(x, x̄) is the distribution of bound targets around the mean
(x̄) (Fig. 2B and C)

- δ(x) is the elimination rate depending on the number of
bound targets (Fig. 2B and C)

- δ∗(x̄) is the effective, population-wide elimination rate, only
depends on the mean bound targets (Fig. 2D).

Integrating population heterogeneity on dose-response
curves

Bacterial populations often contain various heterogeneities that
can cause heterogeneities in elimination rates, for example
the numbers of efflux pumps (Pu et al. 2016; Bergmiller et al.
2017), or sizes of bacteria and therefore the intracellular target
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concentrations (Abel zur Wiesch et al. 2015; Rego, Audette and
Rubin 2017) can vary from cell to cell.

In (Abel zur Wiesch et al. 2015) among others, we have
demonstrated that the effects of small heterogeneities in the
number of targets can lead to biphasic time–kill curves. Here,
heterogeneity in the number of targets can be included the fol-
lowing way: the relationship between the number of targets
(n) and mean bound targets (x̄) is an exponential function and
therefore locally linear. The effects of small changes can thus be
approximated as linear: x̄ (c · n, A) = c · x̄(n, A) for small changes:
c ≈ 1 . For example, a 5% decrease in the maximum number of
targets will result in 5% decrease in bound targets. Therefore, it
is not necessary to calculate the mean number of bound targets
for each subpopulation with different molecular content. As a
result, elimination rates can be more effectively calculated at a
given antibiotic concentration A , if we already know one repre-
sentative subpopulation x̄(n, A) , where the heterogeneity in the
population can bemeasured with the parameter n (for example,
number of efflux pumps or number of targets).

δ∗ (x̄ (c · n, A)) = δ∗ (c · x̄ (n, A)) (5)

Finally, the time–kill curves of all subpopulations (e.g. with n
target molecules, but more generally with a given phenotype i
) have to be summed up to yield a time–kill curve of the entire
bacterial population:

Btotal (t) =
∑

i

Bi (0) eδi t (6)

In order to be able to compare the effects of persistence on
treatment length (described below), we are assuming that the
net growth rate for all subpopulations is negative. Otherwise the
increase in treatment lengths will be infinite when some sub-
populations have a positive net growth. This makes the compar-
ison of different mechanisms difficult. However, as antibiotics
are generally administered at multiples of the MIC this is often
a reasonable assumption.

RESULTS

We first set out to investigate how different degrees of popula-
tion heterogeneity in the number of target molecules affect per-
sistence, defined as a slowdown in bacterial killing at a constant
drug concentration. If we assume the same threshold (absolute
number of bound targets, not percentages) for elimination, all
subpopulations will have the same effective elimination curve.
The heterogeneity in target molecules results, in a first approx-
imation, in the same degree of heterogeneity in the number
of bound targets for each subpopulation. This places the sub-
populations at different points on the effective elimination rate
curves. (see Fig. 3A). Therefore, small heterogeneities within the
number of targets (1%–5% standard deviation around the mean)
can lead to persistent behavior in the population of bacteria.

The same approach can be used for having different elimina-
tion rates while having the same number of mean bound targets
as a different mechanism for persistence (see Fig. 3B). Finally,
these two can be combined to account for more general cases.
For example, when the subpopulations with different numbers
of targets also differ from each other in the threshold of bound
targets required to eliminate a single cell (i.e. different suscepti-
bilities). The interplay between the change in susceptibility and

bound targets can still cause persistent behavior, depending on
their relationship (see Fig. 3C and D).

Estimating treatment length

In this work, we have defined treatment length as the time point
where all bacterial subpopulations are eliminated. We calculate
the time to extinction for each individual subpopulation of bac-
teria and determine which is longest one. However, this necessi-
tates the simplification that the eliminations of subpopulations
are independent of each other: upon lysing the cells do not re-
lease their targets to the extracellular space. Furthermore, we
neglect the decrease in extracellular antibiotic concentrations
due to the uptake by cells. The goal of approximating the ef-
fects of heterogeneity and binding kinetics was to be able to re-
duce persistence models into two parts: the elimination rate as
a function of a certain persistence mechanism and the distri-
bution of subpopulations exhibiting various degrees of this per-
sistence mechanism. This way, the treatment length for each
subpopulation can be estimated by dividing the two functions
(Equation 7). The resulting function shows the timepointswhere
the given subpopulations drop below one bacterium. This is best
demonstrated by Fig. 1: as the Y-axis is logarithmic, exponential
decays are straight lines that cross the X-axis at one individual
bacterium. Therefore, (at constant antibiotic concentrations) di-
viding the logarithm of subpopulation size at t = 0 with their
corresponding elimination rates will give us the time point the
given subpopulation will go below one bacterium. We assume
that at this time point they are eliminated, see Fig. 1.

