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Abstract

Since the start of the still ongoing COVID-19 pandemic, there have been many model-
ing efforts to assess several issues of importance to public health. In this work, we review
the theory behind some important mathematical models that have been used to answer
questions raised by the development of the pandemic. We start revisiting the basic prop-
erties of simple Kermack-McKendrick type models. Then, we discuss extensions of such
models and important epidemiological quantities applied to investigate the role of hetero-
geneity in disease transmission e.g. mixing functions and superspreading events, the impact
of non-pharmaceutical interventions in the control of the pandemic, vaccine deployment,
herd-immunity, viral evolution and the possibility of vaccine escape. From the perspective of
mathematical epidemiology, we highlight the important properties, findings, and, of course,
deficiencies, that all these models have.

Keywords Mathematical modeling - COVID-19 - SARS-CoV-2 - R - Compartmental
epidemic models

Mathematics Subject Classification 92D25 - 92D30 - 65L05

1 Introduction

According to the World Health Organization (WHO), the COVID-19 pandemic has caused
a dramatic loss of human life and presents an unprecedented challenge to public health. The
pandemic has also disrupted the global economy, the food system, education, employment,
tourism, and several other aspects of life. In response to the COVID-19 crisis, the scientific
community has acted fast to better understand the epidemiological, biological, immuno-
logical, and virological aspects of the SARS-CoV-2. Mathematical models have played a
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significant role to support public health preparedness and response efforts against the ongoing
COVID-19 pandemic [2-6,19,21,23,30,32-34,39,50,55,68,84,86,88,89,91]. From the start of
the pandemic, modelers have attempted to forecast the spread of COVID-19 in terms of the
expected number of infections, deaths, hospital beds, intensive care units, and other health-
care resources. However, although models are useful in many ways, their predictions are
based on a set of hypotheses both mathematical and epidemiological for two complex evolv-
ing biological entities, populations of hosts and pathogens. Therefore, simulation models are
far from perfect and their forecasts, predictions, and scenarios should be taken cautiously
[29,93]. There is a group of models that have played a significant role in the COVID-19 epi-
demic. This group is the one of the so-called compartmental models, either deterministic or
stochastic, that subdivide a given human population into sets of individuals distinguished by
their disease status. So we can, for example, have susceptible, infected, recovered, immune
hosts where each of these classes can be further subdivided as necessary. In the COVID-19
pandemic it has been useful, for example, to consider several classes of infectious individu-
als as are confirmed, asymptomatic infected, symptomatically infected, isolated, and so on.
Infection occurs when an infectious individual enters into contact with a susceptible one
and pathogen transmission ensues. In infectious disease models, perhaps the most important
component is the one that describes this infection process, the so-called mixing function.
The mixing function introduces one of the basic properties of epidemic systems: heterogene-
ity. This heterogeneity is expressed in the different ages, tastes, activities, and other sexual,
behavioral, social, genetic, and physiological traits that define an individual and a group of
individuals in a population. We do not mix randomly because we tend to mix and interact
with people that are like us in some particular, specific way. The evolution of the present pan-
demic has been driven mainly by heterogeneity. All around the World, mitigation measures
were implemented to control disease spread. The level of enforcement and compliance of
such measures, however, widely varied across the globe. Moreover, at times when mitigation
measures were partially relaxed, flare-ups and secondary or tertiary outbreaks have occurred.
Many have been associated with so-called superspreading events. These are characterized as
periods of time where large numbers of individuals congregate in close contact increasing the
average transmission. These events then become foci of infections when individuals return to
their homes or communities and start, by doing so, a new wave of local disease transmission.
The understanding and modeling of superspreading events constitute a present challenge of
significant importance for the control of disease spread [5,30,43,50,55,62].

At the beginning of the pandemic, given the lack of treatments or effective vaccines, we
have relied on the implementation of non-pharmaceutical interventions to prevent disease
spread. These types of measures can be rather effective in diminishing transmission but largely
rely on individual customs, beliefs, and education. Vaccines on the other hand, available since
the beginning of 2021, present problems of their own. One is the interplay between coverage,
efficacy, and design. The vaccines that are in the market as this work is being written, are
designed for the viral variants prevalent in the first six months of the epidemic. Now we
have several new variants (that, curiously, arose in the countries where the epidemic has been
worse: UK, USA, Brazil) that have higher transmissibility and the same type of mutations,
facts that present worrisome perspectives regarding the possibility of virus variants evolving
to escape the action of vaccine. Coverage is a problem too since there has been limited vaccine
supply. Without sufficient coverage, the epidemic will linger for many more months with the
consequent burden on the economy and public health of many countries. Mathematical tools
are being used to provide criteria for the deployment and vaccine roll-out and the impact of
these on epidemic evolution. Finally, a problem of interest and where modeling is necessary is
the analysis of syndemic diseases, that is, diseases that co-circulate in the same region, time,
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and populations. As an example, we have the interaction between influenza and COVID-19
that so far has resulted rather benign since the mitigation measures that have only reduced
the prevalence of SARS-CoV-2, have practically eliminated influenza in the season October
2020-March 2021 in the Northern hemisphere [105].

This work has as the main objective to review particular models that have been or are
being used to address the list of problems commented upon in this Introduction. We will
highlight the most important properties, findings, and, of course, deficiencies, that all these
models have. The perspective is that of two mathematical epidemiologists involved in the
application of models in public health. We hope the approach and perspective will be of
interest to a general mathematical audience.

2 Kermack-McKendrick models and key epidemiological parameters

The classical work of Kermack & McKendrick published in 1927 [53] is a milestone in the
mathematical modeling of infectious diseases. The model introduced in [53] is a complex
age of infection model that involves integro-differential equations and the now very famous
compartmental SIR model as a special case:

S =—BSI,
I =BSI—vyI,
R=yl. 6

The variables S, /, R, in system represent the number of susceptible, infectious and recovered
individuals in the constant total population N = S + I + R. The parameter y is the recovery
rate and B = c¢, is the effective contact rate which is product of the number of contacts ¢
and the probability of infection given a contact.

A well known result for system (1) is that the mean infectious period is

/oo ytexp(—yt)dt = l 2)
0 Y

and therefore the residence times in the infectious state are exponentially distributed. In other
words, the probability of recovery per unit of time is constant, regardless of the time elapsed
since infection [97]. Using (2), we can write the basic reproduction number as

Ro = P s0. 3)
Y

Ro measures the expected number of infections generated by a single (and typical) infected
individual during his/her entire infectious period (1/y) in a population where all individuals
are susceptible to infection (8Sy = BN). At the early phase of the outbreak,

I=y®Ro—DI, and 1) =1(0)exp(y(Ro— D) @)

so the infectious class grows initially if Rp > 1 and goes to zero otherwise. Furthermore,
r = y(Ro — 1) is the grow rate of the epidemic and

,
Ro=1+—. 5)
4

@ Springer



228 F. Saldaia and J. X. Velasco-Hernandez

Observe that formula (5) provides a natural method to compute Ro without the need of
estimate the initial susceptible population Sp. Integrating the first equation of the SIR model
(1), we obtain

t
S(t) = Sp exp <—ﬁ/ I(s)ds). (6)
0
Hence, another fundamental property of the SIR model is that
t
lim S() = lim Spexp (—,8/ 1(s)ds> =S80 >0, 1limI(t)=0 (7)
—00 —>00 0 —00
so the outbreak will end leaving susceptible individuals who escape infection. Moreover,

direct computations allow us to obtain a relationship between the total number of cases
So — Seo and the cumulative number of infections at time 7, denoted C(¢),

t o0
C(t) = —log & = ,3/ I(s)ds, C(oc0)= lim C(t) = ;3/ 1(s)ds. (8)
SO 0 t—00 0

On the other hand, adding the first two equations in the SIR model (1) and integrating we
deduce

t
S(t)=So+I(0)—1(r)—y/ 1(s)ds. 9)
0

Considering Eqgs. (6) and (9) when + — oo we obtain the following approximation of the
final size equation

S
So exp (—=C(00)) = So + 1(0) — ,R%)C(OO) (10)

that allow us to estimate the expected number of total cases C(00) given R and the size of
the initial susceptible population.

