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Abstract

significant challenge.

biological system.

Background: Comprehensive analyzing multi-omics biological data in different conditions is important for
understanding biological mechanism in system level. Multiple or multi-layer network model gives us a new insight
into simultaneously analyzing these data, for instance, to identify conserved functional modules in multiple
biological networks. However, because of the larger scale and more complicated structure of multiple networks
than single network, how to accurate and efficient detect conserved functional biological modules remains a

Results: Here, we propose an efficient method, named ConMod, to discover conserved functional modules in
multiple biological networks. We introduce two features to characterize multiple networks, thus all networks are
compressed into two feature matrices. The module detection is only performed in the feature matrices by using
multi-view non-negative matrix factorization (NMF), which is independent of the number of input networks.
Experimental results on both synthetic and real biological networks demonstrate that our method is promising in
identifying conserved modules in multiple networks since it improves the accuracy and efficiency comparing with
state-of-the-art methods. Furthermore, applying ConMod to co-expression networks of different cancers, we find
cancer shared gene modules, the majority of which have significantly functional implications, such as ribosome
biogenesis and immune response. In addition, analyzing on brain tissue-specific protein interaction networks, we
detect conserved modules related to nervous system development, mRNA processing, etc.

Conclusions: ConMod facilitates finding conserved modules in any number of networks with a low time and space
complexity, thereby serve as a valuable tool for inference shared traits and biological functions of multiple

Keywords: Features, Multiple biological networks, Conserved modules, Matrix factorization

Background

Recent  high-throughput experimental techniques
brought a large number of multi-omics data (e.g., DNA
sequence data, mRNA, miRNA, methylation, copy num-
ber variation, etc.) in different conditions (e.g., tissue
types and disease states). Comprehensive analysis of
these multiple biological data is non-trivial for more
profound understanding of the whole biological system
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[1]. As a promising tool for integrative analyzing
large-scale biological data, network-based approach is
successful in discovering biological meaning patterns.
However, most of the network-based works only concern
single biological data that is insufficient to simultan-
eously analyze multi-omics or multiple conditions data
and hinder us from capturing comprehensive informa-
tion on total system. In order to settle this issue, more
complex models, namely multiple networks or
multi-layer network models [2, 3], have been introduced.
The multiple networks, which can be created by
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incorporating multiple types of connection and consti-
tuting the environment to describe systems intercon-
nected through different categories of connections, bring
us a new insight into biological mechanism and medi-
cine research in a comprehensive level [4, 5].

One significant task in multiple biological networks is
to detect conserved functional modules, for the reason
that the biological networks across different type of tis-
sues, cancers or disease states have many shared pat-
terns or underlying common cellular functional
organizations, which can be represented as module
structures. For example, cancers of disparate organs have
many shared features [6], including rapid cell prolifera-
tion, the ability to migrate and avoiding immune de-
struction, etc. [7]. Understanding these common traits
by identifying the underlying conserved function mod-
ules are key to gaining insight into cancer physiology
and ultimately to prevent cancer. Moreover, as another
example, identifying common features in biological net-
works across distant species can reveal evolvement rela-
tions and fundamental principles [8, 9].

Despite the great importance of extracting conserved
modules in multiple biological networks, it is highly dif-
ficult to develop an effective and efficient algorithm be-
cause of two reasons. First, it is hard to characterize
features of conserved modules due to the more compli-
cated structure of multiple networks. Second, multiple
networks pose a great challenge for designing efficient
algorithms, since multiple networks have larger scale
than single network and how to reduce time and space
complexity is need to address. To handle these issues, a
simple strategy is to summarize a collection of heteroge-
neous data into a single integrated network and use
graph-based clustering on it. However, this strategy can
bring about the substantial information loss. Recent
years, researches developed methods on module discov-
ery in multiple networks, such as a heuristic algorithm
to mine frequent coherent dense subgraphs on un-
weighted networks [10], tensor based optimization algo-
rithm [11], generalized singular decomposition based
method [12], and modularity based optimization algo-
rithm [9]. However, these methods are either limited to
cluster on unweighted networks [10] or take a lot of
time and memory for running [9, 11, 12]. Almost at the
same time, the multi-view clustering approaches from
machine learning field were also put forward to cluster
for integrated data [13-16]. In these approaches, each
data object is comprised of different representations
(views) that provide compatible and complementary in-
formation for better clustering. However, most of these
multi-view clustering methods assume that all views
consist of the same set of data objects, which is not suit-
able to some circumstance. Moreover, these methods al-
ways separately analyze the structure of each network
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and concatenate the results, which greatly increase the
dimensionality of the space.

