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Abstract: Cancer nanomedicine is defined as the application
of nanotechnology and nanomaterials for the formulation of
cancer therapeutics that can overcome the impediments and
restrictions of traditional chemotherapeutics. Multidrug
resistance (MDR) in cancer cells can be defined as a decrease
or abrogation in the efficacy of anticancer drugs that have
different molecular structures andmechanisms of action and
is one of the primary causes of therapeutic failure. There have
been successes in the development of cancer nanomedicine to
overcomeMDR; however, relatively fewof these formulations
have been approved by the United States Food and Drug
Administration for the treatment of cancer. This is primarily
due to the paucity of knowledge about nanotechnology and
the fundamental biology of cancer cells. Here, we discuss the
advances, types of nanomedicines, and the challenges
regarding the translation of in vitro to in vivo results and their
relevance to effective therapies.

Keywords: nanotechnology; multidrug resistance; drug de-
livery systems; nanoformulations; enhanced permeability
and retention effect

Introduction

“There’s plenty of room at the bottom”, a statement by Dr.
Richard P. Feynman in 1959, revealed a new range of pos-
sibilities in almost all the realms of science [1]. Prof. Norio
Taniguchi, in 1974, coined the term, “nanotechnology”,
which is now defined as an area of technology that involves
dimensions less than 100 nm, with a primary emphasis on
the manipulation of individual atoms and molecules [2].
Nanomedicine involves the combination of nanotechnology
with pharmaceutical and medical sciences [3, 4]. The major
aims of nanomedicine are the development of drugs with
higher efficacies, lower toxicities, and the efficacy to over-
come multidrug resistance (MDR) [5]. Nanoparticles (NPs)
have high surface-to-volume ratios compared to bulk mate-
rials and have varying physical, chemical, and biological
properties [5–11]. By definition, nanomedicines are drugs or
biologics that incorporate NPs (usually <100 nm) to a greater
magnitude than their bulk counterparts in vivo [12]. Nano-
medicines are primarily used to treat cancerous tumors
because these NP-drug conjugates act by passive targeting,
characterized by their significant accumulation in the tu-
mor [13]. NPs have been reported to have increased
permeability through blood vessels and lower lymphatic
drainage. This property is known as the enhanced perme-
ability and retention (EPR) effect, and it ultimately causes
significant accumulation of the drug in the tumor microen-
vironment (TME) [5, 11, 12].

MDR, which causes a decrease or abolition of the efficacy
of anticancer drugs that differ in their structure and mecha-
nism of action in cancer cells, plays a major role in treatment
failure, thereby increasing the risk of relapse and mortal-
ity [14]. Thus, novel drugs and techniques must be developed
to surmount MDR in cancer. The delivery of anticancer drugs
can be achieved by various routes of administration. The
choice of the route of administration by a clinician depends
on various factors, including but not limited to, the drug, type
of cancer, efficacy, location of the tumor in the body, and
toxicity of the drug, among others [15–18]. Furthermore,
certain anticancer drugs can be administered directly into the
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tumor [19]. Over the last 3 decades, there have beennumerous
innovations and developments in cancer drug delivery sys-
tems [16, 20, 21]. Furthermore, the majority of these de-
velopments have some specific applications in drug delivery,
such as: (1) anti-angiogenic drugs, which decrease angiogen-
esis in tumors; (2) biological therapies, such as gene therapy
and viral oncolysis; (3) combinations of novel therapies with
conventional chemotherapy and radiation therapy; (4)
development of immune therapy, e.g., cancer vaccines, cyto-
kine modulators, monoclonal antibodies and (5) nano-
biotechnology for cancer therapy (targeted drug delivery
systems) [16]. Chemotherapy remains the most commonly
used systemic treatment to inhibit the growth and prolifera-
tion of cancer cells, progression of the disease, and
metastasis [22, 23].

Despite the significant increase in research in nano-
biotechnology and cancer nanomedicine, there is still a large
disparity between scientific advancements and the use of these
applications in the treatment of cancer patients. Figure 1 pro-
vides examples of advances in nanotechnology, with an
emphasis on cancer nanomedicine. Nanomedicine has pro-
vided the concept of theranostics, defined as the simultaneous
diagnosis and treatment of a disease [24, 25]. Furthermore,
researchers have developed targeted drug delivery, which
produces a lower frequency of adverse effects, greater efficacy,
decreased immunogenicity, and a decrease in surgical inter-
vention [21, 26]. Nanoformulations have a number of advan-
tages compared to the non-nanoformulated parent drug, such
as carrying a large amount and multiple drugs, maintaining
therapeutic drug concentrations for a longer time, and
permeating into cells by endocytosis, which bypasses certain

resistance mechanisms [4]. However, numerous obstacles
make it difficult to develop nanoformulations that can be used
in humans, including biological barriers, safety profiling, and
scaling-up processes [27].

In this review, we will discuss the types of nano-
formulations and the challenges in drug delivery and
clinical translation. We will categorize and discuss the
nanoformulations as metallic NPs, NPs from natural
products, albumin NPs, polymeric micelles, liposomes,
and polyphenolic compounds.

Challenges in drug delivery and the
clinical translation of nanomedicine
(Figure 2)

Despite the availability of non-invasive drug delivery plat-
forms, most cancer nanomedicines use the intravenous route
of administration for the transport of drug to the tu-
mors [29, 30]. The infrastructure of NP delivery to solid tu-
mors is based on the EPR effect [5, 11, 12]; however, there are
significant differences in the EPR effect between patients and
the types of tumors. For example, tumor microenvironment
(TME) properties, including extravasation, diffusivity, hemo-
dynamic regulation, heterogeneity, etc., can have adverse
effects, such as uncertainty of the concentration of NPs in the
tumor vasculature [13]. Furthermore, lymphatic drainage is
non-uniform throughout the tumor mass and there is a
greater mechanical stress and a higher degree of functional
loss in the bulkier regions of tumor, compared to the

Figure 1: Timeline of the history of the
developments in nanotechnology in the field
of medicine. The figure was adapted and
revised from Salvioni et al. [14], Li et al. [17],
and Shi et al. [28].

6 Patel et al.: Nanotechnology-based delivery systems



margins [31]. This factor must be considered in combination
with other factors, such as extravasation and diffusivity,
which affect the equilibrium of the NPs that accumulate in-
side the tumor mass [32]. Furthermore, tumor-associated
factors affecting drug delivery depends on the type of mate-
rial, its compatibility with tissue components, and the archi-
tecture of the tumor itself [16]. It has been reported NP
accumulation increases in the interstitium of the tumor in the
presence of a high number of phagocytic and dendritic
cells [33]. Tumor-associated macrophages (TAMs) have been
shown to significantly accumulate and retain nano-
formulations and they can be gradually released in close
proximity to tumor cells [34–37].

In order to increase drugdelivery to a tumor, it is critical to
determine the interaction between the NPs and surface pro-
teins. A corona-like structure is formed when a NP enters an
organic environment, suchas interstitialfluid, the extracellular
matrix or blood, and the surface of the NP is rapidly enveloped
by lipoproteins or cellular receptors [5, 38–41]. This produces a
series of changes in the structure, size, stability, and surface
properties of the NPs [39]. In addition to the changes in the
physical properties of the NPs, the adsorption will produce a
biological identity for the NP, which will determine its cellular
uptake, intracellular trafficking, toxicity, and pharmacokinetic
(PK) profile [39, 42–45]. All of these changes will increase the
efficacy of anticancer drug. Nanoparticle formulations of
doxorubicin (DOX) in humans activate the complement system,
producing a hypersensitivity reaction (non-immunoglobulin E

(IgE) mediated) [46]. NP-protein interactions are dependent on
the physicochemical properties of the NP, the source and
concentrationof theprotein and the exposure time [47]. Studies
have been conducted to predict the interaction of NPs with
cells. Bigdeli et al. [48] identified a range of protein corona
targets that could potentially improve the design of liposomes.
Hajipour et al. [49] concluded that the typeof thediseaseplays a
critical role in determining the architecture of the corona.
Walkey et al. [50] used qualitative structure-activity relation-
ship (QSAR) to determine the interactions ofNPswithbiological
components. A group of hyaluronan-binding proteins were
identified in this study as mediators of interactions between
the NPs and cells. The goal of this study was to establish a
platform for building an extensive database of protein corona
signatures and its biological responses for various types of NPs.
Unfortunately, the majority of the studies were focused on
NP-protein interactions in vitro. Moreover, in vivo corona for-
mation and its correlation with pharmacokinetic parameters,
biodistribution, and efficacy, have not been fully delineated.
However, Sakulkhu et al. [51] investigated the in vivo protein
corona interaction by using the distinct magnetic properties of
supermagnetic iron oxide nanoparticles (SPIONs). They
extracted NPs from rat sera after their interaction with the
physiological system of rat and found differences between the
types of corona formation in vitroand in vivo, suchas the size of
the corona, the family of proteins, surface charge and its bio-
distribution [51]. Similar future studies will hopefully benefit
and strengthen the advancements in cancer nanomedicine.