It is important to remark that compartmental Kermack-McKendric-type models rely on
specific assumptions that should be taken with care when models are applied to real-life
problems such as modeling the COVID-19 pandemic. For example, from (2) we deduce that
the SIR model assumes that the time during which an infectious individual can transmit the
disease is constant and equal to the recovery period. This is an acceptable approximation
for some diseases but, for others, especially those whose recovery time is long, it is not. In
general, the capacity of infectious individuals to infect another person will depend on the
age of infection [53]. Let i (a, t)da be the density of infectious individuals at time # with an
age of infection between a and a + da, the evolution of such population is governed by the
McKendrick-von Foester equation

3 3. , B
gl(a,t)-i—al(a,t)-ky(a)l(a,t)—(), (11)

where the recovery rate now depends on the age of infection a. The boundary and initial
conditions are

i(a,0) =¢(a), i(0,t)=B() = /OO B(a)i(a, t)da, (12)
0

where §(a) is the effective contact rate as function of the age of infection and ¢ (a) is the age
of infection initial distribution. For the simple case in which the solution of (11) is separable
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i.e.i(a,t) = T(t)A(t), one can see that (11) has a solution if there is a unique » € R that
satisfies the characteristic equation (see the details in [65], chapter 12)

/Ooe_raﬂ(a)e(_ Joy®ds) gq = 1. (13
0

The parameter r now is interpreted as the intrinsic growth rate of the epidemic and is
directly related with the epidemic doubling time, the amount of time in which the cumulative
incidence doubles, T; = log2/r ~ 1/r. If there is an increase in the doubling time then the
transmission is decreasing. To obtain the basic reproduction number, we need to look at the
expression

K(a) = Blaye” Jo v® (14)

which is the product of the contact rate and the probability of remain infectious at the
age of infection a. Hence, K (a) gives the number of secondary infections generated by
an individuals of age of infection a and

Ro = /OO K(a)da. (15)
0

In the SIR model (1), the probability of being infectious at time ¢ is exponential, and the trans-
mission rate at the beginning of the epidemic 8.5y is independent from the age of infection,
thus

Ro = / K(a)da = /350/ e Vdt = ES() (16)
0 0 4

and we recover the expression (5).

The function K (a) has also been called the distribution of the generational interval. This
is one of the fundamental concepts for the computation of Ro. However, it has been largely
neglected in the mathematical community due to the almost exclusive attention to the compu-
tation of reproduction numbers based on compartmental epidemic models. Estimates of the
reproduction number together with the generation interval distribution can provide insight
into the speed with which a disease will spread as shown in [34] for the case of COVID-19.
The density of the generational interval is defined as

; a7

clearly, 0 < G(a) < 1 for all a. Function G (a) measures the time between the infection of a
primary case and one of its secondary cases [52,99]. In other words, the generational interval
G (a) is the age of infection that separates the infector from the infectee. From (13) and the
definition of G (a), we obtain that the inverse of the R is the result of the Laplace transform,
or moment-generating function, of the distribution of the generational interval evaluated at
the intrinsic grow rate

o0
M(r) = / e " G(a)da = L (18)
0 Ro

The generation interval of an epidemic outbreak is calculated directly from incidence
data, using the symptom onset date as an approximation to the contagion date, and making
extensive use of screening and contact tracing methods [34,75,82]. This approximation is
known as the serial interval. We must remark that the mean of the distribution for the serial
or generational interval does not necessarily coincide with the infectious period which is
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only an approximation particular to Kermack-McKendrick type models. Using (18), we can
calculate R for different distributions for the serial interval [99]. For example, let 7, be the
mean serial interval, a straightforward computation allow us to see that for the exponential
distribution G (a) = y exp(—yt) we obtain

-

1+ - 19)

Ro=yum =11y

where T, = 1/y and again we deduced (5). For a normal distribution we have

Ga) = ! ela=1/y)*/4o? Ro ! — o /y=o’r)2 (20)

V2o ’ M(r)
so, in this case, an increase in the variance decreases the value of the basic reproduction
number. For new emerging diseases as COVID-19, the natural way to obtain Ry is from the
observed initial growth rate » of the epidemic. However, as we have shown, the equation
relating these two parameters varies concerning the distribution of the infection period so
one must be careful since the distribution of the generation interval must be known before
we can apply a given relationship for the infection understudy [40,99].

3 Mixing functions and disease spread

The SIR model (1) is one of the simplest that can be written for a communicable disease.
As explained before, it makes the overly simplifying assumption that the mass action law,
expressed in the product S/, is a good approximation of the mixing of the population that
results in infectious contacts. However, this hypothesis is only a very rough approximation
to what really happens. To illustrate this consider the spread of a S/ disease in a population
subdivided into n disjoint groups first presented in [57]. Each group is homogeneous in itself
meaning that the recovery rates are the same for all the individuals belonging to that group
and their contacts between individuals are function only of the group they belong to. Define
as B;; the effective contact rate of the susceptible individuals in the group i with infectious
individuals in the group j, N; is the total population size of the group i, and y; is the recovery
rate of infected individuals in the group i. Another hypothesis is that 8;; = B;;, so contacts
are symmetric although this may not be always true. We will show a more general condition
on the contacts rates later in this section. Note that since S; = N; — I; we need only write
the equations for the infected individuals in each group 7, giving

n n
I =—yili+ ) BiNil; = Y Bjilil}, @n
j=1 j=1

which is studied in the set 2 = I1_,[0, N;]. This system has a globally asymptotically
stable disease-free equilibrium at / = (I1, ---1,) = 0 and another endemic equilibrium,
with I = k with k a constant vector, that is globally asymptotically stable when the disease-
free equilibrium loses its stability. We form the matrix A = (a;;) where a;; = B;; when
i # j,and a;j = Bij — y; if i = j and define the column vector B(I) with components
B = — Z’}:l Bjili1;, then equation (21) can be rewritten [57] as

I; = AT + B(I). (22)
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The main result of [57] is the following:

Theorem 1 Consider the system given by (22) where A is an n x n irreducible matrix and
B is continuously differentiable in a region D of R". Assume that

— the compact convex set C C D contains the origin and is positively invariant for (22),
- lim; o

There exists . > 0 and a real eigenvector v of AT such that v -v > A||I|| forall I € C.
v-B(I)<O0foralll €C.