In this paper, we develop an approach, called ConMod,
to discover Conserved functional Modules in multiple bio-
logical networks. Instead of mining each biological net-
work individually, ConMod describes the networks as two
feature matrices and performs a multi-view clustering ap-
proach based on non-negative matrix factorization (NMF)
in these two matrices only. Our main contributions of the
proposed approach are summarized as follows:

e We introduce two features to measure the strength
and distribution of each edges in multiple networks.
Thus, all of the multiple networks are compressed
into two feature matrices, which is the basis of
detecting conserved module with a low time and
space complexity.

e We adopt a multi-view symmetric NMF model based
on our proposed feature matrices, which help us find
consensus factors with effectiveness and efficiency.

e Our method can discover conserved modules
without denoting the number of networks that a
module appears. If the overall signal in the
consensus factors is detected, a conserved module
will be found. The results show that our method can
accurate find modules that appear in more than half
of all networks.

To show substantial improvements over the
state-of-the-art methods, we demonstrate ConMod’s ac-
curacy and efficiency to discover conserved modules from
multiple networks in two types of synthetic datasets.
Moreover, to verify the biological meaning of conserved
modules, we apply ConMod in two distinct biological
multiple networks: (1) 33 cancer type-specific gene
co-expression networks and (2) 15 brain-specific protein
interaction networks. Both two tasks demonstrate the po-
tential to effectively identify conserved modules with sig-
nificantly functional implications, such as DNA
replication, ribosomal protein biosynthesis and immune
response in 33 cancers’ co-expression networks and ner-
vous system development in 15 brain PPI networks, re-
spectively. ConMod can be used to simultaneously
analyze any number of networks and straightforwardly ap-
plied to other types of networks in addition to biology.

Methods

Overview

The multiple networks, or multi-layer network, with M
layers can be represented by the set G = {GV,G?, ...
G™M1Y, whose element G = (V, E®, W) (t=1,2, ..., M)
is an undirected network under consideration with ver-
tex set V¥ and edge set E”, where N,=|V!| denotes
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the number of nodes in the network layer #. G is repre-
sented by an N, x N, adjacency matrix W, where each
¢
and j in the network layer ¢. N = |u,V*?] is the total num-
ber of nodes in multiple networks.

The goal of our method ConMod is to identify the
conserved functional modules, which exist in as many
of the biological networks as possible. Figure 1 shows
the flowchart of our method for detecting conserved
functional modules. The basic framework of ConMod
involves three steps. First, we transform multiple net-
works into two feature matrices, the connection
strength matrix and the participation coefficient matrix,
which respectively describes the overall edge weight
and the degree of participation of each edge in multiple
networks. Second, we jointly factorize the two feature
matrices into consensus factors by using multi-view
NME. Finally, we adopt a soft node selection procedure
from the consensus factors to assign the module mem-
bers and then we refine the candidate modules for
obtaining more accurate results. We implemented Con-
Mod in MATLAB R2015a as a user-friendly package
(https://github.com/WPZgithub/ConMod).

element w;;’ is the weight of the edge between nodes i
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Transforming multiple networks into two feature matrices
For multiple networks, conserved modules not only have
densely topological structure in each network, but also
broadly distribute in most networks. Based on this point,
we propose two features to describe a conserved functional
module. The first, connection strength, is used for charac-
terizing whether a pair of nodes connect closely in multiple
networks. The second, participation coefficient, is used for
describing whether an edge is uniformly distributed across
all networks. In this way, the conserved modules detection
is equivalent to find node sets that consist of the edges with
high connection strength and participation coefficient.

The connection strength of an edge between nodes i

) is defined as the average weight

and j, denoted as x;

over all networks:

(1)

In addition, we define the participation coefficient of

p

an edge, denoted as x; ) as following:

Transform multiple
networks into two
feature matrices

Feature 1
Connection strength matrix

Multi-view NMF for
feature matrices
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Fig. 1 lllustration of the ConMod approach. ConMod mainly contains three steps: (1) Transforming multiple networks into two feature matrices, (2) jointly
factorizing the two feature matrices into consensus factors by using multi-view NMF, (3) a soft node selection procedure from the consensus factors
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where o; = thg). The definition of the participation
coefficient is first introduced by Guimera and Amaral
[17, 18] to quantify the participation of a node to the dif-
ferent communities of a network. In our paper, we
change it to measure edges and adapt it to multiple net-
works. Here, the participation coefficient measures
whether an edge uniformly distributed among the M
(»)
i
the more uniformly distributed the edge will be in the
multiple networks.