tsurvival (x̄) = Log[Btotal (x̄)]
δ∗ (x̄)

, (7)

where Btotal (x̄) is the size of the subpopulation that has themean
of x̄ bound targets (as depicted on the bottom left subplots on
Fig. 3).

If we normalize Equation (7) with time it takes to eliminate
the largest subpopulation (the median of the population distri-
bution, Fig. 4A), we get the fold-increase in time it takes to elim-
inate each subpopulation compared to the majority (see Fig. 4
and Equation 8).

t∗ survival (x̄) = tsurvival (x̄) /tsurvival (x̄majority) (8)

In Fig. 5, to demonstrate the estimation of treatment length
and to reproduce the results of (Abel zur Wiesch et al. 2015), we
have plotted increase in treatment length for 1%, 2%, 3% and 4%
heterogeneity in bound targets, meaning that the different sub-
populations show a normal distribution in the number of (mean)
bound targets, with the standard deviation of σ = 0.02 x̄ (for a
2% heterogeneity). This can be due to the same heterogeneity in
the number of targets among the subpopulations of bacteria as
discussed above. Here, above a 2% heterogeneity, persistent bac-
teria take substantially longer to eliminate than the majority of
the population. This is consistent with our results in (Abel zur
Wiesch et al. 2015), where we have shown that a 2% heterogene-
ity in bound targets is sufficient to showpersistent behavior. The
parameters used are kd = 10−5 , number of targets n = 100 (gy-
rase, (Malmström et al. 2009; Maier et al. 2011)); the cells are elim-
inated when more than 50 of their targets are bound (indepen-
dently of the number of targets, n). The distribution around the
mean (used in Equations 7 and 8, see Fig. 2C) was obtained by
simulating the reaction kinetics using Gillespie simulations for
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Figure 3. Bacterial populations with heterogeneities can show persistent behavior. These plots demonstrate how the model can be applied to various heterogeneities

in the population. A, Shows the case where the assumed persistence mechanism causes a heterogeneity (only) in the number of bound targets. B, Where the assumed
persistence mechanism causes a heterogeneity (only) in the susceptibility to the killing agent. C and D, Shows the combination of the two: whether heterogeneity
results in persistent behavior depends on the relationship between the two heterogeneities within the population.

Figure 4. Estimation of treatment length. This plot demonstrates how treatment
length for different subpopulations (C) can be estimated from the heterogeneity

in the population (A) and the elimination rate function (B). A, Shows the hetero-
geneity in the mean bound targets within the population, here the majority of
the population is simply the median of this distribution. B, It is the elimination

rate function for the population, here we assume that the subpopulations only
differ from each other in the mean number of bound targets. C, It is shows the
assumed treatment length for each subpopulation (obtained with Equation 8),
assuming that each of the subpopulations are independent of each other and

the treatment length can be calculated as the time point where the given sub-
population goes below 1 bacterium.

the given kd and n . It is a normal distribution with the standard
deviation of σ = 4.

Using experimental data in our model

In this subsection, we demonstrate how to use an experimen-
tal dataset in our model. As the purpose of this subsection is
to demonstrate a workflow, for the sake of brevity, we present
a hypothetical and idealized scenario. We use the measure-
ments of (Bergmiller et al. 2017) which measured the distribu-
tion of growth rates in cells exposed to the bacteriostatic an-
tibiotic tetracycline with single cell microscopy and thereby the
heterogeneity in treatment response. They have also quantified
a trait that contributes to this heterogeneity, the number of ef-
flux pumps. This heterogeneity arises from biased partitioning
during the replication of bacteria, which results in the daughter
cells’ having fewer efflux pumps and therefore an efflux activity
of 85–90% of the mother cells’ (measured dye uptake).