Figure 2: Rationale for developing cancer
nanomedicines.
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It is well known that circulation affects the half-life of
the drug. Drug molecules that need to reach poorly perfused
tissues require a longer half-life than drugs that are
distributed to tissues with a larger blood flow [52]. The
opsonization of NPs, which causes their phagocytosis by the
mononuclear phagocytic system (MPS), results from non-
specific interactions between NP and certain serum pro-
teins [52]. Therefore, the NP composition needs to be
considered to decrease or avoid recognition by the immune
system. For example, to prolong the time that NPs remain in
circulation, polyethylene glycol (PEG) grafting is commonly
used because PEGylated carriers delay absorption by the
liver and the spleen [53, 54]. Alternatively, nanoformulations
can be modified by adding molecules that will prevent the
immune system from recognizing them as foreign antigens,
such as the addition of the cluster of differentiation 47 (CD47)
peptide (which decreases recognition by the MPS) [55] or by
camouflaging the NP surfacewith amembrane derived from
either red blood cells (RBCs), white blood cells (WBCs) or
platelets [56, 57]. Factors, including abnormal and uneven
tumor vasculature and perivascular TME, decrease extrav-
asation of NPs from the systemic circulation to tumors [58].
This complication can be addressed by loading the nano-
formulated drug into mesenchymal cells, macrophages and
monocytes or by attaching NP to the membrane of these
cells [58–61].

It is important to note that the size and binding affinity
of the nanocarrier affects the penetration of a drug into a
tumor [62]. It has been reported that higher affinity anti-
bodies that bind to the target antigens on cancer cells, are
less likely to efficiently penetrate into cancer cells, compared
to lower affinity antibodies, due to internalization [62]. NPs
are usually greater in size than antibodies and consequently,
they have a greater probability of being trapped in the
extracellular matrix of the cancer cells [63]. It has been hy-
pothesized that the modulation of the size of the NPs may be
a solution to this problem. Smaller NPs can diffuse
throughout the tumor tissue but particles less than 5 nm in
diameter are readily removed by renal filtration [64–66]. An
in vivo study reported that 15× 54 nmnanorodsmore rapidly
penetrated into orthotopic mammary tumors, compared to
nanospheres that were 35 nm in diameter [67]. Tasciotti
et al. [68] developed amultistage drug delivery system, using
mesoporous silica particles 3.5 µm in size as an outer shell
and a 20–30 nm NP-drug conjugate as the inner core. This
formulation was incubated with human umbilical vein
endothelial cells and the inner core NP were released and
internalized (in distinct vesicles) [68]. Another research
group developed a multistage delivery system, consisting of
an outer layer of 100 nm NPs enclosing a 10 nm drug con-
jugated quantum dot (QD) [65]. These multistage quantum

dot gelatin nanoparticles (QDGelNPs) were composed of a
gelatin core with amino-PEG QDs conjugated to the surface,
using 1-ethyl-3-[3-dimethylaminopropyl] carbodiimide hy-
drochloride/sulfo-N-hydroxysulfosuccinimide (EDC/sulfo-
NHS) coupling chemistry. The 100 nm shell was degraded
enzymatically and the 10 nm core NP was released deep into
the dense collagen matrix of tumor. This formulation pro-
duced an effective delivery of drug to solid tumors.

Because most of the NPs are formulated to reach intra-
cellular targets, their effective cellular uptake and inter-
nalization are required to produce efficacy. This can be done
by placing targeted ligands on the NPs that will interact with
specific receptors on the cancer cells, increasing the proba-
bility of their internalization into the cancer cells [69]. For
example, the United States Food and Drug Administration
(FDA)-approved drug, Abraxane®, utilizes nanoparticle al-
bumin bound (nab) technology, and drug deliverywas due to
GP-60 receptor-mediated transcytosis through microvessel
endothelial cells in the angiogenic tumor vasculature [70].
The uptake and internalization of Abraxane® in metastatic
breast cancer cells was significantly greater than that of
taxol or taxotere. This approach is critical for drug delivery
via the intestinal mucosa and blood-brain barrier [71–73]. In
addition to nab technology, it should be noted that gold
nanoparticles (AuNPs) have the potential to be further
modified to further increase their uptake and internaliza-
tion by cancer cells [74, 75].

NP endosomal release is very important for the cytosolic
delivery of the drug payload, particularly drugs that are
small-interfering ribonucleic acid (siRNA)-based therapeu-
tics, as these drugs must penetrate into cells to interact with
the tumor mRNA to produce their therapeutic effi-
cacy [76, 77]. A considerable number of siRNA-based thera-
peutics only have an endosomal release of 1 %–2 %, although
formulations of this type have been successful in certain
clinical trials [76]. The controlled release of a drug in the
circulation is important in producing a constant level of drug
in the blood, as it helps maintain the dosage level and dosing
frequency, which can improve patient compliance.
Furthermore, the controlled release of the drug decreases
non-target accumulation, thus decreasing the probability of
toxic effects [20]. For the controlled release of NPs, the Cmax

should occur during the the infusion period; however, the
concentration of the released drug will initially be lower
than the Cmax. Subsequently, the Cmax of the free drug
administered intravenously will be significantly greater
than the Cmax of the free drug administered via NP de-
livery [78]. This lower release of the drug will significantly
decrease the probability of toxicity. Furthermore, the EPR
produces a differential accumulation of nanoformulations in
the tumor to a greater magnitude than free or conventional

8 Patel et al.: Nanotechnology-based delivery systems



drugs [79]. The same conventional drug, when released from
the nanoformulation, typically accumulates to a greater
extent in the tumor over a prolonged period of time [12].
Following internalization, NPs either release the loaded drug
outside the cell or it is directed by the intracellular traf-
ficking pathways and the drug is released inside the target
cell [80]. Endosomal avoidance is very important for the
cytosolic delivery of biomacromolecules, such as siRNA. The
delivery of siRNA can be further increased by polymer-based
NPs, cationic lipid, and lipid-like materials [77, 80, 81]. The
majority of RNA-interference (RNAi) therapeutics is formu-
lated in liposomes and the targeted delivery of NPs delivery
can further increase the cellular uptake of siRNA mole-
cules [82]. However, only a small fraction of the siRNA is
released from cellular endosomes [76] and approximately
70 % of the internalized siRNA may undergo exocytosis by
Niemann-Pick type C1 protein [83]. Thus, alternative ap-
proaches will be required to produce NP formulations that
avoid sequestration by endosomes. In addition to cytosol
delivery, targeting mitochondria, the Golgi apparatus, nu-
cleus, and the endoplasmic reticulum, have been uti-
lized [84]. However, further studies must be conducted to
characterize the delivery of NPs through the membranes of
organelles [84–89].

Conventional formulation techniques that are used to
prepare NPs usually produce a greater magnitude of particle
size heterogeneity in the mixture, compared to nano-
formulations [67, 90]. Microfluidic technologies have more
rapid self-assembly characteristics,with a significantly higher
homogeneity and reproducibility, along with manageable
physical and chemical properties [91–95], compared to sol-gel
processes, molecular condensation or chemical reduction.
Current approaches allow a greater control over the chemical
composition, shape, size, drug loading, and surface proper-
ties [96]. However, the translation of this level of control over
a larger scale of production will require the fulfillment of
good manufacturing practice (GMP). The increase in
complexity of the nanoformulations will also require ad-
vancements in chemistry, manufacturing, controls, and GMP
challenges [28]. Advances in the scaling-up process may help
in expediting the translation of these formulations from lab-
oratory (grams) to commercial (kilograms) amounts [97, 98].
Although preclinical data suggests that NPs can increase drug
delivery, a significant percentage of those studies were not
translated into clinical trials. Furthermore, a study has shown
that out of 94% of successful Phase I trials, only 14% pro-
ceeded to Phase III trials with favorable therapeutic
results [99].