Both values of the connection strength and the partici-
pation coefficient are in [0, 1]. These two features can be
used for both weighted and unweighted networks. How-
ever, for weighted networks, direct calculation of the
participation coefficient for each weighted edge may not
be appropriate, since the huge quantity of weakly con-
nected edges may have very high value of participation

networks. The larger the value of the coefficient x;~ is,

coefficient. For example, if WE;) =0.01forallzt=1,2, -,

M, the participation coefficient xff’) =1, but the edges
between nodes i and j are most likely to be neglected for
module discovery due to the very low edge weight. Even

though the connection strength xﬁj” is small enough, the
high value of participation coefficient will increase noise
for conserved module detection. To handle this issue,
we take the logistic transform of the input data and neg-
lect the edges with low transformed values. Specifically,
for weighted networks, the original adjacency matrix of
each network is first transformed using a logistic
function L(w;) = 1/(1 + exp(cw;; + d)), such that for w;e
[0,0.3], L(w;) =0, and for w;e[0.6,1],L(w;)~1. This
implies that L(0) needs to be close to 0. So we first
normalize the adjacent matrix such that each element of
the matrix is in [0, 1] and then we set L(0) = 0.0001, from
which we obtain d =10g(9999) and ¢ = - 210g(9999).

Computing consensus factors using multi-view symmetric
NMF based on feature matrices

From now on, the relationships among N nodes are repre-
sented by 2-view representations, X and X%). Now we
cluster across the two views simultaneously to find a com-
mon latent structure. Among the multi-view clustering al-
gorithms, NMF based methods ([14, 19, 20] have
demonstrated strong vitality and efficiency. Based on the
two feature matrices we use a multi-view NMF model [14]
to find a common coefficient (or basis) matrix. Here, the
original multi-view NMF model is adjusted for handling
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our symmetric feature matrices. Thus, we have the follow-
ing objective function of the multi-view symmetric NMEF:

min F = (Z

HY H. =

2
XV-H® <H<V>>TH +> AVIIH“)—HcI{zF)
F

v=sp

st. H”>0,H.>0

(3)

where |-l denotes Frobenius norm and A, is the param-
eter to balance the relative weight of different views. The
multi-view symmetric NMF factorize each view of sym-
metric data matrix X to a low-rank matrix representa-
tion H("), which are close to the consensus matrix H.

To solve this optimization problem, we use the multi-
plicative update rule to minimize the objection function.
Specifically, given a desired rank &, the algorithm iterates
the following two steps until convergence. First, we fix
H. and minimize objective function over H" for each
view v. H" is updated at each step by:

(1) (1) (2XVHY + L He),
ik ik <2H<v> (HO) HY + AVHM)

v=s,p.
ik

(4)

Second, fixing H" for each v, we take the derivative of
the objective F over H, and obtain an exact solution:

Z AVHM

v=sp

H. = >0. (5)

v=sp

Since the objective function is non-convex, one should
perform many repetitions and choose the minimizer of
the objective function as the final solution.

Selecting nodes from the consensus factors

Once the consensus matrix H, is obtained, the clus-
ter label of data point i could be computed as arg-
max(H); . However, it will be meaningless to use
this hard clustering process in most biological net-
works. In gene networks, for instance, some genes
are multifunctional, such as the broadly expressed
transcription factors and the crosstalk of gene path-
ways. Besides, some genes are inactive in any module
in some specific conditions. Therefore, we adopt a
soft node selection procedure to obtain modules with
biological meaning. The nodes are selected if they
have relatively large absolute values of the weighted
factors H.. Specifically, we calculated the z-score for
each column of H, by.



Wang et al. BMC Bioinformatics (2018) 19:394

Zij = 7‘/, (6)

where and

ﬂ(l—[c),]. = ﬁZ (HC)ij
((He)j=#m,) )?. We assign node i as a member of a
o)./

module, if z; > 6. The threshold 8 is typically in [2, 5] for
most cases such that the selected nodes have significant

signals in the consensus factors.
|CnCy|
min{]C,[,]C,[}

and the modules whose sizes are smaller than five are re-
moved, where C, is the members set of module x.