— Either I = 0 is globally asymptotically stable in C, or for any Iy € C — 0 the solution
¢ (t, lo) of (22) satisfies lim; . ||@ (¢, Lo)|| = m, m independent of ly. Lastly, there exist
a constant solution of (22) I =k, k € C — 0.

In biological terms, this result simply states that if the basic reproductive number Ro < 1,
then the disease-free equilibrium is unique and asymptotically stable, but if Ry > 1, then
it is unstable and there exists another equilibrium, the endemic equilibrium, that is globally
asymptotically stable. The Lajmanovich and York model as the system (21) is known, was one
of the first multigroup models that shows that its dynamics can be fully characterized in terms
of the fundamental parameter R and the transcritical bifurcation that the equilibria suffer at
the critical value Rg = 1 [46]. Several studies have shown, however, that epidemiological
models that follow the Lajmanovich and York characterization are not that general. They are
limited in the hypothesis regarding the total population, which is assumed constant, and the
mixing pattern among population subgroups.

The existence of subthreshold endemic states, that is, endemic states that exist even when
Ro < 1, have been shown for directly transmitted diseases and vector transmitted diseases
(see, for example, [27,35,41,56,85,98]). A simple example of this type of behavior is illus-
trated in a generalization of the model first published in [56] that is pertinent for the study
of vaccination policies during the present pandemic. A close variant of this model is briefly
presented now. Let S, I, V, and R denote the subpopulations of susceptible, infectious,
vaccinated, and immune individuals respectively. Let 8 be the effective contact rate, ¢ the
vaccination rate in the susceptible class, o the proportion of reduction in the transmission rate
due to the vaccine, w the waning rate of both vaccine and natural immunity, y the recovery
rate, and A, p the equal birth and mortality rates, respectively. The model stands

: I
S=A-pS — R+ PS+oV+uwk,
. I

V=0V -(-0)Vy—uto)V,

. 1
1=ﬁN(S+(1—G)V)—(J/+M)1,

R=yI —(0+ wR. (23)

Note that although for many diseases vaccines and recovery after infection creates long-
term immunity, is most cases, as assumed in model (23), both natural and vaccine-induced
immunity wanes over time (this can happens at different rates). This can potentially lead to
multiple epidemic waves where the prevalence fall after mass vaccination and then rise as
immunity wanes [44]. Using model (23), one can show that, besides the well-known forward
bifurcation in which R < 1 is a necessary and sufficient condition for disease elimination,
epidemic models may present a backward bifurcation where a stable endemic equilibrium
(EE) co-exists with an unstable EE and a stable disease-free equilibrium for Rg < 1 [56]. In
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1.0
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—== unstable equilibria
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Fig.1 Schematic representation of a typical backward bifurcation in epidemic models. The basic reproduction
number R is showed in the horizontal axis and the vertical axis is the prevalence of the infection (fraction) at
the equilibrium. Solid blue lines represent stable equilibria and dotted red lines represent unstable equilibria

figure 1 we present and schematic representation of the backward bifurcation phenomena.
In terms of disease control, a backward or subcritical bifurcation implies that R has to be
reduced below a value lower than one and, in some cases, difficult to estimate. Hence, a
backward bifurcation is usually considered a undesirable phenomenon since control polices
turn out to be more complicated [9]. Several studies have examined the potential causes
that lead to the appearance of a backward bifurcation. Among the most common caused
are the use of imperfect vaccines, exogenous reinfection (e.g TB), vaccine-derived immunity
waning at a slower rate than natural immunity, treatment, behavioral changes, superinfection,
disease-induced mortality in vector-borne models, differential susceptibility in risk-structured
models, and others (see [41,66] and the references therein).

Another factor that alters the neat result in Theorem 1 by Lajmanovich and Yorke is the
fact that the effective contact rates are not constant. They, of course, can vary when subject to
climatic variability but there is a more basic reason why they are variable: effective contact
rates depend on the sizes of the groups that form the population and, more importantly, on the
mixing preferences of those groups. Busenberg and Castillo-Chavez [17] after the pioneering
work of [49] constructed an axiomatic framework that clearly defines the conditions that
contact rates should satisfy to be consistent with the dynamics of epidemiological processes.
Following [17], define ¢;; the proportion of contacts that individuals from group i have
with those in group j. Then these contact rates must satisfy the following conditions to be
consistent with the epidemic dynamics:

1. Cij >0,
2. Z;'-:l cij=1forj=1,..n.,
3. aiN,'Cij =aijCj,',

where N; is the size of group i and ¢; is the activity or risk level of group i. Two particular
contact patterns satisfy the above axioms. The proportional mixing where contacts between
groups i and j are separable ¢;; = c{ c? which implies, using axioms 2 and 3 above, that we
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can write ¢;; = Ccll’. = ¢}, C a constant, with

ajNj

i .
> i—1aiNi
Proportionate mixing refers to the fact that contacts are distributed according to the proportion
of each group in the overall population. The other important contact function is the so-called
preferential mixing. Here we divide the contacts of group i into two parts: a fraction of the

contacts, €;, is reserved for within group contacts (group i) and the other fraction 1 — ¢;, is
distributed among all other groups according to the following formula

(1 — eli)a_,'N_,'
Yici(l—€paiN;’

with §;; = 0ifi # jand §;; = 1if i = j. Many of the contact matrices that have been
evaluated in the POLYMOD study [70,80] show a pattern similar to that of preferential mixing
characterized for being diagonally dominant since most population groups tend to share a
high proportion of their contacts within the same group, in this case, defined by age classes.
However, special interaction as those of children and adults which tend to have strong sub-
diagonal components, and work settings where age groups are bounded above and below, do
not arise from the preferential mixing formula. Glasser et al. [37] have generalized contact
matrices and the preferential mixing function to other situations.

Cj =

cij =€ + (1 —€)

4 Modeling the early phase of the COVID-19 epidemic outbreak

An important feature of the COVID-19 disease is the incubation period, which is the time
between exposure to the virus and symptom onset. The average incubation period is 5-6 days
but can be as long as 14 days [58]. The SEIR model

$=—BIS,

E=BIS—0oE,

| =0E — v,

R=yl, (24)

allow us to incorporate the mean incubation period (1 /o) via the compartment E that includes
exposed individuals who had been infected but are still not infectious. The epidemic grow
rate r of the SEIR model (24) can be obtained exploring the local asymptotic stability of
disease-free equilibrium (DFE) E, = (N(0), 0,0, 0). In particular, r is computed as the
dominant eigenvalue of the Jacobian of system (24) evaluated at Ey. In this case, Ro and r

are related as follows:
r r
R0=(1+7)<1+7). (25)
o 14

The approximation for the serial interval of the SIR model is 7, = 1/y; for the SEIR
modelis Ty, = 1/y + 1/o. Hence, the conceptual approximation of the serial interval given
by the SEIR model is more accurate in the sense that incorporates, both, the incubation and
the recovery periods. To have a better understanding of how the model assumptions and
data may affect the estimation of Ry, let us consider the following example in the COVID-
19 context. Consider an average incubation period of 1/0 = 5 days [58] and recovery
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0.6
Ro=5
Ro=3.5
0.5 Ro=2.3
Ro=1.8
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Infected individuals
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N w
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0.0

0 20 40 60 80 100 120

Time /days

Fig.2 Theoretical evolution of the epidemic curve (percentage prevalence of the infection) for different values
of the basic reproduction number

time of 1/y = 10 days. The epidemic doubling time at the early phase of the epidemic
in Hubei Province, where SARS-CoV-2 was first recognized, has been approximated to be
T; = 2.5 days [71] sor = log2/T; = 0.277 so the SIR model estimates Ro = 2.77 and
the SEIR model estimates Ry = 3.8364. On the other hand, the estimated serial interval in
Hubei from contact tracing data has a median of 4.6 days [104]; hence, using the real serial
interval the SIR model predicts Ro = 2.27. The overestimation of the serial interval leads
to the overestimation of R, which in turn overestimates the growth rate r. This implies that
Kermack-McKendrick-type models may erroneously anticipate the epidemic peak time (the
date of maximum incidence) and also overestimate the final epidemic size (see Fig. 2).

