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ABSTRACT Torque teno virus (TTV) has been reported in a wide range of mam-
mals. In this study, we sequenced and analyzed the complete genome of a genetic
variant of a rodent TTV, RoTTV3-HMU1 (Hainan Medical University 1). The virus was
found in a rat (Rattus norvegicus) in a residential area of Hainan Island, China.

Torque teno virus (TTV) is a nonenveloped single-stranded DNA virus (1). TTV is
found widely distributed throughout the world and infects an extensive range of

mammals (1–7). The possible role of TTV in disease has not been fully elucidated.
Rodent TTV (RoTTV) was initially identified in the United Kingdom in populations of wild
rodents in 2014, and the genotypes are RoTTV1 and RoTTV2 (8). The same research
team further detected RoTTV2 in commonly used laboratory rats (9). Recently, a novel
genotype of RoTTV, RoTTV3, was found in murine rodents and house shrews in 6
regions of 4 provinces in China (10).

In this study, a genetic variant of RoTTV3, RoTTV3-HMU1 (Hainan Medical University
1), was identified in a rat (Rattus norvegicus) captured in a residential area of Haikou
City, Hainan Province, southern China. Viral DNA was extracted from the liver tissue
with the QIAamp MinElute virus spin kit (Qiagen), and sequence-independent ampli-
fication of viral nucleic acids was performed as described previously (11). The amplicons
in the 250 to 500-bp range were purified with a gel extraction kit (Tiangen). Five
hundred nanograms of DNA were fragmented with Covaris S2 shearing and subjected
to high-throughput paired-end 2 � 100-bp sequencing on an Illumina HiSeq 2000
instrument. After cleaning with Trimmomatic using standard parameters, reads were de
novo assembled with Trinity version 2.0.6 (12, 13, 14). The contigs were compared with
the NCBI nucleotide database, and 5 contigs (N50 � 361) were matched to RoTTV with
a coverage of 0.68. Primers were designed to cover the genome by PCR amplification
and Sanger sequencing. The genome was annotated with the NCBI ORFfinder and
FGENESV0 (15, 16). Phylogenetic analysis was implemented with the neighbor-joining
method in the MEGA6 software package (17).

The complete genome of RoTTV3-HMU1 is 2,570 nucleotides (nt) long with a G�C
content of 46.93%. The genomic organization of RoTTV3-HMU1 is consistent with that
of other RoTTVs, and the genome size and length of the open reading frames (ORFs)
showed close similarity to those of RoTTV3. RoTTV3-HMU1 encoded 3 unidirectional
overlapping ORFs. ORF1, ORF2, and ORF3 encoded proteins of 574, 79, and 98 amino
acids (aa), respectively. The genome of the RoTTV3-HMU1 virus was most closely related
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to RN_2_Se15 (GenBank accession no. KM668486), with an identity of 95% at nucleotide
level. They were also closely related at their ORF encoded proteins (ORF1, 97%; ORF2,
96%; ORF3, 89%). Phylogenetic analysis based on both ORF1 and the total genome
sequence placed RoTTV3-HMU1 in the clad RoTTV3 of the RoTTV.

Hainan Island is isolated from mainland China by sea, but the same RoTTV genotype
was identified on both the island and the mainland. The detection of RoTTV3-HMU1
may contribute to a better understanding of the origin and evolution of RoTTV.

Data availability. The genomic sequence of RoTTV3-HMU1 has been deposited in
GenBank under accession no. MF688246. This whole-genome shotgun project and the
assembly reads have been deposited in GenBank under the accession no. SRP158097
and SRR7700917, respectively.
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