To illustrate how to investigate such a dataset, we first ob-
tain dose response curves for mother and daughter cells. Here,
we assume that the only difference between the two generations
is the number and activity of efflux pumps. Therefore, we take
the median of both population growth rates to acquire a differ-
ence between the two generations (Fig. 6A and B). Next, we es-
timate the reduced (relative) drug concentrations affecting the
mother cells by multiplying the external drug concentrations
with the measured difference in efflux activity (dye uptake) be-
tween daughter andmother cells.While a proper analysis is out-
side the scope of this paper, in Fig. 6 we demonstrate that after
the adjustment of drug concentrations the growth rate curves of
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Figure 5. Increase in treatment length caused by persistence. This figure shows the fold-increases in treatment length (using Equation 8) for antibiotic concentrations

that bind to 15%–70% of targets (threshold of elimination is 50 bound targets). The different curves are for different levels of heterogeneities in the number ofmaximum
targets within the population. As the plot demonstrates, even small heterogeneities can cause a substantial increase in the required treatment length.

Figure 6. Using an experimental data set in the model. This plot illustrates the workflow of using an experimental dataset (taken from (Bergmiller et al. 2017)) in the
model. The dataset describes the change in replication rates under tetracycline exposure due the biased partitioning of efflux pumps between mother and daughter

cells. A, Shows the histogram of measured growth rates at a specific antibiotic concentration for both the mother and daughter cells. B, Plots the medians of all the
measured distributions at various antibiotic concentrations. In (C) the antibiotic concentrations for the mother cells have been adjusted to account for the increased
efflux activity measured in the dataset that shows that the mother cells have 10% less dye taken up due to the higher numbers of efflux pumps. Here we have only
used small part of the dataset, just to demonstrate the workflow from the experimental data to our model, in this case Fig. 3A.

the daughter and mother cells get close to each other and inter-
sect.

In this analysis, we can directly go to the step to estimate
time–kill curves and the required treatment length because bac-
terial response to antibiotics (i.e. replication rate) was measured
directly (Equations 5 and 6). The antibiotic used is tetracycline,
a bacteriostatic antibiotic that mainly affects bacterial growth
and is thought to act together with the immune system to clear
infections. In order to create time–kill curves and calculate the
time until the last bacteriumwould be eliminated, we generated
a dataset by adding a constant elimination rate (caused by the
immune systemor an additional drug) to the availablemeasured
generation times. As a result, we get a distribution of elimina-
tions rates for both mother and daughter cells. First, as within
one generationwe also have a distribution of growth (now elimi-

nation) rates (Fig. 6A), even mother or daughter cells in isolation
should show biphasic kill-curves (Fig. 7A and B). This is possibly
due to other persistence mechanisms as well as heterogeneity
in efflux pumps within both the mother and daughter cell pop-
ulations.

Next, in order to show the difference in the two generations,
on Fig. 7C we have plotted the ratio of median elimination rates
for the mother and daughter cells. We have opted to do this as
the kill-curves would also depend on the steady state ratio of
daughter and mother cells within a population (Figs. 3A and 4).
This ratio or elimination rates can be used as a proxy to mea-
sure how biphasic a kill-curve is: the closer it gets to one, the
smaller the difference is in the slopes for biphasic kill-curves.
Fig. 7C demonstrates that if there is only one generation differ-
ence within the population, only low background killing rates
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Figure 7. Separating persistence mechanisms with the model. This figure shows that the model can be used to separate different persistence mechanisms. To produce
these plots, we have used the experimental data of (Bergmiller et al. 2017). On (A and B) we have plotted the theoretical kill-curves based on the distribution of bacteria
on Fig. 6A for mother and daughter cells respectively (using Equation 6). As the measurements were taken with a bacteriostatic drug (tetracycline), we have added a
constant background killing to the population in order to create kill-curves from growth curves. It is important to note here that the heterogeneity that gives rise to

the biphasic kill-curves are present in both the mother and daughter cells (see Fig. 6A). C, Shows the ratio of the median elimination rates for the mother and daughter
cells. We have opted to show this as a measure of persistence instead of kill-curves as the kill-curves would also depend on the steady state population-sizes of the
mother and daughter cells. This plot demonstrates we can expect biphasic kill-curves only at low background killing, provided that there are only two generations in
a population. D, Shows the increase in time it takes to eliminate the whole population at different background killings due to the heterogeneity in growth rates. This

curve is obtained similarly to Fig. 5 and Equation (8).