Standard deterministic Kermack-McKendrick type models that neglect demographic
dynamics predict a single epidemic wave (see Fig. 2); however, rather than a single peak
and near-symmetric decline, the COVID-19 epidemic in several cities have shown plateau-
like states followed by epidemic rebounds [68,89,92,101]. This phenomenon is in part due to
changes in transmission induced by lockdowns and other non-pharmaceutical interventions
implemented by public health officers to reduce the epidemic burden. Besides, individuals
are constantly changing their behavior and mobility patterns depending on the perceived risk
of acquiring the infection, so they may reduce their contacts at times of high incidence [101].
How awareness-driven behavior modulates the epidemic shape has been investigated in [101]
modifying the SEIR model (24) as follows:

BIS
RO
BIS
“Treny 26)
| =cE — vy,
R=(1-fyl,
D= fyl
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AN R

Infections (proportion)

0 50 100 150 200 250
Time /days

Fig.3 Plateau-like states induced by death-awareness social distancing. Epidemiological parameters are fixed

to mimic COVID-19 dynamics as follows: § = 0.5 days_l, 1/o = 5 days, 1/y = 10 days, f = 0.02, k
varies and we assume §. = 5 x 10~5

where D measures the number of deaths in the population. The parameter f measures
the mean fraction of people who die after contracting COVID-19. The transmission rate
is affected by the death-awareness social distancing rate § = D, the half-saturation constant
8. > 0, and the sharpness of change in the force of infection k > 1 [101]. The introduction
of awareness in the SEIR model (24) renders scenarios in which a plateau-like behavior
appears, that is, the number of daily infections decreases at a very slow pace after the peak
(see Fig. 3).

4.1 The role of asymptomatic transmission

Another important feature of infection by SARS-CoV-2 is that some people are infected and
can transmit the virus, but do not experience any symptoms [77]. Current evidence suggests
that asymptomatic carriers will transmit the infection to fewer people than symptomatic
individuals but their real contribution to transmission is difficult to estimate since they are
expected to have more contacts than symptomatic carriers [18]. These factors may have an
impact on disease dynamics. Hence, we extend the SEIR model (24) to illustrate the role of
the asymptomatic carriers.
The model is given by the following system of non-linear differential equations:

S=—(BaA+B1D)S,
E = (BaA+Bi1)S —oE,

A=(1-p)oE —ysA, 27)
i=paE—y11,
R=yaA+yil,

where the class A, represents asymptomatic infectious individuals. The total population at
time ¢, is now N(t) = S(t) + E(t) + A(t) + I(t) + R(t) = 1. The parameters 4 and
Br represent the effective contact rates of the asymptomatic and symptomatic infectious
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classes, respectively. A proportion p of the exposed individuals £ will transition to the
symptomatic infectious class [ at a rate o, while the other proportion 1 — p will enter the
asymptomatic infectious class A. The mean infectious periods in the asymptomatic and symp-
tomatic infectious classes are 1/y4, and 1/y;, respectively. These individuals gain permanent
immunity and move to the recovered class R. However, we remark that this assumption is only
valid when studying the first outbreak because to date, it is still unknown how long natural
immunity will last and there have been already confirmed cases of coronavirus reinfections
[48,87,94,102].

4.1.1 Basic properties of the SEAIR model

A common first step in analyzing compartmental epidemic models is finding the equilibrium
points. Setting the right-hand side of system (27) equal to zero, we see that there is a continuum
of DFE of the form

Eo = (S*, E*, A*, ", R*) = (N(0),0,0,0,0) (28)

where N (0) = S(0) is the number of susceptible individuals at the initial time. For model (27),
there is no endemic equilibrium. This is because an endemic equilibrium needs a continuous
supply of susceptible individuals that generally occur via births into the susceptible population
or through the waning of immunity [11]. However, model (27) assumes permanent immunity
and does not consider demographic dynamics i.e. births and deaths in the populatlon

From the model equations (27), it is easy to see that N=S+E+A+I+R=0,
therefore the total population is a constant N () = N (0) for all ¢ and the solutions of system
(27) are bounded. The biologically feasible region is

Q:[GJQAIJUeRiuﬂﬂ+EU%ﬂMﬂ+K0+R0%:Nm}

Let X (¢) be the solution of system (27) for a well-defined initial condition X (0) € £2. Since
X; = 0, implies Xi > ( for any state variable, then X (¢) € §2 for all > 0. Thus, solutions
trajectories satisfy the usual positiveness and boundedness properties and the model is both
epidemiologically and mathematically well posed [46].

The local stability of the DFE is usually explored via the basic reproduction number.
As we have mentioned, the mathematical expression for R depends directly on the model
assumptions and structure. There are several tools for the computation of the basic reproduc-
tion number [45]. Probably, the most popular is the next-generation approach [25] using the
method of [26]. Under this approach, it is necessary to study the subsystem that describes the
production of new infections and changes among infected individuals. The Jacobian matrix
J of this subsystem at the DFE is decomposed as J = F — V, where F is the transmission
part and V describe changes in the infection status. The next-generation matrix is defined as
K =FV~!, and Ry = p(K), where p(-) denotes spectral radius.

For system (27), we obtain

0 BaS©O) B1S0) o 0 0
F=|0 0 0 |, V=|-U=po ya O
0 0 0 —po 0 y
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Therefore, the basic reproduction number is given by

Ro = (7(1 —Pba ”—’3’> S(0). 29)

VA Yi

Ro is a weighted average determined by the proportion, p, of symptomatic infected
individuals. If there are no asymptomatic carriers i.e. p = 1, we recover the Ry formula
found in the SIR model. As a consequence of the Van den Driessche & Watmough Theorem
[26], we establish the following result regarding the local stability of the DFE.

Theorem 2 The continuum of DFE of system (27) given by Eq in (28) is locally asymptotically
stable if the basic reproduction number satisfies Ro < 1 and unstable if Ry > 1.