The in vitro assessment of NP formulations is essential to
determine the biocompatibility with the targets and candi-
dates before progressing to in vivo studies. Despite generating

a large amount of information, in vitro studies lack the com-
plexities of biological tissues and may not have the complex
interactions of NPs with the physiological barriers [100].
Consequently, further developments are needed in thefield of
biomimetic devices [100–102]. However, animal models
continue to provide critical information regarding the
pharmacokinetics, efficacy, biodistribution, and toxicity, of
the drugs being tested. It is imperative to note that PK
scaling varies widely across species for different
nanoformulations [103–106]. Furthermore, human cancers
are not always recapitulated in vivo and a singlemodel cannot
possibly contain all the biological characteristics of the dis-
ease. For example, EPR ismore erratic in cancer patients than
in animal models [13].

The TME play a significant role in cancer progression and
metastasis and thus, it has become a target for cancer
treatment [107–109]. Certain in vivo studies in mice models
have shown that blocking angiogenesis causes tumor sup-
pression and a decrease in metastasis [110, 111]. The targeting
of TAMs and fibroblasts can be utilized for cancer treatment.
Cellax (docetaxel-conjugate nanoparticles)-treatedmice had a
significant decrease in α-smooth muscle actin (α-SMA)-
expressing fibroblasts, which, in turn, significantly decreased
the tumor extracellular matrix (ECM) and interstitial fluid
pressure (IFP), increased the vascular permeability and
decreased themetastasis of breast cancer [112]. Thus, there is a
direct relationship between ECM and IFP and drug penetra-
tion and subsequently, themetastatic potential of cancer cells.

Various classes of nanomedicines

Metallic NPs

Nanotechnology is used in medical and pharmaceutical ap-
plications, e.g., the delivery of biological materials, vaccines,
and drugs [113]. NPs, particularly metallic NPs, have unique
electrical, optical, magnetic, catalytic, and favorable biolog-
ical characteristics [114]. Metallic NPs are a type of inorganic
nanomaterials that are composed of titanium, silver, gold,
ruthenium, zinc, selenium, iron, copper, gadolinium or
hafnium, have been used for cancer treatment [115]. The
characteristics and advantages of using metallic nano-
materials will be discussed in this section.

Because of its applications in many areas, metallic NPs,
such as titanium dioxide (TiO2NPs), silver (AgNPs), gold
(AuNPs), and ruthenium (ruthenium nanoparticles, RuNPs),
represent useful and versatile molecules [116, 117]. TiO2NPs
have a high capacity for the absorption of short-wavelength
light, which has been widely utilized in various cosmetics
and sunscreens [118]. Due to the innate antioxidant and
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antimicrobial efficacies of silver (which is slowly released
from AgNPs as Ag+ ions), AgNPs have been used as biocidal
compounds, treatment of multidrug resistant microbes,
preservatives for food packing, and decontamination of
water [119, 120]. Indeed, AgNPs have been used to inhibit
microorganism proliferation, as they have broad antibacte-
rial [114], antifungal, and antiviral efficacy [121]. Finally,
there are in vitro data indicating that AgNPs induced the
death of breast and colorectal cancer cells [122].

AuNPs have received increasing interest because of their
stability, biocompatibility, tunable surface, facile synthesis,
optical properties, and ease of chemical modifications, as
AuNPs can be attached to hundreds of different mole-
cules [116, 123]. AuNPs have been shown to be useful as diag-
nostic and therapeutic molecules [124]. Furthermore, AuNPs
can be synthesized as solid spheres, nanospheres, nanorods,
nanocages, nanoclusters, and nanostars, among others,
thereby making AuNPs well-suited for various biomedical
purposes (Figure 3) [125]. Consequently, AuNPs have the po-
tential to be used for the diagnosis, treatment, and prevention
of certain types of cancer [126]. AuNPs can be used for the early
diagnosis of a thrombus by detecting biomarkers for direct
imaging [116]. Recently, clinical trials havebeenconductedwith
AuNPs. In 2021, the clinical trial (NCT04907422) proposed a
novel diagnostic and prognostic approach for the prompt and
timely discovery of cancer stem cells in salivary gland tumors,
using AuNPs conjugated to CD24. CD24 is used as a conjugate as
it regulates the epithelial-mesenchymal transition in cancer
cells [127]. The validation in this trial was done by real-time
quantitative polymerase chain reaction (RT-qPCR). AuNPs have

been reported to increase the efficiency of proton therapy, as
the insertion ofAuNPs increases the absorbed radiationdose in
tumors [127]. A novel nucleotide-carrying AuNP formulation,
known asNU-0129, is undergoing early Phase I clinical trials for
patients with relapsing glioblastoma or gliosarcoma [128]. DOX
tetheredwithAuNPswere synthesized for drug release into the
acidic microenvironment of the cells, resulting in a reversal of
adenosine triphosphate (ATP)-binding cassette (ABC) trans-
porter activity and higher nuclear localization in MCF-7/ADR
cells [129]. This represents an excellent example of mitigating
MDR in cancer using nanomedicine. Luo et al. developed a
prostate cancer (PCa)-targeted gold nanocluster radio-
sensitizer, coupled with monomethyl auristatin E (a potent
cytotoxin), for radiotherapy and chemotherapy. This approach
produced a greater nanocluster uptake by prostate-specific
membrane antigen (PSMA)-positive cancer cells and it pro-
duced an increased efficacy of radiotherapy in vitro and
in vivo [130]. RuNPs have been investigated as antibacterial
molecules, catalysts, and pharmaceuticals, due to their bio-
toxicity, high surface-to-volume ratio, large optical properties,
and high photothermal conversion rate [131]. Similar to AuNPs,
RuNPs also have good biocompatibility [132, 133]. RuNPs target
cancer by DNA damage-induced apoptosis, topoisomerase-II
inhibition, inhibition of the mitogen-activated protein kinase
(MAPK) signaling pathway, activation of the p53-dependent
caspase-3 mediated signaling, upregulation of adenomatous
polyposis coli (APC) and p53 genes, inhibition of proteasome
activity, p53-independent activity, inhibition of the hypoxia-
inducible factor-1 (HIF-1) pathway, anti-metastasis activity and
the induction of dysfunction in lysosomal activity [134]. RuNPs

Figure 3: Various classes of cancer nanomedicines.
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are being developed as a nanoparticle drug delivery system for
the photothermal treatment of cancer, as they have efficient
near-infrared (NIR) efficacy in colorectal HIEC-6, Caco-2,
SW480, HCT116, and CT26 WT cancer cells [132, 133]. Li
et al. [135] reported that RuZ (ruthenium [II] complex), at a
maximum concentration of 30mg/mL, self-assembles in the
cell culture media and had high penetration in SW620/Ad300,
KB-C2, KB-ATO, H460/MX20, BEL-7404/CP20, BIU-87/DDP, and
MDA-MB-231/Adr MDR cancer cell lines, with half maximal
inhibitory concentration (IC50) values of 1.75, 2.64, 1.58, 0.70, 1.34,
1.26 and 1.96 μmol/L, respectively [135]. Lakshmi et al. [136]
synthesized ruthenium (II)-curcumin liposome NPs and it
produced cytotoxicity and nuclear damage in HeLa cells [IC50
value=99 μg/mL].

Gold nanostars are synthesized from HAuCl4 as pre-
cursors and hydroxylamine as a reductant above pH 11 [137].
Gold nanorods and nanospheres are some of the simplest
nano-preparations in metallic NPs, with sizes of 60 nm and
20–40 nm, respectively [138]. Gold nanocages and nano-
clusters are approximately 7–20 nm in size and they have
positive and negative charges [139, 140]. Silver nanocrystals
range in size from 1 to 100 nm and are used for diagnosis,
drug delivery, treatment, and personal health care [121].
Liposomal ruthenium (II)-curcumin nanoformulation is a
hybrid preparation that was developed to overcome the
hydrophobicity of curcumin [136].

There are several physical and chemicalmethods that can
be used to synthesize and stabilize metallic NPs [120, 141].
Currently, environmentally friendlymethods (knownas green
chemistry) of nanoparticle synthesis have received increasing
interest [131, 142–148]. In physical processes, metallic NPs are
produced using evaporation/condensation techniques [149].
Conventionally, certain NPsmaterials, such as silver (Ag), gold
(Au) and lead (II) sulfide (PbS), were synthesized using a tube
furnace at atmospheric pressure [150]. Chemical reduction,
using organic and inorganic reducing compounds, such as
sodium citrate, ascorbate, and the Tollens reagent, is the most
widely used chemical method to synthesize metallic NPs [151].
Since conventional methods of NP production involves using
chemical compounds that produce environmental toxicity,
green syntheses have been widely studied, which used eco-
friendly and biocompatible procedures [151, 152]. The green-
synthesis of TiO2NPs can be accomplished using extracts of
clove (Syzygium aromaticum), black pepper (Piper nigrum),
and coriander (Coriandrum sativum) [142]. AuNPs and AgNPs
were first synthesized using a leaf extract from Perilla fru-
tescens [141]. Bark [143, 153] and plantwater extracts [146]may
be a good source of reducing compounds for the synthesis of
metallic NPs. Biological green synthesis has been reported
using fungi, bacteria, and other microorganisms [144]. The
biological AuNPs (conjugated with proteins, lipids, DNA or

antibodies), and AgNPs (Trichoderma spp.-AgNP-T or Scle-
rotinia sp.-AgNP-S), which had antifungal efficacy in patho-
genic fungi, were synthesized using the fungus, Trichoderma
longibrachiatum [145, 148].