2 1
T4, = N1 2=

J

Finally, two modules with > 0.5 are merged

Complexity analysis

We first discuss the time complexity of our method. If
the input networks are in the form of full matrix, the
time complexity of computing two feature matrices is
constant. While if the input networks are in the form of
sparse matrix, its time complexity is O(Me), where e is
the average number of edges of each network. Moreover,
the time cost of the multi-view NMF procedure is
O(IkN?), where [ is the number of iterations. The time
complexity of selecting nodes from consensus factors is
O(kN). Therefore, the overall time cost is O(Me) +
O(IkN?) + O(kN). Since N-1<e<N(N-1)/2, then the
total time complexity of ConMod is O((lk + M/2)N?) in
the worst case and O(/kN?) in the best case, demonstrat-
ing the efficiency of our method.

Then we discuss the space complexity. Multiple net-
works G = {G(l), G?, ..., G(M)} requires space O(N>M).
However, our method compress the multiple networks
into two feature matrices, and use multi-view NMF for
conserved module detection, whose space complexity is
O(2N?) and O(2NKk), respectively. Thus, the overall space
complexity of ConMod is O(2N?), which has nothing to
do with the number of networks, demonstrating the effi-
ciency of our approach on space complexity.

Module validation

We use a permutation test to assess the significance of
functional modules across multiple networks. This al-
lows identifying the specific conditions where each mod-
ule is detected. Here, we use the cluster quality [12] as a
measurement to calculated a p-value indicating the sig-
nificance of one module in each network. The cluster
quality is defined as:

__ the density within the module in GY
~ the density outside the module in G®)

(7)

q;

The p-value is computed as the proportion of the ran-
dom modules with the cluster quality larger than g,.
Raw p-values are corrected by using the method of
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Benjamin-Hochberg [21] and the corrected p-values
below 0.01 are regarded as significant existing of a mod-
ule in a specific network.

Results and discussion

In this section, we first present simulation studies to dem-
onstrate the performance of ConMod to detect conserved
modules in synthetic multiple networks. We compare
ConMod with four state-of-the-art methods, including
NetsTensor [11], SC-ML [16], multi-view pairwise
co-regularized spectral clustering (pairwiseCRSC) [15]
and multi-view centroid-based co-regularized spectral
clustering (centroidCRSC) [15]. NetsTensor introduced a
tensor-based computational framework to identify recur-
rent heavy subgraphs in multiple biological networks.
SC-ML modeled each graph layer as a subspace on a
Grassmann manifold and then efficiently merge these
subspaces find a unified clustering of the vertices.
PairwiseCRSC and centroidCRSC employed a spectral
clustering-based co-regularization framework for cluster-
ing across multiple views. Furthermore, to test whether
ConMod is effective for finding conserved modules with
meaningful biological functions, we apply ConMod to two
sets of real biological networks, a set of 33 cancer
type-specific gene co-expression networks and a set of hu-
man 15 brain tissue-specific protein interaction networks.

Results on synthetic networks

Simulation data

To test the performance, we first evaluate our method
using synthetic networks. We generate two sets of syn-
thetic networks that contain different types of conserved
modules: (1) conserved modules are common to a given
set of networks and (2) conserved modules are present
only in a subset of networks and they are the overlap-
ping parts of specific modules across different networks.

We consider the first type of synthetic multiple net-
works with M=30 networks and N=500 nodes. We gen-
erate five modules with 80 nodes in each module and
these modules are randomly assigned into 25, 20, 15, 10
and 5 networks, respectively. In this way, each network
contains up to five modules. In each network, we con-
nect nodes with a possibility of a (0 <a < 1) inside each
module and the nodes belonging to different modules
are connected with a possibility of 5 (0 < <a). An ex-
ample is shown in Fig. 2a. In order to introduce edge
weights, we embed Gaussian noise on the networks (See
more details in Additional file 1).

For the second type of synthetic dataset, we consider
multiple networks with M=15 networks and N=500
nodes. In each network, a module consists of two parts,
a common part, in which the nodes are common to a
set of networks, and a specific part, in which nodes
present only in its individual network. The common
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Fig. 2 Performance in terms of TPR, FPR and MCC with different a. a The conserved modules are common to a given set of networks. b The
conserved modules are the overlapping parts of specific modules across different networks

parts of every module are regarded as conserved mod-
ules in this case. We set two conserved modules of this
type for this synthetic dataset. A conserved module has
50 nodes and another has 40 nodes. An example is
shown in Fig. 2b. Other procedures for synthetic net-
works construction is the same as mentioned above (See
more details in Additional file 1).

In this study, we experiment on synthetic networks
with ¢ =0.1, 0.3, 0.5 and 0.7 and /3 = 0.05. Lower value of
a means modules are fuzzier and harder to detect.