From the basic reproduction number (29), itis evident that asymptomatic carriers may play
an important role in the spread of COVID-19 within a population depending on their ability
to transmit the infection (84) and their frequency in comparison with symptomatic carriers
(p). Early estimates at the beginning of the pandemic suggested that approximately 80%
of infections were asymptomatic [15]. More recent evidence suggests only between 17 and
20% do not present any symptoms [18]. The authors in [18] also found that the transmission
risk from asymptomatic cases appeared to be lower than that of symptomatic cases, but there
was considerable uncertainty in the extent of this (relative risk 0.58; 95% CI 0.335 to 0.994).
Nevertheless, asymptomatic individuals may have more contacts than symptomatic people.
There are still different opinions of the true magnitude of asymptomatic infections and their
impact on the pandemic [81]. Finally, we must remark that although model (27) considers
asymptomatic transmission, it is still a very simplified model that ignores the existence of
a pre-symptomatic stage. As remarked in [42], infectiousness usually starts 2.5 days before
symptoms onset with a high transmission rate. So besides the non-infectious exposed period
and the fully asymptomatic class, some authors have also considered a class for the pre-
symptomatic stage [4,23]

5 The impact of non-pharmaceutical interventions

The SEAIR model (27) is proposed to study the early phase of the outbreak and therefore
assumes that at the start of the pandemic no interventions were applied to control the spread of
SARS-CoV-2. This makes sense for the first stage of the pandemic which, except for China,
was driven by imported cases. However, as levels of local transmission began to increase,
sanitary emergency measures were implemented by health authorities in several countries.
Given the absence of a vaccine or effective treatment against COVID-19 at the beginning
of the pandemic, preventive measures pertained to non-pharmaceutical interventions (NPIs)
such as wearing a mask in public, staying at home, avoiding places of mass gathering, social
distancing, ventilating indoor spaces, washing hands often, etc.

To have a full picture of the effect of NPIs, it is necessary to formulate mechanistic
mathematical models that explicitly take into account the impact induced by such sanitary
measures. There are different approaches to incorporate NPIs into compartmental models,
see, for example, [2-4,28,60,73,76,78,86,89,95,96]. Here, we formulate a compartmental
mathematical model that explicitly incorporates: (i) isolation of infectious individuals and
(i1) mitigation measures that reduce the number of contacts among the individuals in the
population, namely, temporary cancellation of non-essential activities, lockdown, and social
distancing. One of the key tasks throughout this pandemic has been the use of mathemat-
ical models and epidemiological data to forecast excess hospital demand. Hence, we also
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incorporate appropriate compartments to monitor the required hospital beds, including the
number of intensive care units (ICU) during the outbreak. The new model is an extension of
the SEAIR model (27) and is given by the following set of differential equations:

S =—e(®)(BaA+ B11)S,
E=e()(BaA+ B11)S —0E,
A=(1-p)oE —yaA,

I = poE —yrl,

O =ayl-30, (30)
H=801-v)0—yuH,
C=8¥0—ycC,

R=yaA+ 1 -yl +yu(l —wH+yc( —w)C,

D =ygpuH + ycpuC.

In model (30), after infection, a fraction « of the symptomatic individuals develop severe
symptoms and are therefore isolated entering the home quarantine compartment Q, the other
fraction recovers from the disease and enter the immune class R. The model assumes that
once isolated, infectious individuals no longer contribute to the force of infection. Individuals
expend an average of 1/§ days in the home quarantine class and then a fraction ¥ of them
develop symptoms that require hospitalization A or an intensive care unit C. The average time
individuals expend in the classes H and C are 1/yy and 1/yc, respectively, and a fraction
/0 of such individuals experiment COVID-19 induced death and enter the compartment D.
The function 0 < €(¢) < 1 measured the reduction at a specific time ¢ in the transmission
rates achieved by the implementation of a lockdown or any social distancing measures that
reduce the number of contact among the population.

In Fig. 4, we performed numerical simulations aimed to show how the implementation and
relaxation of lockdowns impacted the transmission dynamics of COVID-19. For illustration
purposes, we are considering arather simple form for the function € (¢). We assume that for the
first 40 days after the emergence of SARS-CoV-2 in the population no mitigation measures
are implemented, so €(r) = 1 for 0 < ¢t < 40. After this, health authorities implement a
very strict lockdown, for approximately two months, that reduces significantly (90% in our
simulations) the number of contact within the population, thus € = 0.1 for 30 < ¢ < 100.
The reduction in the prevalence of the infection due to lockdown implementation is very
clear (see Fig. 4). After this period, there is a partial relaxation of the lockdown to reflect
the need for reactivating social and economical activities, so €(z) = 0.5 for 100 < ¢t < 160.
This causes a new increment in the number of new infections and the start of the second
wave of the epidemic (see Fig. 4). Finally, after two months of partial relaxation, if health
authorities decided to completely lift social distancing measures as we assume i.e. €(t) = 1
for + > 160, the result is an exponential increase in the prevalence of the infection that may
increase healthcare system pressure.

5.1 Optimization of non-pharmaceutical interventions
The effectiveness of non-pharmaceutical interventions to control the epidemic has been an

important aim of recent work [8,14,88,103]. The economic and social cost of lockdowns,
bans of public events or closures of restaurants, commercial centers, etc., must be limited
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Fig. 4 Evolution of the daily number of home quarantine infected individuals Q, hospitalizations H, ICU
occupancy C, and cumulative deaths D depending on the relaxation of lockdowns and social distancing
(isolation of infected individuals is not relaxed). Epidemiological parameters are fixed to mimic COVID-19
dynamics as follows: gy = 0.5 days_l, Ba = 0.4 days_l, 1/ = 5 days, p = 0.7, 1/y; = 10 days,
1/ya = 14 days,a = 0.1,8 = 1/7 days, ¥y = 0.3, 1/yy = 1/yc = 7 days, u = 0.01

to reduce economic costs. Designing optimal transitory NPIs that reduce disease spread
at the lower cost is a key issue that has been investigated in [6] using a simple SIR model.
Following these authors, the design of adequate NPIs involve a trade-off between minimizing
the economic cost of their implementation and the reduction or minimization of deaths due
to insufficient health support. In mathematical terms, they assume that NPIs may reduce the
effective contact rate 8 by a control term (1 — u), u € [0, 1]. Note that u = 1 implies an
effective contact rate of zero. However, such aim is unrealistic and thus an upper bound for
u, defined as u,,4x € (0, 1), is postulated; hence an admissible control must now satisfy
u € [0, tqy]. In this approach the control is acting on the nonlinear term of the SIR model.
The authors’ also assume that health services can adequately manage up to a maximum
prevalence I, € [0, 1). This implies that the action of NPIs measured by # must maintain
disease prevalence below I,,,,. The model is governed by the following equations:

§=—(1—-uwpsI,
I =0 —wpSI—yl,

R=yl. (31)

Since it is assumed that S(¢) + 1(¢) + R(¢t) = 1 the problem is reduced to the S — I plane.
If the optimal NPIs problem has a solution u*, then u*(S, I) gives the optimal reduction in
the effective contact rate that the NPIs should achieve given that the epidemic is in the state
(S, I). The main result of Angulo et al. [6] is a complete analytical characterization of the
optimal NPIs in the SIR model (31). Their analysis shows that the solution to the optimal
intervention is fully characterized by the separating curve

Inax + R In(S/S*) — (S — §*) ifS > S*
() =
Lnax ifRy' <S<s*
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where §* = min {R,, 1}, and R, = (1 — uqx)Ro is a controlled reproduction number. Note
that the shape of the separating curve depends on /,,,,x and R..If R, < 1, the separating curve
is the straight line @ (S) = I,4x- When R, > 1, the separating curve becomes nonlinear.
The optimal control intervention is characterized by the separating curve as follows:

1. an optimal intervention exists if and only if the initial state (Sg, Ip) lies below this
separating curve, that is, Ip < @ (Sp)
2. if it exist, the optimal intervention u* takes the feedback form

0 ifl <®(S)or S<Ry'
w (S, 1) = 3 umax ifl =®(S) and S > S*
1—1/(RoS) ifl =®(S) and S*>S>TR,"

Note that the above definition implies a safe zone of states (S, I) where no controlis necessary:
the epidemic may be left to evolve naturally. This region is characterized by the following
inequality I < @(S) or § < R, ! involving the basic reproduction number. When this
threshold is reached, then the control has to be implemented. Hence, the optimal intervention
starts when /(¢) reaches @ (S(¢)), and then it slides 7 () along @ (S) until reaching the region
where § < R ! Therefore the goal of the optimal intervention is to reach the safe zone as
soon as possible maintaining disease prevalence below I, [6].