Metallic NPs have been of significant interest to re-
searchers due to their extensive medical applications, such as
targeted delivery, enhancement of anticancer efficacy, and
increased contrast for imaging tumors [150, 154, 155]. Thera-
peutically, metallic NPs are considered a useful treatment due
to their multifunctional physical, optical, and magnetic prop-
erties, which results in increased penetration and detection in
the body [156]. Numerous studies have reported that metallic
NPs have efficacy in liver, breast, colon, prostate, and human
leukemic monocyte cancer cells [157–160]. Metallic NPs are
usually coupled with a targeting compound or molecule and
are loadedwith chemotherapeutic drug to increase therapeutic
efficacy [161]. AuNPs have been utilized to a greater extent than
other NPs because they are relatively easy to synthesize and
have a tolerable safety profile [162]. AuNPs cappedwith bovine
serum albumin (BSA) are effective carriers of methotrexate
(MTX, an anticancer drug) toMCF-7 breast cancer cells, thereby
increasing the drug efficacy, compared to conventional for-
mulations [163]. Similarly, Majoumouo et al. reported that
AuNPs had efficacy in MCF-7 and Caco-2 cancer cells [147]. NPs
can penetrate the blood-brain barrier (BBB) due to their
diminutive size, and surface properties, such as high inter-
activity and plasmon resonance [164–166]. AuNPs were devel-
oped as an alternative delivery platform to the central nervous
systemwithmodified ligands, using targetingmoieties, such as
transferrin (Tf) [167]. As nanocarriers, AuNPs provide a plat-
form to attach biomolecules, such as oligonucleotides, proteins
and peptides, and exosomes [154]. Zhang et al. [168] generated
exosomes combinedwithAuNPs,whichwasusedas the vehicle
for the chemotherapeutic drug, DOX, for the treatment of
melanoma. They used C57BL/6 mice and used the B16F10
tumor-bearing model to determine the in vivo biodistribution
of EVdox@AuNPat adose of 2.5 mg/kg via intravenous infusion.
The results indicated that the AuNP formulation accumulated
to a greater extent in the tumors, compared to unconjugated
AuNPs. Following drug accumulation in the tumors, a laser
beam was used to irradiate the tumors for 5min. There was a
slight increase in temperature (to 38.1 °C) in areas without NP
accumulation, however, the areas that accumulatedAuNPs had
a rapid increase in temperature (to 46.1 °C) in just 1min. These
results suggest that the EVdox@AuNPs photothermal trans-
formation, internalization, and retention in the tumor re-
gion [168]. Chen et al. [169] used DOX to prepare a thermo-
responsive drug release formulation todetermine its efficacy in
KB-3-1 cancer cells. Their results indicated that the novel frag-
mented polymer nanotubes had favorable biocompatibility
and were cytotoxic in KB-3-1 cancer cells (IC50=1.4 μmol/L).
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These specific types of polymer nanotubes have the potential to
be used as efficient delivery systems for anti-cancer drugs
because of their thermo-responsive gating system [169].

Metallic NPs have been evaluated as diagnostic and
therapeutic molecules. Currently, however, only a few tech-
nologies based on metallic NPs have been approved by the
FDA for diagnostic and therapeutic use [15]. For example, the
nanodrug, Aurimune (CYT-6091), was produced by linking
AuNPs to recombinant human tumor necrosis factor-α
(rhTNF-α) and PEG [170]. The results of a Phase I clinical trial
indicated that CYT-6091 was significantly more efficacious
than rhTNF-α in patients with advanced solid tumors,
compared to conventionally formulated treatment. Patents
based on NPs, can be used to developmore precisely targeted
therapeutics in support of the respective inventions. Chauhan
et al. disclosed their invention (Patent No. US10456363B2),
which is composed ofmodified cyclodextrin-coatedmagnetite
NPs as a targeted nanocarrier for hydrophobic drugs [171].
The patent (WO2013/176468Al) reported the development of a
liver-targeted drug delivery systems, using AuNPs [172].
Another patent (WO 2014/047318) for drug delivery, invented
by Kaittanis et al. [15] is based on iron oxide NPs [173]. In
breast cancer patients, superparamagnetic iron oxide nano-
particles (SPION) accumulate in the sentinel lymph nodes
(SLN). In a Phase I clinical trial (NCT05359783), SPION was
used as neoadjuvant therapy and a biopsy was done by
minimal invasion to the tissue, resulting in a de-escalated, less
complex surgery [174]. Bort et al. showed that the activation
and guiding of irradiation by X-ray (AGuIX® NP) had
improved accumulation and retention in tumors via an
EPR effect [175]. A novel nanoradiosensitizer for the radio-
therapy of cancers, NBTXR3, is a hafnium-based theranostic
tool [176]. Additional research with metallic NPs should pro-
vide important data about the properties of metallic NPs that
can be studied to provide efficacious cancer treatments
(Table 1).

Nanoformulations of natural products

Natural products and their numerous derivatives are valu-
able sources of compounds with anticancer efficacy,
including extracts from animals, plants, and microorgan-
isms, among others [183, 184]. Due to their effects onmultiple
cellular signaling pathways and their acceptable safety
profile, more than half of all clinically used chemothera-
peutic drugs are natural products [185, 186]. For anticancer
therapy, various nanoformulations have been designed to:
(1) decrease or abrogate MDR and/or the adverse and toxic
effects produced by anticancer therapeutics and (2) improve
targeted drug delivery and bioavailability [187]. In this

section, we will discuss the anticancer efficacy of natural
product nanoformulations.

Certain nanoformulations (i.e., dendrimers, polymers,
liposomes, nano-emulsions, and micelles) can decrease par-
ticle sizes and have been used to increase bioavailability and
minimize the adverse effects produced by the ligand(s) they
deliver to the tumor site(s) [188]. The nanoformulations
generally have a size range from 10 to 100 nm and can be
classified as nanocarriers, no-carrier-added nanosuspensions
and polymer-drug conjugates [189]. During the formulation of
nano-drugs, investigators need to consider whether the drug
is dissolved, entrapped, encapsulated or adhered to the drug
carrier [28]. The formulation should target the tumor site and
release the drug during the delivery process [4]. Various
methods used to synthesize nanoformulations are selected
based on the different nanoformulations (i.e., dendrimers,
polymers, liposomes, nano-emulsions, andmicelles) [190]. It is
vital to indicate that certain natural products alone have off-
target toxicity, low solubility, and lowcell permeability,which
can limit their anti-cancer efficacy [191]. Therefore, a drug
delivery system, based on nanoformulation methods, repre-
sents an alternative strategy to significantly increase the
chemopreventive and chemotherapeutic efficacy of natural
products [183]. Nanopreparation techniques can be used to
successfully deliver the natural products to the target
site [157]. In this section, we discuss relevant nano-
formulations of natural products that have the potential to be
used as anticancer drugs.