Evaluation measures

We use true positive rate (TPR), false positive rate (FPR)
and Matthew’s correlation coefficient (MCC) [22] to quan-
tify the performance of methods, which are defined as:

P
TPR = ————— (8)
TP + FN
FP
FPR = ——— 9
FP+ TN )
MCC — TP x TN-FP x FN 7
/(TP + FP)(TP + FN)(IN + FP)(IN + FN)
(10)

where TP is the number of true positives, TN is the
number of true negatives, FP is the number of false
positives and EN is the number of false negatives. A TP
decision assigns two related nodes to the same module.
A TN decision assigns two unrelated nodes to different
modules. An FP decision assigns two unrelated nodes
to the same module. An FN decision assigns two re-
lated nodes to different modules. MCC returns a value
in [-1, 1]. A value of + 1 represents a perfect prediction,

0 is no better than random prediction and - 1 indicates
total disagreement between prediction and observation.

Performance
We generate synthetic datasets with different value of a.
For our method, we use the parameters A, = 0.01, 1, = 0.05
and 0 = 2. The effects of parameters will be discussed later
in more detail. All experiments are repeated 50 times on
random generated datasets and the average results are re-
ported for consistency. Figure 2 shows the examples of
synthetic multiple networks with different type of con-
served modules and the accuracy of each method in terms
of TPR, FPR and MCC. ConMod outperforms the other
methods in various value of @ whenever the conserved
modules are common to a given set of networks (Fig. 2a)
or are the overlapping parts of specific modules across dif-
ferent networks (Fig. 2b). In particular, ConMod performs
the best when the module structures are fuzzier (a = 0.1).
Next, we evaluate the efficiency of ConMod. We con-
duct the experiments on a 2.10GHz desktop with 128GB
memory. Figure 3a shows the running time when vary-
ing the number of nodes and keeping the number of
networks as 50. Figure 3b shows the running time when
varying the number of networks and keeping each net-
work size as 10,000. We do not compare with NetsTen-
sor and omit the results of SC-ML, PairwiseCSRC and
CentroidCSRC when the number of nodes is larger than
10,000 because of their high memory and running time
cost. As can be seen from Fig. 3, the running time of
ConMod is very low and is almost not affected by the
number of networks, especially in large scale multiple
networks. Additional figures regarding the other number
of networks and nodes are put in the additional file
(Additional file 1: Figure S1 and S2).
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Conserved functional modules in cancer type-specific
gene co-expression networks

In this section, we apply ConMod to multiple large-scale
gene co-expression networks of 33 cancers. We aim at
finding common signatures and biological functions in
different cancers by identifying conserved functional
modules. Such conserved gene co-expression modules
can help reveal the gene expression regulatory basis for
common traits in cancer [23].

We download the mRNA-sequencing data of all avail-
able 33 cancer types from The Cancer Genome Atlas
(TCGA) database (https://portal.gdc.cancer.gov/). For
each cancer type, we only select samples labeled as
tumor. The Fragments Per Kilobase Million (FPKM) of
each gene is transformed by log,(FPKM + 1). For each
cancer type, coding genes with FPKM > 1 in more than
50% of all samples are selected. Then the intersection of
expressed genes in all cancer types are used for con-
structing cancer type-specific gene co-expression net-
works based on Pearson’s correlation coefficient.
Meaningful relations are selected based on first-order
partial correlation and information theory by PCIT R
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package [24]. Finally, we obtain a set of 33 cancer
type-specific gene co-expression networks with 7,526
genes for each network.

We compare the performance of ConMod with
NetsTensor [11], SC-ML [16], pairwiseCRSC [15] and
centroidCRSC [15] by assessing the biological relevance
of identified conserved functional modules. Here, we
perform systematic enrichment analysis for genes of
each module using Gene Ontology (GO) biological
process [25, 26]. We use precision, recall and f-score as
the evaluation measures in this case. Precision is defined
as the fraction of predicted modules that significantly
overlap with reference gene sets. Recall is defined as the
fraction of reference gene sets that significantly overlaps
with predicted modules. F-score is defined as the har-
monic mean of precision and recall. We calculate statis-
tical significance p-value using Fisher’s exact test and
raw p-values were corrected using the method of
Benjamin-Hochberg [21].

Figure 4 shows the performance of ConMod and other
methods in terms of precision, recall and f-score w.r.t. dif-
ferent number of candidate modules k. We clearly see that
ConMod is more stable than other methods and performs
the best in most cases. Besides, we can see that the f-score
is high enough when k=150 and has no significant in-
crease after k=150, which can provide a reference for the
selection of k. Note that NetsTensor does not need to spe-
cify the number of modules in advance, however it does
not perform well because of the low node coverage and
high overlap between discovered modules.