6 Vaccination policies, herd-immunity and the effective reproduction
number

Besides being an indicator of the severity of an epidemic, the basic reproduction number R
is a powerful tool to estimate the control effort needed to eradicate a disease. Consider an
infection in a population that mixes homogeneously with Ry > 1. If at least Ro — 1 of these
individuals are protected from the infection either through naturally acquired immunity after
infection or through vaccine-induced immunity, then the epidemic cannot grow [51]. Hence,
the infection can be eradicated if a fraction of individuals greater than

q=Ro—=1/Ro=1-1/Ro (32)

has been afforded lifelong protection. Under these conditions, a considerable fraction of
the population is immune providing indirect protection to those still susceptible. Hence,
on average, a typical infectious individual no longer generates more than one secondary
infection and herd immunity is established. Estimations of the basic reproduction number
for SARS-CoV-2 usually range between 2.0 — 4.5, so for example, if Ro = 2.5 as estimated
for Mexico by [86] (although there are several other estimates for this parameter e.g., [2,68])
a vaccination program aiming to attain herd immunity must immunize at least 60% of the
population. This result is only valid for a perfect vaccine that prevents infection with 100%
efficacy; however, for most infections, vaccines only confer partial protection. For the case
of SARS-CoV-2 infection, vaccine developers behind the Pfizer/BioNTech, Moderna, and
Gamaleya vaccines have announced that their vaccines have efficacy above 90%, but other
developers such as the AstraZeneca and Sinovac teams have vaccines with efficacy way below
90% [54]. For vaccines with efficacy 0 < ¥ < 1 (¢ = 1 means 100% efficacy), if health
authorities vaccine a fraction v of the population and the remaining fraction of the population
are susceptible s, then R, = sRo + (1 — ¥)vRy is the mean number of infections generated
by a typical infectious person in this partially immunized population. So the minimum level

@ Springer



Modeling the COVID-19 pandemic 241

of vaccination needed to eradicate the infection (the minimum v such that R, < 1) becomes
v=q/¥ = (- 1/Ro)/¥.

In the absence of mitigation measures, herd immunity is achieved when the effective
reproduction number R, (also denoted R;) is equal to unity which in turn corresponds to the
time when the peak of the epidemic is reached [101]. The effective reproduction number R,
quantifies the mean number of infections produced by a typical infectious case in a partially
immune or protected (via isolation, quarantine, etc) population [24]. Unlike, Ry, the effective
reproduction number does not assume a fully susceptible population and changes over time
depending on the population’s immune status and the impact of non-pharmaceutical inter-
ventions or vaccination programs in the mitigation of further disease transmission. Under the
classical homogeneous mixing assumption, the effective reproduction number at a particular
time ¢ can be approximated as

Re(t) % (1 = pe(1))RoS(1)/ N (1), (33)

where p.(t) is the reduction in the transmission rate due to mitigation measures where the
effectiveness of such measures may vary at a particular time. The depletion of the susceptible
pool decreases the value of R.. Observe that without mitigation measures (p. = 0), at the
beginning of the outbreak, R.(0) = Ry.

The time-dependent effective reproduction number has been of paramount importance to
assess the impact of mitigation measures against COVID-19 and to guide the easing of such
restrictions. There are several methodologies to estimate the value of R, from data, see, for
example [10,21,22,74,100]. Probably, the most simple mathematical formulation to obtain
the time-dependent effective reproduction number directly from epidemiological data is the
method recently proposed by Contreras and coworkers [21]. This method considers that, in
real-life situations, during an epidemic outbreak, the effective contact rate § is not constant
as assumed in (1). Instead, it is plausible to assume that §(¢) is a function that varies in
time depending on several circumstances, for example, the impact of mobility restrictions
and other mitigation measures to control disease’s spread. Then, the effective reproduction
number is

Re(t) = @& (34)
y N@®
Considering the SIR model equations (1) with a time-dependent B(t), a direct computation
using the chain rule allow us to obtain [21]

dl 1

s tTrao

(35)

The Eq. (35) is discretized in an interval [#;_1, t;] where it is assumed that R, () = R.(t;)
is constant, thus

Re.(t) = (36)

Al
A;S

An extension of the SIR model considering the number of deaths and a population balance
implies that discrete differences satisfty A; S + A; I + A; R + A; D = 0, hence
1 _ Al
L Al T AR+ A;D
Al + AR+ A;D

Re(ti) =

+ 1. (37)
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As remarked in [21], if we note that A; I = (—A;S) — (A;R + A; D), that is, the change in
the prevalence, A; I, equals new infections, —A; S, minus new recoveries plus new deaths,
(A; R + A; D), therefore

—A; S New infections

Re(ti) = = . 38
e (1) AiR+ A;D New recoveries + New deaths (38)

The features, advantages, limitations, and practical application of this methodology to obtain
R. for COVID-19 is studied in more detail in [21,67].

6.1 COVID-19 vaccine prioritization

Deployment of COVID-19 vaccines was initiated in several countries at the beginning of
January 2021. As expected, there has been a high demand for the limited supplies of COVID-
19 vaccines, so the optimization of vaccine allocation to maximize public health benefit has
been a problem of interest [31]. Mathematical models have also been used to guide public
health policies on the optimization of vaccine allocation [12,13,19,31,39,90]. Itis well known
that a vaccine directly protects those vaccinated but also indirectly protects those that are not,
the more efficacious is the vaccine the greater and more beneficial the indirect protection will
be. Recently, Bubar et al. [12] developed a suite of mathematical models geared to evaluate
age-specific vaccine prioritization policies. Several of the vaccines currently available have
high levels of efficacy (above 90%) which means that they can be effective in blocking
transmission. On the other hand, influenza is a well-known respiratory infection for which
vaccination policies do exist and may therefore serve as an important reference to those
for SARS-CoV-2. However, the age-specific probability of infection and the age-specific
mortality are different in these two diseases with a higher burden for older than 60 years old
people [31].

The model used by Bubar et al. [12] is an age-structured SEIR model with a force of
infection, A;, for a susceptible individual in age group i given as follows:

n

I+ 1+ 1
Ai —@Zw WD .

where ¢; is the probability of a successful transmission given contact with an infectious
individual, ¢;; is the daily contact rate of individuals in age group i with individuals in age
group j, I; is the number of infectious unvaccinated individuals, I,; are individuals who are
vaccinated yet infectious, and Iy; is the number of infectious individuals that are ineligible for
vaccination for the personal hesitancy of due to a positive serological test, N; is the number
of individuals in the age group j and D; are the individuals of age group j who have died
of COVID-19.