(< 0.02 [1/s] ) would result in biphasic kill-curves. This is sig-
nificantly different from Fig. 7A or B, where just for mother or
daughter cells alone even at higher background killing (0.27 [1/s])
we saw biphasic kill-curve, indicating that only one generation
difference in mother and daughter cells explains only a part
of the heterogeneity in treatment response in this dataset. As
shown in (Bergmiller et al. 2017) natural bacterial populations
havemultiple generations present and consequently themother
cells in the experimental data might not have been from the
same generation. Therefore, the differences in the number of ef-
flux pumpsmight explain a larger part of heterogeneity in treat-
ment response in this dataset, however investigating this is out
of the scope of this work.

Taken together, Figs. 6 and 7 demonstrate how one can use
ourmodel with experimental data, separatemechanisms of per-
sistence fromothers, and quickly estimate the parameter ranges
where we would see biphasic curves with the given assump-
tions.

DISCUSSION

The purpose of this work is to develop a mathematical model
that can be used to estimate the increase in treatment length
caused by persisters. At the same time, it should be general
enough to encompass most proposed persistence mechanisms.
We have demonstrated how the model presented in this paper

can be used to describe persistencemechanisms that cause het-
erogeneities in either the susceptibility to the killing agent or the
number of bound targets. Using a dataset from (Bergmiller et al.
2017), we have demonstrated how our framework can be used to
infer time–kill curves as well as the increase in necessary treat-
ment length from measured heterogeneities in bacterial popu-
lations. We have also shown how this approach can help shed-
ding light on the relative contributions of different persistence
mechanisms.

Our mathematical framework can accommodate many dif-
ferent molecular mechanisms of bacterial persistence. These
mechanisms can be separated into two different groups: they ei-
ther affect the number of bound targets or the elimination rates.
Examples for mechanisms that affect the number of bound tar-
gets are: (i) heterogeneity in the number of efflux pumps as it af-
fects the concentration of antibiotics within the cells, but prob-
ably does not have a great impact on susceptibility to a given
intracellular antibiotic concentration (Bergmiller et al. 2017). (ii)
Heterogeneity in cell volumes: if the relationship between cell
volumes and number of targets is not linear, it will affect con-
centration of targets and therefore the number of bound tar-
gets (Rego, Audette and Rubin 2017). (iii) Biofilms: the antibi-
otic concentration is lower around bacteria that are deeper into
the biofilms due to the imperfect penetration of antibiotics into
biofilms, consequently the internal antibiotic concentrations
in these cells will be lower as well (Lewis 2008). Examples of



Martinecz and zur Wiesch 9

heterogeneities in how bacteria respond to a given number of
bound targets include: (i) dormancy and (ii) increased lag time
before replication if antibiotics only act on bacteria when they
are actively replicating (Balaban et al. 2004; Lewis 2007; Fridman
et al. 2014).

Moreover, as the model only describes heterogeneity in sus-
ceptibility to the killing agent and/or the number of bound tar-
gets subpopulation, the model can also be applied to immune-
system mediated killing: AMPs, antibodies (Magnus and Regoes
2010), heterogeneity in the elimination of bacterial colonies by
the immune system (Bumann 2015) or the elimination of cancer
cells (Spencer et al. 2009).

Our model is applicable when the bacterial population con-
stantly declines, either because the antimicrobial concentra-
tions are constantly above MIC or because the action of an
antibiotic together with e.g. the immune system eliminates bac-
teria. Different types of models have to be employed in order
to be able to investigate the effects of multiple-doses that are
spaced far out or the effects of nonadherence. Furthermore, in
our theoretical work we have only demonstrated how to work
with unimodal distributions of persistence mechanisms. How-
ever, the application of our framework to skewed and not clearly
unimodal experimental data demonstrates that it can be easily
used to describe bi- or multi-modal distributions as well.

In summary, our approach allows the comparison and com-
bination of multiple mechanisms within the same model that
allows us to eliminate the inconsistencies when comparing
different mechanisms, especially when it comes to fittingmath-
ematical models describing different mechanisms of persis-
tence to experimental or clinical data in different frameworks.
Our work presents a simple and tractable way for estimat-
ing the effects of heterogeneities in bacterial populations, how
they may result in persistent behavior, and how much they can
increase the time until all subpopulations are eliminated. Ulti-
mately, such models may aid decision making when it is safe to
stop antibiotics without risking relapse due to remaining bacte-
ria below detection limit.

SUPPLEMENTARY DATA
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ACKNOWLEDGEMENTS
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