Next, after parameter optimizations, we set k=150 and
0=3.5 and obtain 150 conserved functional modules
covering 7,182 genes. The average module size is 113.2.
We evaluated the resulting gene modules using multiple
gold-standard gene set annotations from MsigDB [27] of
GSEA [28], including the biological process category of
Gene Ontology (GO) [25, 26], Canonical pathways (CP),
Biocarta [29], KEGG [30] and REACTOME [31].
ConMod achieves higher f-scores than other four
methods using all reference sets (Fig. 5a). We find that
86 (57%) and 60 (40%) of conserved modules are signifi-
cantly enriched in at least one GO biological process
and KEGG pathway (BH-adjusted p-value< 0.05). We
present the top five significant GO biological processes
and KEGG pathways in Fig. 5¢ and d respectively. We
observe that these biological functions are related to
ribosome protein, energy metabolism, cell cycle and im-
mune response. Most of these functions are necessary to
maintain a cell’s life. These modules, acting as house-
keeping roles, universally expressed in different tissues.
However, cancers require a great deal of DNA replica-
tion and protein synthesis. Thus, most of the conserved
modules and their functions are also closely associated
with cancer. In particular, two significant GO biological
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processes, antigen processing and presentation and
interferon-gamma-mediated signaling pathway, are both
essential for immune response, which is often observed
to be inhibited in the tumor microenvironment [7, 32].
In addition, we test the relationship between the func-
tional modules and cancer driver genes [33, 34]. By

following a previous work [35], we utilized 2,372 genes
from the Network of Cancer Genes (NCG) [36] as
benchmarking cancer genes, including 711 known can-
cer genes from the Cancer Gene Census (CGC) [37].
We use Fisher’s exact test to validate whether the mod-
ules are significantly associated with benchmark cancer
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genes (BH-adjusted p-value<0.05) and find that our
method can get more modules with significantly enriched
cancer driver genes than other methods (Additional file 1:
Figure S3). This result indicates that the conserved func-
tional modules identified by our method are able to reveal
the characteristics of cancer.

We compute the average value of connection strength
and participation coefficient respectively for each con-
served module, and we observe that the two features are
highly correlated (Pearson correlation coefficient r=0.83)
(Fig. 5b). It is easily understood that a dense module
conserved in more networks tend to has larger connec-
tion strength. After module validation, we can know
how the conserved modules distribute in multiple net-
works (Fig. 5e). We consider that a module exists in a
network if its Benjamin-Hochberg adjusted p-value< 0.01
using a permutation test. Modules that do not exist in
more than half of all networks are removed. From Fig. 5e
we observe that about 25% of identified modules are com-
mon in all cancers and almost all modules are conserved
in more than half of these cancers. Furthermore, similar
cancers can be naturally clustered together only based on
the distribution of identified modules (see the hierarchical
clustering for cancers in Fig. 5e), such as SKCM (Skin
Cutaneous Melanoma) and UVM (Uveal Melanoma);
and THYM (Thymoma) and DLBC (Lymphoid Neo-
plasm Diffuse Large B-cell Lymphoma). Actually,
SKCM and UVM are two types of melanoma, THYM
and DLBC are both originated in the lymphatic system
that participates in immune response.

Here, we take module 27 and module 111 as examples.
Module 27, which has the largest connection strength
and participation coefficient (Fig. 5b), significant exists
in all cancers (BH-adjusted p-value < 0.01, permutation
test). This module contains 112 genes, among which 77
genes encode ribosomal protein (RP). RPs, which partici-
pate in ribosome composition, is widely distributed
among various tissues. Ribosomes have the functions of
DNA repair, cell development regulation and cell differ-
entiation. In addition to their essential housekeeping
roles in ribosome biogenesis and protein production in
all cells, RPs were reported to change in the rate of ribo-
some biogenesis that regulate tumorigenesis [38—40]. In
order to investigate the alterations gene expression pat-
terns of this RP related gene module in different cancers,
we compute the log2 fold-change for significantly differ-
entially expressed genes in module 27 (Fig. 6b). 17 can-
cers with at least five normal samples are selected for
this experiment. For each cancer, we use DESeq2 [41] to
detect differentially expressed genes relative to normal
samples. As shown in Fig. 6b, most genes of module 27
are significantly up-regulated in more than half cancers,
especially in COAD (Colon Adenocarcinoma), LIHC
(Liver Hepatocellular Carcinoma), PRAD (Portal
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Prostate adenocarcinoma) and three kinds of kidney
cancers (KIRC (Kidney renal clear cell carcinoma), KIRP
(Kidney renal papillary cell carcinoma) and KICH (Kid-
ney Chromophobe)). Even though cancer cells require
continuous ribosome biogenesis and protein translation
to maintain their high proliferation rate [39], it is re-
ported that many RP genes have been found overex-
pressed in cancer and their mutations have been
detected in the genome of cancer cells [40, 42], for ex-
ample, in prostate cancer [43, 44] and in colorectal can-
cer [45, 46]. Hence, targeting ribosome biogenesis of
tumor cells could be an effective strategy [40].