Bubar et al. [12] incorporated vaccine hesitancy assuming limited vaccine uptake such
that at most 70% of any age group was eligible to be vaccinated. Such constrain was per-
formed assuming that 30% of each class for each age group was initialized as ineligible for
vaccination. Moreover, in their more parsimonious model, they assumed the vaccine to be
both, transmission- and infection- blocking, and to work with variable efficacy. In particular,
they considered two ways to implement vaccine efficacy (ve): as an all-or-nothing vaccine,
where the vaccine yields perfect protection to a fraction ve of people who receive it, or as
a leaky vaccine, where all vaccinated people have reduced probability ve of infection after
vaccination. To incorporate age-dependent vaccine efficacy, they parameterized the relation-
ship between age and vaccine efficacy via an age-efficacy curve with (i) a baseline efficacy,
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an age at which efficacy begins to decrease (hinge age), and a minimum vaccine efficacy
ve,, for adults 80+. This was done assuming that ve is equal to a baseline value for all ages
younger than the hinge age, then decreases step-wise in equal increments for each decade
to the specified minimum ve,, for the 80+ age group. Finally, existing seroprevalence esti-
mates were included varying the basic reproduction number and the percentage cumulative
incidence reached.

The model outcomes used to compare the performance of different vaccine allocation
strategies were the cumulative number of infections, deaths, and years of life lost. Bubar
et al. [12] concluded that although vaccination targeted to younger people (20-50 years
old) minimized cumulative incidence, mortality and years of life lost were minimized when
applied first to older people. These results were based on numerical simulations with a time
horizon of one year after the date of the vaccine introduction arguing that this allowed them
to focus on the early prioritization phase of the COVID-19 vaccination programs.

7 Superspreading events

In the beginning of the epidemic, surveillance made extensive use of the basic reproduction
number Ry to characterize the average number of secondary infections. Nevertheless, Rg
may hide a large variation at the individual level. Indeed, after more than one year into
the pandemic, there have been several reports of superspreading events (SSEs) in which
many individuals are infected at once by one or few infectious carriers (see, for example,
[30,55,59,62,72,89] and the references therein). Current reports suggest that a small group
of infections generate most of secondary cases [50]. In other words, even if Rg ~ 2 — 3,
most individuals are not infecting 2 or 3 other people; instead, a tiny number of people
dominate transmission while an average person do not transmit the virus at all [5]. Current
data suggest that prolonged indoor gatherings with poor ventilation are one of the main
factors inducing SSEs. Hence, crowded closed places are hotspots for SSEs and a source
of COVID-19 infections. More factors may lead to SSEs. For example, events in which a
huge number of people temporarily cluster, so the number of contacts suddenly increases far
above their mean [5]. The existence of superspreaders, that is, individuals having biological
features that cause them to shed more virus than others, is another issue that has attracted
attention [61].

To understand the role of individual variation in outbreak dynamics, Lloyd-Smith et
al. [63], introduced the individual reproduction number, v, as a random variable that assess
the average number of secondary cases generated by a particular infected individual. Then v
values can be estimated from a continuous probability distribution with a population mean
Ro. In this context, SSEs are realizations from the right-hand tail of a distribution of v. A
Poisson process is used to describe the stochastic essence of the transmission process; hence,
the expected number of secondary infected generated by each case, Z, is approximated by an
offspring distribution P(Z = k) where Z ~ Poisson(v).Lloyd-Smith et al. considered three
possible distributions of v generating three candidate models for the offspring distribution:

1. Generation-based models neglecting individual variation, i.e. v = R for all cases,
yielding Z ~ Poisson(Ry).

2. Differential-equation models with homogeneous mixing transmission and constant
recovery rates, v is exponentially distributed yielding
Z ~ geometric(Ryp).
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3. v is gamma-distributed with mean R( and dispersion parameter k, yielding Z ~
NB(Ro, k) (NB= Negative Binomial).

Observe that the NB model includes the Poisson (k — 00) and geometric (k = 1) models
as special cases. It has variance Ro(l + Ro/k), so smaller values of k indicate greater
heterogeneity. Althouse et al. [5] showed that an epidemic outbreak dominated by SSEs
and an NB distribution of secondary infections with small k has very different transmission
dynamics in comparison to a Poisson model outbreak with the same . For the NB model,
secondary infections are over-dispersed causing early transmission dynamics that are more
stochastic. Hence, in this case, an epidemic outbreak has lower probability to grow into a huge
epidemic. Nevertheless, if the outbreak takes off under the NB model, the incidence starts
showing stable exponential growth, with a growth rate approaching that of a model with the
same R, but a Poisson distribution of secondary infections, i.e., an NB model with & — oc.
However, during the early phase of an NB outbreak that takes off, disease incidence will
look more intense in the first few generations when SSEs will generate the most of secondary
infections, making it possible to spin out large infection clusters in few generations, whereas
a Poisson model cannot [5,63].

In the context of COVID-19, Endo et al. [30] presented the first study (to the authors’
knowledge) estimating the level of overdispersion in COVID-19 transmission by using a
mathematical model that is characterized by R and the overdispersion parameter k£ of a NB
branching process. Their results suggest a high degree of individual-level variation in the
transmission of COVID-19. Assuming that the R lies between 2-3, Endo et al. estimated
an overdispersion parameter k to be around 0.1 (median estimate 0.1; 95% Crl: 0.05-0.2
for Rp = 2.5), suggesting that 80% of secondary transmissions may have been caused by
a small fraction of infectious individuals (10%). Other studies have also estimated k values
and their results suggest that k lies in the range 0.04-0.3 [43,50,62].

8 Viral evolution and vaccine escape mutants

As of April 2021, several variants of the SARS-CoV-2 have been reported globally
[1,20,69,79]. RNA viruses, such as the coronavirus SARS-CoV-2, will naturally mutate over
time so such variants are not unexpected. Moreover, most mutations are irrelevant in an epi-
demiological context. Nevertheless, of the multitude of variants circulating worldwide, at the
time of writing (April 2021), health experts are mainly worried about three variants that have
undergone changes to the spike protein and are maybe more infectious and threatening [33].
The first of them is the B.1.1.7 variant that was first identified in the United Kingdom (UK)
and seems to be more transmissible than other variants currently circulating. This variant
has also been linked with an increased risk of death but there is still uncertainty surrounding
this result. The South-African variant B.1.351 emerged independently from B.1.1.7 but share
some of its mutations. The third is the Brazilian variant P.1 that contains some additional
mutations that and may be able to overcome the immunity developed after infection by other
variants [1].