(1E,6E)-1,7-bis (4-hydroxy-3-methoxyphenyl)-1,6-heptadiene-3,5-
dione, also known as curcumin (CUR), a natural bioactive com-
pound, which has antioxidant and anticancer efficacy,
belongs to the curcuminoid subgroup of polyphenols
(Figure 3) [192, 193]. Due to its poor bioavailability, certain
nanotechnology strategies are utilized to improve the
pharmacokinetic properties of CUR, thereby increasing the
probability of significant therapeutic efficacy. One of these
strategies is to deliver CUR to the target site, using various
stimuli, such as light, pH, magnetic field, solubility, and
chemical modifications [194]. A nanosystem was developed
by encapsulating CUR into pH-responsive poly D,L-lactic-co-
glycolic acid (PLGA) microspheres, which delivered hydro-
phobic drugs to the triple negative breast cancer cell lines,
MCF-7, MDA-MB-231 and MDA-MB-468, that overexpress
folate receptors [195]. Lai et al. [196] developed a pH-reactive
hyaluronic acid-based NPs for targeted CUR delivery to in-
crease its anticancer efficacy biosafety profile. Numerous
researchers used photoresponsive nanoformulations to in-
crease the stability and solubility of CUR. Alvi et al. [197]
entrappedAu-liposomeNPs as an adjuvant for photothermal
therapy (PTT). NIR light exposure (780 nm for 5 min) in B16
melanoma cells activated the release of CUR nanocrystals,
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which coalesced to form CUR microcrystals for the contin-
uous release of the active compound [197]. Studies have been
conducted to increase the solubility, bioavailability, and
stability of CUR [198, 199]. A self-assembling acylated oval-
bumin nanogel for CURwas synthesized that had a relatively
uniform size distribution and higher stability under high
ionic strength and different pH [198]. Due to the poor water
solubility of CUR (11 μg/L) [200], researchers have synthe-
sized nanoformulations of CUR to surmount this problem.
Mangalathillam et al. [201] developed curcumin-loaded
chitin nanogels using biocompatible and biodegradable
chitin. The formulation was cytotoxic to A375 melanoma
cells, at concentrations from 0.1 to 1.0 mg/mL. Gou et al. [202]
developed curcumin encapsulated with monomethoxy
poly(ethylene glycol)-poly(ε-caprolactone) (MPEG-PCL) mi-
celles, using a nano-precipitation method. This formulation
decreased the viability (IC50=5.78 μg/mL) of C-26 colon cancer
cells. CUR or Cur/MPEG-PCL micelles (curcumin, 100 mg/kg)
were intravenously injected in rats and blood collection was
performed at different intervals of time. For Cur/MPEG-PCL
micelles, the following PK data was obtained: tmax=5 min,
t1/2=34.2 min, area under the curve (AUC)(0→t)=47,642.1 μg/L/
min, AUC(0→∞)=47,864.6 μg/L/min, and Cmax=430.5 μg/mL.
These values were significantly higher than those for free
curcumin and indicated that the encapsulation increased the
t1/2, AUC(0→t), AUC(0→∞), and Cmax in vivo. Furthermore, a
transgenic zebrafish model was used to ascertain the anti-
angiogenic efficacy of Cur/MPEG-PCL micelles. Zebrafish
were exposed to free CUR (5 μg/mL) or Cur/MPEG-PCL mi-
celles (5 μg/mL) for 72 h. The results indicated that both free
CUR and Cur/MPEG-PCL micelles inhibited angiogenesis by
different magnitudes (significantly greater in micellar CUR),
resulting in the abnormal formation or absence of inter-
segmental vessels in the Zebrafish.

The compound (3R,5aS,6R,8aS,9R,12S,12aR)-octahydro-
3,6,9-trimethyl-3,12-epoxy-12H-pyrano[4,3-j]-1,2-benzodioxe
pin-10(3H)-one, also known as artemisinin (ART), is present
in the plant Artemisia annua [203]. In vitro and in vivo
studies have reported that ART has antitumor, antifungal,
anti-malarial, and anti-ulcer efficacy [204]. However, ART
has a lower solubility in water, a shorter half-life and an
increased first-passage metabolism, which limits its thera-
peutic efficacy [205]. The synthesis of ART-containing NPs
improve the pharmacokinetic profile of ART and increase
the in vivo efficacy of ART. Zhang et al. [206] synthesized
hollow mesoporous manganese trioxide NPs for the in vivo
delivery of ART. They synthesized a drug delivery system,
TKD@RBCm-Mn2O3-ART, that specifically releases and
produces a uniform dispersion of chemotherapeutic drugs
in tumors. ART was loaded into Mn2O3 to facilitate the co-
delivery of Mn2+ with ART. In vitro experiments indicated

that the cumulative drug release reached a maximum of
97.5 % in the presence of glutathione. TKD@RBCm-Mn2O3-
ART released Mn2+ and ART simultaneously, which pro-
duced high levels of reactive oxygen species (ROS) and DNA
damage. In vivo results indicated that TKD@RBCm-Mn2O3/
ART penetrated deep into solid tumors and produced a
definitive diagnosis and treatment of breast cancer. Yu
et al. [207] modified ART-loaded liposomes with activatable
cell-penetrating peptides. This formulation was composed
of Tf-coated, dihydroartemisinin (DHA), L-buthionine-sul-
foximine (BSO), and CellROX-loaded liposomal nano-
particles (Tf-DBC NPs). ART was integrated into acidic
pH-responsive liposomes that significantly decreased the
proliferation of HepG2 cancer cells (IC50=2.5 μmol/L) and
avoided oxidative stress to normal cells, as indicated by a
fluorescence response of CellROX in HepG2 and normal
cells. Tf-coated liposomal NPs encapsulating Cyanine7 (Tf-
Cy7 NPs) were prepared to provide data about the circula-
tion profile of the nanoformulation in tumor-bearing fe-
male BALB/c nude mice (that were subcutaneously injected
with HepG2 cancer cells to create a HepG2 tumor model).
After injecting 0.9 mg/kg via intravenous infusion, the cir-
culation half-life (t1/2) was 4.81 h, which indicated the
presence of Tf-Cy7 NPs in the bloodstream, thus indicating
that the formulation was stable in vivo. In vivo and ex vivo
analysis showed that fluorescence occurred only in
tumorous areas after the intravenous injection of Tf-DBC
NPs, indicating that the normal cells were not affected by
the oxidative stress induced by the nanoformulation.
Halevas et al. [208] designed a dendritic-linear-dendritic
hybrid copolymer to encapsulate ART, using linear PEG
chains and hyperbranched 2,2-bis(hydroxymethyl)propi-
onic acid (bis-MPA) and this preparation was hydrophilic.
The IC50 value of Art-loaded bis-MPA PEG6k-OH, pseudo-
generation 4 (G4-PEG6k-OH) hyperbranched dendritic
scaffolds (AHDS) in MCF-7 after 72 h of incubation was
30.5 μmol/L. The results indicated that the formulation
maintained the anticancer efficacy of ART but was not toxic
in normal 3T3 fibroblasts cells.

A significant interest in the development of nano-drugs
has resulted in more inventions related to preparation
methods and applications [209]. Nano-curcumin and its de-
rivatives, such as isovanillin curcumin, ferulic acid curcumin,
3,5-di-tert-butyl-4-hydroxybenzaldehyde curcumin, syringal-
dehyde curcumin, and 4-methoxy-1-naphthaldehyde curcu-
min, have been the most common compounds evaluated for
pharmacological efficacy in cancer cells. Xiao et al. [210] (patent
no. WO2020088702A1) invented a method of making nano-
crystals that increased the bioavailability of certain curcumi-
noids and camptothecin. The patent (WO2020249383A1)
reported the invention of an active substance delivery system
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for curcumin to be used for the treatment of peritoneal me-
tastases in numerous cancers [211]. Although the nanoparticle
formulations of natural products have garnered increased
attention, challenges, and problems, such as nanotoxicity,must
be determined.

Albumin NPs

Albumin is the most abundant protein in the plasma that is
involved inmanyphysiological processes, suchasmaintenance
of osmotic pressure, transport of hormones, ligands, drugs, and
neutralization of free radicals, among others [212]. It is a
multifunctional protein that is highly stable, biodegradable,
biocompatible and non-immunogenic [213]. Albumin has
numerous high-affinity hydrophobic binding sites that can
bind a number of ligands and drugs [214]. Thus, based on these
aforementioned properties, albumin is commonly used as a
nanocarrier [213]. Albumin NPs can be formulated in combi-
nation with other nanocarriers, such as polymeric micelles,
liposomes, metallic NPs, silica, and nanosheets, among others,
to improve cellular uptake efficiency and minimize the
immunogenicity of the parent drug [215–220]. Albumin has a
number of properties that make it a highly suited nanocarrier.
Albuminhasan isoelectricpoint of 4.25 at physiological pH [221]
and thus, it has dense negatively charged areas thatwill induce
a strong repulsive force towards negatively charged proteins,
such as hemopexin, haptoglobin and transferrin, which in-
creases its stability and half-life in the circulation [222–224].
Multiple functional groups in albumin, such as amino and
carboxyl groups, facilitate the binding with ligands by forming
covalent or non-covalent bonds [225]. Themost commonly used
albumin for nanoformulations is derived from BSA or human
serum albumin (HSA), although ovalbumin can also be
used [226]. HSA is a protein (molecular weight [MW]=133 kDa,
5.2 × 5.3 × 11.7 nm in dimensions) that consists of three ho-
mologous α-helical domains that are composed of ten anti-
parallel helices that form a heart-shaped, asymmetric struc-
ture [227]. BSA NPs offer biocompatibility, non-toxicity, biode-
gradability, non-immunogenicity and a higher drug-binding
capacity [228]. BSA (MW=69 kDa) is an acidic, globular, single
polypeptide chain protein that is found abundantly in some
mammals, with a half-life of 19 days [228]. Anti-cancer drug
binding with albumin can be done via covalent and/or non-
covalent conjugation [229]. Since albumin NPs are very
versatile molecules, this conjugation can bemanipulated as
required.