Module 111 consist of 137 genes. Genes in this mod-
ule mainly involve in antigen processing and neutrophil,
leukocyte or T cell related processes, which are all
closely related with cancers due to their important roles
in immune system (Fig. 6¢). This module, however, does
not exist in THYM and DLBC (Fig. 5e). Actually, the
module mainly splits into two dense sub-modules in
THYM and DLBC respectively, but maintains a
complete module in the rest cancers, e.g. in LUAD
(Lung Adenocarcinoma) (Fig. 6d). In particular, module
111 in DLBC consist of a large sub-module and a small
sub-module. The small part comprise 10 genes (CD74,
HLA-DQB1, HLA-DRB1, HLA-DQA1l, HLA-DRB5,
HLA-DMA, HLA-DRA, HLA-DPB1, HLA-DPAI,
HLA-DMB), all of which are MHC (major histocompati-
bility complex) class II genes in HLA (human leucocyte
antigen). The separation of the two sub-modules results
from the weak correlation in expression between the
MHC class II genes in the small sub-module and other
immune-related genes in the large sub-module, suggest-
ing a disruption of the co-operation of these genes to
exert immunity responses. Actually, DLBC is a cancer of
B cells. Cancerous B cells can not normally produce
MHC class II molecules, which are exported to B cell’s
surface and interact with their intended T cells to initiate
immune response [47].

Conserved function modules in human brain tissue-
specific interaction networks

The human brain is a complex system organized by
structural and functional relationships between its func-
tional regions, such as the thalamus, brainstem and
other brain tissues. Recently, multiple brain networks
and their applications in neuroscience have successfully
uncovered brain-associated features [48, 49]. We now
aim to identify conserved protein modules across human
tissue-specific networks, which may reveal important
function units for brain activity.

We run ConMod on a set of 15 human brain
tissue-specific protein interaction networks [50] to find
conserved protein modules. There are 2,721 proteins in
total. It should be noted that, different from 33 cancer
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type-specific networks in the above section, all networks
of this dataset are unweighted and they have different
number of nodes.

We compare ConMod with SC-ML and NetsTensor
on this data because other methods are not suitable for
the dataset in which the set of data objects is different in
each network. Figure 7 shows the performance of
ConMod and other methods in terms of precision, recall
and f-score w.r.t. different number of candidate modules
k. As is shown, ConMod outperforms SC-ML and Net-
sTensor in precision for all settings of k while maintain-
ing comparable recall values. As an average, ConMod
has a better performance in f-score.

After parameter optimizations, we set k=120 and 0 =4
and obtained 114 conserved functional modules cover-
ing 1,414 genes. The average module size is 23.2. We
evaluated these modules using multiple gold-standard
gene set annotations as the same procedure mentioned
in the above section. As shown in Fig. 8a, ConMod
achieves higher f-score when evaluated using all refer-
ence sets. The identified conserved modules mainly re-
late to nervous system development, mRNA processing,
etc. (Additional file 1: Figure S4). Here, we take module
7 as an example (Fig. 8c). Module 7, which has the lar-
gest connection strength and participation coefficient in
this dataset (Fig. 8b), consists of seven proteins with a
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J




Wang et al. BMC Bioinformatics (2018) 19:394

Page 11 of 13

a =ConMod b
] =SC-ML
o = NetsTensor
o
[S)
<
o <
=}
s
N
<}
Qe
© GO CcpP BIOCARTA KEGG REACTOME

Avg. Participation
Coefficient

Fig. 8 lllustration of results on 15 brain tissue-specific interaction networks. a F-score of three methods. Gene modules found by each method
are evaluated by multiple gold-standard gene set annotations. b The scatter plot for the average value of connection strength and participation
coefficient of each module. ¢ A case of identified conserved module that are significant related with glial cell development (FDR =3.94E-11)