Current COVID-19 vaccines were developed before the emergence of the above-
mentioned variants. Hence, another major concern is the possibility that variants will make
vaccines less effective. Some preliminary results by leading vaccine developers suggest that
vaccines can still protect against the new variants [33]. However, the vaccine-induced immune
response may not be as strong or long-lasting [83]. Apart from these problems, the initial and
limited vaccine supply has raised some discussion on how to distribute COVID-19 vaccines
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[19,39,47,64,87,91]. Beyond prioritizing healthcare workers and the elderly, the optimal
strategy for the general public remains complex. Some countries, including Canada and the
UK, had proposed to delay the second dose of the vaccine as an attempt to increase the num-
ber of individuals receiving at least one dose and therefore gaining more protection within
the population. Delaying the second dose could create conditions that promote the evolution
of vaccine escape, namely, viral variants resistant to the antibodies created in response to
vaccination [84]. Escape variants have the potential of creating more infections, deaths and
prolong the pandemic. In general, the start of vaccination programs all around the world,
whilst the pandemic is still ongoing, may rapidly exert selection pressure on the SARS-
CoV-2 virus and lead to mutations that escape the vaccine-induced immune response [38].
At this time, there is uncertainty around the strength of such selection and the probability
of vaccine escape, so more studies are needed in this direction. Recently, Gog et al. [38]
studied how considerations of vaccine escape risk might modulate optimal vaccine priority
order. They found two main insights: (i) vaccination aimed at reducing prevalence could be
more effective at reducing disease than directly vaccinating the vulnerable; (ii) the highest
risk for vaccine escape can occur at intermediate levels of vaccination. They also remarked
that vaccinating most of the vulnerable and only a few of the low-risk individuals could be
extremely risky for vaccine escape. Their results are based on a two-population model with
differing vulnerability and contact rates.

The existence of geographic regions of the human population where the vaccine is scarce is
another concern. It can be argued that regions that do not have access to the vaccine can serve
as evolutionary reservoirs from which vaccine escape mutations may arise. This hypothesis
has been explored by Gerrish et al. [36] using a simple two-patch deterministic epidemic
model as follows. They considered COVID-19 epidemics in two neighboring regions or
patches. Assuming that only one patch has access to the vaccine, they investigated if the
presence of the unvaccinated patch affects the probability of vaccine escape in the vaccinated
one.

The model follows the SIR structure for both patches augmented to consider vaccine
escape mutants. The governing equations are as follows:

n n
Sj==> BlSi—¢iS;. L= BiliSk— (v +wlj,
I k

Vj:quSj, Ej:,l,LIj-VEj, RjZV(Ij-f—Ej), (39)

where S;, V;, 1;, E;,and R; are the fraction of the population that are susceptible, vaccinated,
infected, infected with escape mutant, and recovered, respectively, in patch j; B;; is the
transmission rate from patch i to patch j, ¢; is vaccination rate in patch j; y is recovery rate;
[ is a composite per-host mutation rate from wildtype virus to escape mutant virus; n is the
number of patches but they explored only the simple two-patches case (n = 2).

Escape mutants are not considered explicitly, because, under normal conditions, they will
always have a strong selective advantage in a vaccinated population. Thus the model focuses
on the timing of the first infection event in which a new host is infected with an escape mutant.

The time of the first infection event in which a new host in patch j is infected by an
escape mutant that arose in patch i will occur at a rate r;; (t) = B;; E; (1)(Sj(t) + o V; (1)),
where o allows for varying levels of escape and ranges from o = 0, no escape mutations,
to full escape o = 1 [36]. It is also assumed that intra-patch transmission rates are equal,
Bjj = B, and inter-patch transmission rates are equal too, f;; |i#‘ = fo. Assuming By < B
i.e., inter-patch transmission is much less frequent than intra-patch transmission, the random
variable T is defined as the time at which the last infected individual recovers. Gerrish et
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al. [36] showed that the probability of vaccine escape can be orders of magnitude higher if
vaccination is fully allocated to one patch and no vaccination allocated to the other. On the
contrary, equal vaccination on the two patches gives the lowest probability of vaccine escape.
In other words, unequal distribution of COVID-19 vaccines may lead to vaccine escape and
hence, support arguments for vaccine equity at all scales.

9 Conclusions

Once the pandemic potential of the SARS-CoV-2 became established in early 2020, there
have been many modeling efforts by scientific and public health communities to improve our
understanding of the underlying mechanism of SARS-CoV-2 transmission and control [93].
Mathematical and computational models have been key tools in the fight against the COVID-
19 pandemic helping to forecast hospital demand, evaluate the impact of non-pharmaceutical
interventions, guide lockdown exit strategies, the potential reach of herd-immunity levels,
evaluate the optimal allocation of COVID-19 vaccines, and in general to provide guidance to
policy-makers about the development of the epidemic [3,4,19,21,29,39,64,67,68,73,86,87,
89,101].

In this work, we have discussed the role of the so-called compartmental models to gain
insight into epidemiological aspects of virus transmission and the possibilities for its control.
The main objective has been to present an overview of the mathematical methods behind
some important aspects of the general theory of infectious disease modeling. We started
revisiting simple deterministic compartmental models closely connected with the classical
work of Kermack & McKendrick and important epidemiological quantities such as the basic
and effective reproduction numbers. Then, we explored the role of the so-called mixing
function which allows introducing heterogeneity in epidemic models and is, therefore, a key
component in disease modeling. Then we investigated a number of compartmental epidemic
models to study the early phase of the COVID-19 epidemic outbreak, how awareness-driven
behavior modulates the epidemic shape and the role of asymptomatic carriers in disease
transmission. The impact of non-pharmaceutical interventions for COVID-19 control is also
discussed. We also revisited important results related to vaccination policies, herd-immunity,
and the effective reproduction number together with a simple method to perform real-time
estimation of this last quantity. We also discussed the presence of superspreading events in
the pandemic, the possibility of viral evolution and vaccine escape mutants.

One important topic that is not discussed in this review is the interaction of COVID-19
with other respiratory illnesses. Co-circulation of SARS-CoV-2 and other endemic respiratory
viral infections is a potential reality that can bring more challenges to public health. Currently,
there have been some concerns about the interaction between SARS-CoV-2 and influenza
viruses and preliminary results suggest that an initial infection with the influenza A virus
strongly enhances the infectivity of SARS-CoV-2 [7]. Some studies have also already reported
proportions of SARS-CoV-2 co-infections with other respiratory viruses [16]. Co-infection
mechanisms are common in nature and the previously mentioned studies highlight the risk of
influenza virus and SARS-CoV-2 co-infection to public health. Tailoring epidemic models to
incorporate the most important features of COVID-19 such as the existence of asymptomatic
carriers, the use of non-pharmaceutical interventions, the recent introduction of vaccinations,
and the emergence of new variants of SARS-CoV-2 together with co-circulation with other
pathogens will result in very complex dynamics. Therefore, developing realistic mathematical
models to study the co-circulation of SARS-CoV-2 and other respiratory infections presents
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one important challenge for disease modelers [105]. There are other topics that are not treated
in this review. For example, simulation models for the spatial spread of SARS-CoV-2, age
and risk structure, the role of human behavior on disease dynamics, parameter estimation
techniques to calibrate models with official data, exploration of long-term epidemiological
outcomes such as the possibility of recurrent seasonal outbreaks, among others. Nevertheless,
we believe we have given at least a brief overview of key modeling efforts and current
challenges related to COVID-19.

The immense number of publications related to the ongoing COVID-19 pandemic has
confirmed a fundamental fact: the strategic use of mathematical modeling in public health
is a multidisciplinary activity that requires a critical judgment in the interpretation of the
underlying model’s assumptions and their impact on the projections and outcomes. The use
of mathematical models to evaluate contingency plans is essential to overcome a public
health emergency. However, a considerable effort is still needed to improve the credibility
and usefulness of epidemiological so we are better to prepare to respond to future epidemics.
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