The majority of albumin nanoformulations are prepared
by desolvation, which involves: (1) the precipitation of NPs by
depleting the solvation layer, using a dehydrating agent, such
as ethanol; (2) densification and stabilization by chemical

crosslinking; (3) additional purification to remove redundant
solvents and crosslinking molecules [230]. Desolvation is a
simple and inexpensive process that can be completed in
approximately 3 h [231]. In addition, thermal gelation, emul-
sification (used for hydrophobic drugs) and electrostatic in-
teractions (used for positively charged drugs), are used when
desolvation is not achievable [226]. For other proteins, nano-
formulations, such as gelatinNPs, collagenNPs,milk proteins,
casein NPs, silk fibroin NPs, elastin NPs, and various other
plant-based protein NPs have been used. Methods such as, pH
variation [232], nano-spray drying [233], sonochemical
method [18], phase separation [234], rapid laminar jet [235],
milling [236], and polymer chain collapse [237], are the most
commonly used preparatory methods [18, 233, 238, 239].
However, there is no perfect approach and each method has
its advantages and disadvantages. Abraxane® (FDAapproved)
is one of the well-known nanoformulations that are based on
albumin NPs [70, 240]. Other examples include DOX-loaded in
BSA-dextran-chitosanNPs prepared by thermal gelation [241],
poorly soluble 10-hydroxycamptothecin-loaded in BSA NPs
via emulsification [242], and paclitaxel-loaded BSA NPs, using
desolvation [243].

Albumin NPs target the cancer cells via active or passive
targeting [228]. Active targeting includes binding of the NPs
to the surface receptors entering the cell via internalization.
In contrast, there is an EPR effect in passive targeting. Cancer
cells usually express a high level of certain glycoproteins,
such as Gp18, Gp30, and Gp60, secreted protein acidic rich in
cysteine (SPARC) receptors, which are important binding
sites for albumin NPs [228]. The accumulation of albumin-
based NPs in solid tumors can be affected by the angiogen-
esis, leaky vasculature, and defective lymphatic
drainage [213]. PEGylation increases the circulation half-life
by >50-fold, decreases immunogenicity, and increases the
accumulation of BSA nanoformulation of 5-fluorouracil in
tumors due to the EPR effect [244]. HSA NPs represent a
viable approach for targeted drug delivery by increasing
drug bioavailability and distribution, decreasing drug
toxicity and immunogenicity [70, 240]. Despite having
several advantages, albumin NPs have certain drawbacks.
For example, manipulation of particle size, shape, distribu-
tion, and stability poses major challenges. Furthermore, the
factors affecting the toxicity of albumin NPs, such as the
composition and surface properties must be precisely
controlled. There is also batch-to-batch quality variation,
which can impede the scaling-up process. A compelling
approach to overcome this challenge is recombinant protein
technology, where mono-dispersity and predefined charac-
teristics of polymers alongwith the predictable arrangement
of crosslinking groups, binding moieties at specific sites or
their programmable degradation rates, makes them
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suitable and convenient for drug delivery and tissue engi-
neering systems [226]. Moreover, there are limited publi-
cations about the immunogenicity of proteins, although
there are no published reports about the antigenicity
of albumin NPs, even after intravenous (IV)
injections [245–248].

Polymeric micelles

Polymeric micelles are composed of various amphiphilic
polymers that preferentially self-assemble in an aqueous
medium [249]. Each unit of polymeric micelles comprises a
hydrophilic and a hydrophobic segment (Figure 3). These
amphiphilic polymers are synthesized using various poly-
meric blocks, which can be customized, as needed, depend-
ing on the size, capacity, hydrophobicity, micellization
capacity, and stability in blood [249]. Similar to the albumin
NPs, the nanosize of the micelles facilitates penetration
through the leaky vasculature and retention due to defective
lymphatic drainage in tumors [250]. The outer layer of
micellar encapsulation is typically hydrophilic and there-
fore, it evades detection by the reticulo-endothelial sys-
tem [251]. Polymeric micelles can be modulated or adjusted
by the addition of ligands on the surface that are involved in
active targeting [250]. Various building blocks of polymers,
such as PEG coupled with either phosphatidylethanolamine
(PE), polypropylene oxide (PPO) triblock polymer (PEG-PPO-
PEG), PEG-amino acids or PEG-carbonates, can be used
individually or in combination. PEG-PE was one of the first
lipid-based amphiphilic polymers to be used to integrate in
the liposomal lipid bilayer to sterically stabilize lipo-
somes [252]. In the next step of PEG-PE preparation by self-
assembly, drugs are added and this process is primarily
based on the physicochemical characteristics of the drug and
the method of preparation [253]. PEG-PE self assembles at a
low micellar concentration, allowing for the encapsulation
of hydrophobic drugs [254, 255]. PEG-PE, coupled with
vitamin-E micelles, has been used to formulate camptothe-
cin, DOX and paclitaxel, with sizes ranging from 15 to
100 nm [256]. PEG-PPO-PEG triblock polymers, also known as
pluronics or poloxamers, have core shell structures of
pluronics, 10–100 nm in diameter and the preparation and
formation process is temperature- and concentration-
dependent [249]. These polymers, such as Pluronic® P85
carrying DOX and Pluronic® P123/F127 block copolymers car-
rying rhodamine-123, rhodamine-G, DOX and paclitaxel, have
been reported to inhibit the ABC transporters, P-glycoprotein
(P-gp), multidrug resistance-associated protein-1 (MRP1) and
breast cancer resistance protein (BCRP), thereby effectively
decreasing MDR [257–259]. Anti-cancer drugs, either

individually or in combination with adjuvants or other anti-
cancer drugs, can be loaded onto pluronics [260–264]. Du
et al. [265] used α-tocopherol polyethylene glycol 2000 suc-
cinate (TPGS2k) to modify PEG NPs and the NPs were co-
loaded with simvastatin and DOX [265]. The resulting
formulation significantly decreased lipid raft formation
(>80 %) in SW620/AD300 (colon cancer cells resistant to DOX)
cells. In the presence of 20 μg/mL of free simvastatin (SV)
or DOX, SW620 cell viability following incubation with
SV@TPGS2k-PLGA NPs, DOX@TPGS2k-PLGA NPs and SV/
DOX@TPGS2k-PLGA NPs was 28.1 , 25.9 and 13.2 %, respec-
tively and the viability of SW620/AD300 cells was 27.2 , 24.1,
and 11.3 %, respectively. The preparation of PEG-amino acids
has only been recently reported in the scientific literature.
Polypeptide chains can be linked to PEG and amino acids,
based on the type of formulation desired, are used. For
example, the amino acids, L-lysine, L-glutamate, and L-
aspartate are used for hydrophilic preparations [266].
DOX [267, 268] and cisplatin [269] can be loaded to produce
PEG-amino acids.

The preparation of polymeric micelles depends on the
following factors and conditions: temperature, pH, micellar
concentration, ionic charge, surface characteristics, inter-
action with organic counterparts, and kinetic stability [250].
Some of the methods used for the preparation of polymeric
micelles include dissolution, dialysis, emulsion and solvent-
casting, and film hydration [270–273]. The characterization
of micelles is clinically important as it helps to define and
predict their interactions with other molecules [274]. The
thorough characterization of micelles involves the deter-
mination of critical micellar concentration (CMC), the drug
payload, and its release [274–276]. Generally, this charac-
terization is accomplished using dynamic light scattering
(DLS) [277], atomic force microscopy (AFM) [274, 278], cryo-
transmission electric microscopy (Cryo-TEM) [279], X-ray
scattering [280–282], and Foerster resonance energy transfer
(FRET) [275, 276, 283, 284]. A study involving DOX formulated
with a dextran-based polymeric nanosystem reported a
higher toxicity in various cancer cells in vitro, compared to
the parent drug [285]. SNB-101 is a novel micellar nano-
formulation for the anticancer drug, SN-38, that has an
approved investigational new drug (IND) application for the
treatment of various cancers and it is in Phase I clinical trials
for tumors (NCT04640480) [179]. A drug named PRECIOUS-01
is undergoing evaluation in Phase I clinical trials for
advanced solid tumors. This is a PLGA-based nanocarrier
that has promising therapeutic potential [180].