< Module 7
000 IF2B4

Module_7 c

=

Nl
% /e
EGFR-EIF2B2

OO 0.2 04 06 08

Avg. Connection Strength

significant number (6) of proteins (EIF2B1, EIF2B2,
EIF2B3, EIF2B4, EIF2B5 and EGFR) for glial cell devel-
opment (BH-adjusted p-value =3.94E-11). Leegwater et
al. [51] reported that the gene mutations of the five sub-
unit proteins (EIF2B1, EIF2B2, EIF2B3, EIF2B4 and
EIF2B5) of EIF2B complex can lead to white matter ab-
normalities, a serious hereditary neurodegenerative dis-
ease. Another important gene is EGFR, which is widely
distributed in glial cells of mammalian brain. EGFR acti-
vation is essential for the proliferation of multipotent
neural precursors, as well as the survival, migration, and
differentiation of the immature daughter cells [52].

Parameter discussion

There are four parameters in our ConMod method: the
regularization parameters A, and A, in multi-view NMF,
the number of modules k and the threshold 8 for nodes
selection. We first discuss the influence of parameters A
and A,. Following a similar approach as proposed in Ref.
[14], we set A, to be the same for convenience, that is A,
=As=A,, and varying it from 107 to 1 on two synthetic
datasets with « =0.1 and a = 0.3. The optimal values ap-
pear when A, is around 0.01 and the accuracy is rela-
tively stable when 1, < 0.1 (Additional file 1: Figure S5).
We aim at finding conserved modules, thus we let the
participation coefficient has a larger effect by denoting
As=0.01 and A, = 0.05 for all the experiments.

The selection of the parameter k has a significant ef-
fect on the results. While the choice of k is often
data-dependent and is a long-standing open problem.
The lower k of the reduced space is a key parameter for
this study. For the synthetic datasets, we set k as the real
number of modules. However, for real biological datasets
that the real number of modules is unknown, we select a
proper k by assessing the enrichment rate of gene mod-
ules with respect to GO biological process. A low k with
a relative high f-score is selected for each datasets. We
have shown in the experiments that we choose k=150
for multiple co-expression networks of cancers (Fig. 4;
Additional file 1: Figure S6) and k=120 for multiple

brain-specific protein interaction networks
Additional file 1: Figure S7).

The parameter 6 determines the size of a module. A
larger 6 means a small size of module, but a more sig-
nificant signal in the consensus factors. 0 is generally lar-
ger than 2, because the corresponding p-value is smaller
than 0.05. In our experiments we choose 6 =2 for all the
synthetic datasets, 8 = 3.5 for multiple co-expression net-
works of cancers (Additional file 1: Figure S6) and 0 =4
for multiple brain-specific protein interaction networks
(Additional file 1: Figure S7). The reason for selection
these values of parameter 6 is that we try to keep small
size of modules and a high coverage of total number of
nodes while ensure a high accuracy.

(Fig. 7;

Conclusion

In this study, we present ConMod, a method for identi-
fying conserved functional modules in multiple bio-
logical networks. Experiments on two types of simulated
data show that ConMod has competitive performance in
accuracy and efficiency when compared with four
state-of-the-art methods. Effectiveness of ConMod on
real biological networks is further demonstrated using
cancer type-specific gene co-expression networks and
brain tissue-specific protein interaction networks. The
major advantage of our approach is that the proposed
two features, connection strength and participation coef-
ficient, give a new insight into characterizing the struc-
ture of multiple networks, which compress multiple
networks without a lot of information loss. Furthermore,
ConMod is very flexible for identifying conserved mod-
ules in multiple networks, because it can be applied to a
set of any number of unweighted and weighted net-
works, and it can also be easily extended to other types
of networks outside biology.

Besides the importance of conserved modules in bio-
logical networks, specific modules also have great signifi-
cance for better understanding biological mechanism
and even for precision medicine. Although the intro-
duced two features are helpful for mining conserved
modules, they might not fully characterize the module
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structures in multiple networks. Thus, it is crucial to de-
sign an algorithm to detect conserved modules and
condition-specific modules simultaneously. We hope
that future work on integrating more types of biological
networks will provide greater insight into pathway struc-
tures and highlight network-level dynamics underlying
biological responses.

Additional file

Additional file 1: Supplement containing information on the multi-view
symmetric NMF method, the construction of synthetic networks and
figures about additional results. (PDF 336 kb)
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