It is important to note that polymeric micelles can pre-
maturely release drugs prior to reaching the target site [286].
Drug release is an essential step in drug delivery, as an op-
timum drug concentration must reach the tumor site(s) to
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achieve an intracellular level that is efficacious [287].
Membrane dialysis or ultracentrifugation can be used to
determine the amount of a drug that is released from poly-
meric micelles [288–291].

Liposomes

Dr. Alec Bangham discovered liposomes in 1964 [292], which
are now some of the most commonly used nanosystems.
Basically, liposomes are spherical systems that have two outer
hydrophilic layers with a lipophilic layer in between [293]. Li-
posomes that have more than one concentric lipid bilayer are
known as multilamellar vesicles (MLVs) [293]. Liposomes are
typically classified into small unilamellar vesicles (SUV), large
unilamellar vesicles (LUV), MLVs, and multi-vesicular vesicles
(MVV) [294]. The best route of administration for liposomal
drug delivery is the parenteral route, as these formulationswill
circumvent: (1) first pass metabolism; (2) adverse gastrointes-
tinal (GI) effects; (3) poor GI tract absorption [294]. Further-
more, parenteral administration results in a higher
bioavailability and increased efficacy, compared to oral or
rectal administration [295]. Liposomes are biodegradable,
highly biocompatible, and are prepared via self-assembly [296].
One of the most extensively used polymers is PEG. PEGylated
liposomes are considered to be a “stealth formulation”, as these
molecules are sterically stabilized liposomes that have a
decreased propensity to aggregate, which decreases their
interaction with opsonins, thereby decreasing their removal
from the circulation by phagocytosis [297]. Doxil® was the first
liposome-based DOX formulation and FDA approved liposome-
based formulations include DaunoXome® (AIDS-related Kapo-
si’s sarcoma), Myocet® (metastatic breast cancer), DepoCyt®

(neoplastic meningitis), Marqibo® (acute lymphoblastic leuke-
mia), Onivyde™ (metastatic adenocarcinoma of pancreas), and
Mepact® (metastatic osteosarcoma) [196]. Lipid-saporin com-
bination of NPs can serve as a novel therapeutic regimen for
ABCB1/ABCG2-positive drug-resistant cancers. Patel et al.
developed palmitoyl carnitine-anchored nano-liposomes for
targeted delivery of gemcitabine elaidate for the treatment of
pancreatic cancer [298]. This combination therapy of gemcita-
bine elaidate with palmitoyl DL-carnitine chloride inhibits
protein kinase-C inhibitor in a nano-liposomal carrier that had
increased cellular uptake, producing a decrease in angiogen-
esis and increasing the anticancer potential in both 2D and 3D
models of pancreatic tumors in vitro. Dinakar et al. exploited
the abundance of folate receptors in breast cancer to develop a
folate and poly-I-Lysine conjugate and coated it on liposomes
for targeted drug delivery [299]. Their result indicates a
decrease in the IC50 values and the induction of death in breast
cancer cells via folate receptor-mediated internalization,

followed by rapid drug release. Furthermore, they determined
that luteolin formation inhibits cellmigration andproliferation
by regulating the expression of vascular endothelial growth
factor (VEGF) and the induction of apoptosis by caspase-3
upregulation. Zhan et al. reported that liposomal dexmedeto-
midine could provide controlled, adjustable and on-demand
local anesthesia in vivo [181]. INT-1B3 is a novel synthetic lipo-
somal miR-193a-3p (tumor suppressor microRNA) mimicking
NP [182]. INT-1B3 decreased target gene expression, resulting in
decreased cell proliferation, increased cell cycle arrest, initia-
tion of apoptosis, inhibition ofmigration, DNA damage and cell
senescence in vivo [182]. In addition, research in the area of
liposomal mRNA vaccine delivery (Figure 3) has gained an
increased interest in recent years. These NPs have the unique
advantages of controlled release, improved biosafety and high
biocompatibility [80]. They also serve as immunotherapy ad-
juvants, in addition to delivering mRNA vaccines. This results
in killing the cancer cells by reviving the anti-tumor immune
response, maintaining the response and improving the
threshold, producing prolonged survival and a better quality of
life in patients with advanced tumors [300].

The laboratory manufacturing of liposomes primarily in-
volves the dissolution of phospholipids in certain organic sol-
vents, ethanol, isopropyl ether, diethyl ether, chloroform or
methanol, either individually or in various combinations [296].
The fundamental molecular units of a liposome preparation
are phospholipids and cholesterol [296]. At the CMC, typically in
the nanomolar range, liposomes undergo self-assembly when
exposed to an aqueous environment [301, 302]. In a method
known as lipid film hydration, an organic solvent, such as tri-
chloromethane, is used to dissolve the phospholipids [303, 304].
The lipophilic drug is subsequently added to the solvent to form
a one-phase solution and the removal of the organic solvent is
done under a vacuum, forming thin sheets of lipid with uni-
form distribution of the drug along the film [303, 304]. This
procedure produces hydration of the sheets in the presence of
an aqueous buffer that is above the glass transition phase (a
reversible transition phase that occurs when an amorphous
material is cooled or heated over a certain range of tempera-
tures, which causes the material to become hard and brittle
upon cooling and softer upon heating) of the lipid [295, 305]. If
the drug is hydrophilic, it will dissolve in the aqueous buffer,
leading to a particle size greater than 500 nm, with an
entrapment efficiency of 10–30%. In contrast, for lipophilic
drugs, an optimumvesicle size is obtained,with an entrapment
efficiency >90% [306, 307].

Another technique, known as solvent dispersion, in-
volves phospholipids being dissolved in a water-miscible
organic solvent, usually ethanol [308–310]. If the lipophilic
drug is not miscible in ethanol, other organic solvents, such
as diethyl ether or ether–methanol mixture, may be
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used [296]. Instead of an aqueous buffer being added to the
organic solution in the previous method, the mixture
(organic solvent and drug) is added to the aqueous buffer,
the solvent becomes diluted and there is a spontaneous
formation of MLVs, usually of size above 500 nm [294]. This
technique is best suited for lipophilic drugs.

Reverse phase evaporation, yet another technique
used to formulate liposomes and it is the most frequently
used technique for forming liposomes with hydrophilic
drugs [311]. This technique can entrap a large amount of an
aqueous core during the formation, yielding high entrap-
ment efficiency [312, 313]. In a water/oil emulsion, the hy-
drophilic drug is dissolved in water and the phospholipid is
dissolved in a water-immiscible solvent, usually diethyl
ether or isopropyl ether [314]. The removal of the organic
solvent using a vacuum leads to the gradual formation of a
gel [296]. A liposomal dispersion is produced when the
organic solvent is further evaporated [315]. The passive
drug-loading efficiency for liposomes prepared via reverse
phase evaporation is 30–50 % and it can be increased to
>90 %, using active drug-loading techniques [311, 316, 317].
The stability of the final preparation depends on the
physical and chemical environment and the storage con-
ditions. The size of the carrier, the drug payload and
chemical stability, can be significantly altered by improper
storage conditions [295]. Importantly, the majority of
marketed liposomal formulations need to be stored at 2–8 °
C [295].

Scaling-up technologies for liposomal preparation are
very limited. One of the most commonly used techniques is
the rapid injection of ethanol and phospholipids into an
aqueous medium, followed by extrusion of solvent, using a
polycarbonate membrane. This approach ensures size
reproducibility and the quality of the liposomes [308]. A
typical commercial preparation involves the following
sequential steps: preparation of buffer, filtration, prepara-
tion of a phospholipid solution, second filtration, lipid hy-
dration, extrusion, diafiltration, dilution, sterile filtration,
and filling [318–321].

Polyphenols

Anestimated 10,000 polyphenolic substances have a structure
that includes multiple hydroxyl groups and aromatic
rings [322, 323]. These compounds are present in high con-
centrations in various fruits and vegetables as secondary
plant metabolites [323], and the most frequently occurring of
these are the flavonoids (about 60%) and phenolic acids
(about 33%) [324]. Polyphenols are primarily obtained from
(1) fruits: plums, apricots, oranges, apples, tomatoes, cherries,

peaches, berries, and other tropical fruits; (2) vegetables:
broccoli, spinach, onions, carrots, olives, beans, capers, arti-
chokes and cauliflowers; (3) herbs and spices: celery, rose-
mary, cloves, turmeric, parsley, thyme, mint, sage, dill weed,
ginger, and curry and; (4) other sources: red wine, black or
green tea, cocoa, coffee, fruit juices, beer, seeds, grains, and
nuts [191, 322, 325–331]. Polyphenols have been reported to be
efficacious in dyslipidemia, GI diseases, cardiovascular dis-
eases, inflammatory disorders, neurological disorders and
various cancers, due to their antioxidative and immuno-
modulatory effects [332–334]. Epigenetic modifications (pri-
marily a result of DNA methyltransferases or histone
deacetylases) also play an important role in the efficacy of
dietary polyphenols. For example, the consumption of
quercetin-rich food is significantly correlatedwith decreasing
the risk of lung and gastric cancer [335–337]. In vitro studies
indicate that resveratrol is efficacious in inhibiting the pro-
liferation of stomach, breast, colon, prostate, lung, pancreatic,
and thyroid cancer cell lines [338]. Green tea extract contains
a high concentration catechins, such as epigallocatechin-
3-gallate, epicatechin-3-gallate, and epigallocatechin, which
inhibit cancer cell growth, metastasis, and angiogenesis
in vitro [339–341]. An in vitro study has shown that epi-
gallocatechin-3-gallate modulates the expression of regulato-
ry proteins involved in cell cycle, activates caspases-3,
caspase-8, and caspase-9 and suppresses the activation of
nuclear factor-kappa B (NF-κB), resulting in the induction of
apoptosis and the inhibition of cancer cell growth [342].
Cruciferous vegetables in the Brassica genus (e.g., cabbage,
broccoli, kale) contain sulfur-rich compounds, known as
glucosinates, that can decrease the risk of lung cancer and
colon cancer in humans [343, 344].

Dietary polyphenols are primarily present in glycosylated
forms, with sugar residues linked to the aromatic ring or the
hydroxyl group [326, 345], which are more efficiently absorbed
by the GI tract via passive diffusion [345]. Gallic acid, catechins,
flavanones, and quercetin glucosides have been reported to
have the highest GI absorption, compared to galloylated tea
catechins, proanthocyanidins, and anthocyanins, which are
among the least GI-absorbed polyphenols [346]. The extraction
processused toobtainpolyphenols fromnatural sources canbe
done using fresh, frozen, or dried samples and before the
process begins, the material is exposed to milling, grinding,
drying, and homogenization [347]. The freeze-drying process
produces a higher yield of phenolic compounds, compared to
air drying [348]. Liquid-liquid and solid-liquid extraction are
widely used methods because of their applicability, efficiency,
and ease of use [347, 349]. Solvents, such as ethanol, ethyl ac-
etate, acetone, and diethyl ether, are generally used in various
ratioswithwater. The extraction of nonpolar compounds, such
as oils, waxes, chlorophyll and sterols and the extraction from
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less polar solvents, such as chloroform, benzene, dichloro-
methane and hexane, may be possible [347]. Solvents, such as
methanol, yield a higher level of low molecular weight poly-
phenols, whereas acetone yields a higher level of high molec-
ular weight flavanols [350–353]. Modern techniques, like
supercritical fluid technology, have been widely used for the
separationof polyphenols from theirnatural sources [354]. This
technique prevents the oxidation and degradation of the
polyphenols [354, 355]. The main advantage of supercritical
fluids is that they dynamically change the solvent character-
istics and yield the desired levels of the extracts from raw
materials [354]. Typically, supercritical CO2 is used as the sol-
vent because of its high penetration into cellular materials or
tissue explants and its solvent power [356]. Propane, argon, and
sulfur hexafluoride (SF6) are supercriticalfluids that have been
used in supercritical fluid extraction methods [356]. Certain
end products of polyphenol extraction include curcuminoids,
stilbenes, tannins, lignans, phenolic acids, and flavonoids,
i.e., flavanones, flavanols, anthocyanidins, catechins, iso-
flavones, and chalcones [347].

Discussion

Cancer is one of the leading causes of death in the world and
the efficacy of anticancer drugs can be significantly decreased

or abolished byMDR that occurs via a number ofmechanisms.
Furthermore, physiological factors, such as higher IFP, hyp-
oxia, leaky tumor vasculature, low pH, and irregular drug
penetration due to inaccessible location of cells, also decrease
the efficacy of anti-cancer drugs (Figure 4) [28]. Unfortunately,
increasing the dose of an anticancer drug, as well as drug
combinations, significantly increases the probability of
adverse effects and toxicity, thereby causing a decrease or
absence of patient compliance, which increases cancer cell
proliferation and a subsequent relapse. Studies over the past
two decades suggest that certain nanomedicine formulations
can overcome some of the mechanisms that produce MDR in
cancer cells. There are certain advantages in using nano-
medicine, compared to conventional preparations [357].
Nanoformulations effectively permeate and overcome bio-
logical barriers, such as transporters in cell membranes
throughout the body. Some studies have reported that nano-
preparations bypass ABC transporters and effectively kill the
cancer cells. One study reported an increase in the nuclear
localization of DOX in a few sets of sensitive- and drug-
resistant cells when the drug was introduced with nano-
spheres, compared to parent drug [358]. It is important to state
that cancer nanomedicine is not a “magic bullet” for the
treatment of cancer. Certain factors, such as the interaction
between NPs and surface proteins, i.e., protein corona for-
mation, while maintaining the stability and half-life of the

Figure 4: An overview of factors affecting
multidrug resistance in cancer.
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drug, must be taken into consideration. The size and binding
affinity of NPsmust be evaluated for the internalization of the
therapeutic. Furthermore, the magnitude of cellular uptake is
critical in determining the efficacy of nanoformulations. A
drugmay not enter the cell even after successful delivery near
the target cell due to inadequate cellular uptake. Furthermore,
NP endosomal release is crucial for successful drug delivery,
especially for siRNA-based therapeutics. Although numerous
researchers have studied the nanodelivery and co-delivery of
NPs for the reversal of MDR, there have been ambiguous re-
sults in clinical trials [359–361]. This could have been due to a
number of factors, such as a decrease in the effective release
of a drug from the core [249]. Also, immune response reac-
tivation is only seen in a small subset of patients. Finally, the
absence of biomarkers to assess the efficacy of cancer nano-
therapeutics is one of the main obstacles to attaining tailored
immunotherapy.

As discussed in themain text, it is apparent that the field
of cancer nanomedicine has great potential. Cancer nano-
medicine caters unique advantages such as controlled and
sustained release, better biosafety, higher biocompatibility,
and lower systemic toxicity. Furthermore, certain types of
NPs like liposomes and polymeric micelles serve as adju-
vants in addition to delivering therapeutic payloads like
mRNA vaccines. Nanoformulations can efficiently accumu-
late at the tumor site(s) via active or passive targeting or by
the EPR effect. NPs have an increased circulation time and
increased half-life. The interaction between NPs and bio-
logical components may improve drug delivery. Further-
more, nanomedicine can co-deliver a multi-drug or a multi-
stage payload, which represents a promising approach to
overcome MDR. Nonetheless, it will be critical to ascertain
the toxicity profile of these novel therapeutics to determine
if these compounds can be used to treat cancer in humans.
Moreover, certain challenges, such as varied efficacy of in-
dustrial production, various side effects like pruritus, rashes,
nausea, diarrhea and thyroid disorders, must be further
evaluated. Consequently, in vivo studies must be conducted
to determine the safety and efficacy of anticancer nano-
medicines. Finally, researchers in academia and industry
must develop scaling-up technologies without the loss of
reproducibility. The gap in clinical translation of cancer
nanomedicine can be further decreased by the development
of humanized animal models, as there are significant
structural and biochemical differences between tumors in
rodents and humans. These humanized animal models must
contain human-derived factors such as immune cells. EPR is
vital for drug delivery; however, the uncertainty of the EPR
effect in different patients leads to dubious results in clinical
trials. This can possibly be solved by determining the level of
the EPR effect in the patients. Although most NPs achieve

active targeting, the mechanism behind this phenomenon
remains unclear. However, it is firmly believed that the ef-
ficacy of cancer nanomedicine can be significantly improved
by combining the advancements in cancer biology and
nanotechnology.

The uniqueness of each case of cancer is a huge hurdle
in the clinical translation of cancer drug research. In the past
50 years, a plethora of knowledge has been amassed, pro-
ducing notable progress in the field of cancer nanomedicine.
The era of personalized and customized nanomedicine has
inevitably arrived that must help in overcoming unique but
fundamental mechanisms of MDR.
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