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The RR-interval time series or tachograms obtained from electrocardiograms have been
widely studied since they reflect the cardiac variability, and this is an indicative of the
health status of a person. The tachogram can be seen as a highly non-linear and
complex time series, and therefore, should be analyzed with non-linear techniques. In
this work, several entropy measures, Sample Entropy (SampEn), Approximate Entropy
(ApEn), and Fuzzy Entropy (FuzzyEn) are used as a measure of heart rate variability
(HRV). Tachograms belonging to thirty-nine subjects were obtained from a cardiac stress
test consisting of a rest period followed by a period of moderate physical activity.
Subjects are grouped according to their physical activity using the IPAQ sedentary
and active questionnaire, we work with youth and middle-aged adults. The entropy
measures for each group show that for the sedentary subjects the values are high at
rest and decrease appreciably with moderate physical activity, This happens for both
young and middle-aged adults. These results are highly reproducible. In the case of
the subjects that exercise regularly, an increase in entropy is observed or they tend
to retain the entropy value that they had at rest. It seems that there is a possible
correlation between the physical condition of a person with the increase or decrease
in entropy during moderate physical activity with respect to the entropy at rest. It was
also observed that entropy during longer physical activity tests tends to decrease as
fatigue accumulates, but this decrease is small compared to the change that occurs
when going from rest to physical activity.

Keywords: exercise, stress test, heart rate variability, tachograms, entropy, complexity, physical conditioning

INTRODUCTION

The variability of human heart rate (HRV), is obtained by measuring the beat-to-beat changes in
the duration of the RR interval of the electrocardiogram (ECG), is the result of the combination of
different physiological control systems, which operate on different scales temporary and that allow
the functioning of the body to adapt to physical, environmental or other changes. Such fluctuations
have been represented as a superimposition of rhythms, which contribute to the neuroautonomic
modulation of the heart rhythm in healthy conditions, and are altered by a wide variety of disease
states. In fact, there is a consensus among the scientific community that the long-term RR interval
time series are non-linear and multifractal and that the HRV scale behavior is altered with aging,
during physical exercise and in pathological conditions such as for example, myocardial infarction
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(Iyengar et al., 1996; Ivanov et al., 1999a; Huikuri et al., 2000;
Bernaola-Galván et al., 2017; Gómez-Extremera et al., 2018;
Faes et al., 2019). It is also widely accepted that the evaluation
of HRV on different time scales has allowed us to give a
quite satisfactory explanation of the short-term mechanisms
underlying cardiovascular control (Malliani et al., 1991; Cohen
and Taylor, 2002; Xiong et al., 2017). When heart rate variability
(HRV) is reduced, we associate this reduction with an elevated
risk for cardiovascular disease (Tsuji et al., 1994; Felber Dietrich
et al., 2006), and an increase in mortality has also been reported
in patients with circulatory system diseases (Ziegler et al., 2008;
Drawz et al., 2013). HRV can be extracted from the ECG; we
localize the R points and calculate the RR-intervals time series
or tachograms. HRV is usually measured under well-controlled
conditions over short periods of time of few minutes. Today,
there is a greater use of ambulatory HRV measurement, usually
with the use of a long-term ambulatory meter or Holter.

Long-term measurement makes it easy to assess the influence
on HRV of activities of daily living as physical exercise. Changes
in HRV induced by low or intense physical activity have been
extensively reported (Tulppo et al., 1996; Aubert et al., 2003;
Leicht et al., 2008; Goya-Esteban et al., 2012; Weippert et al., 2014;
Taylor et al., 2017). In particular, in a seminal article, Karasik
et al. (2002) noted how the dynamics of the heartbeat can change
dramatically with physical activity. They noted that there are
important differences in cardiac regulation associated with rest
and exercise that cannot be clearly distinguished when analyzing
the combined records of rest and exercise. They proposed that
cardiac dynamics can be represented by a biased random walk
toward some preferred levels of attraction: at rest, both the
sympathetic and parasympathetic systems are active, and each
attracts the walker to its own level. When the walker is between
the two levels, each level biases in the opposite direction, virtually
canceling the effect of the other. Therefore, the walker is free to
move in both directions until he crosses either level and then is
forced to return. With this proposal, they explained the crossover
that they found in the scaling behavior of a higher value of the
correlation exponent on short scales, where the fluctuations of
the walker are not limited, to a lower value of the exponent on
large time scales, where the walker’s dynamics is limited by the
levels of attraction of the sympathetic and the parasympathetic.

During exercise, the sympathetic system dominates and the
walker fluctuates around this level producing anti-correlated
behavior on short time scales. However, since the level of
attraction changes over time and as the walker follows these
changes, fluctuations in the walk increase on intermediate
time scales, causing a crossover to a more correlated behavior
(Karasik et al., 2002).

Tachograms are non-linear time series, highly
inhomogeneous, and non-stationary (Sugihara et al., 1996),
they fluctuate in a complex way, suggesting that different parts of
the signal have different scaling properties (Ivanov et al., 2001,
2002; Guzmán-Vargas et al., 2005; Voss et al., 2009; Shekatkar
et al., 2017); therefore, non-linear methods can better capture
changes in HRV that cannot be captured by linear methods. To
analyze these time series, it has been used a lot of non-linear
methodologies, for instance, detrended fluctuation analysis

(Peng et al., 1995; Hu et al., 2001; Guzmán-Vargas et al., 2005;
Muñoz Diosdado et al., 2005), time irreversibility (Porta et al.,
2008; Visnovcova et al., 2014), fractal dimension (Higuchi,
1988; Eke et al., 2002), multifractal spectra (Goldberger et al.,
2002; Aguilar-Molina et al., 2019), and a great number of other
non-linear methodologies, and among them several entropy
measures have been used to the same objective [see for instance
(Shi et al., 2017) and references (Peng et al., 1995; Hu et al.,
2001; Ivanov et al., 2001; Guzmán-Vargas et al., 2005; Muñoz
Diosdado et al., 2005; Voss et al., 2009; Shekatkar et al., 2017)
in that article]. The entropy of a dynamic system measures the
information contained in its current state (Xiong et al., 2017),
higher values of entropy indicate a more complex signal, and
lower value of entropy implies less complexity of the signal.
Entropy measurements can be applied to noisy processes with
important stochastic components such as those that describe
the dynamic activity of real-world systems, and they have been
applied with great success to many fields of research, including
HRV (Kurths et al., 1995; Porta et al., 1998; Vikman et al., 1999;
Vigo et al., 2010; Voss et al., 2015; Xiong et al., 2017). The
so-called conditional entropy includes a wide range of entropy
measurements and estimates that have been recently proposed
to quantify the complexity of a time series (Xiong et al., 2017).
These measures, which include Approximate Entropy (ApEn;
Pincus, 1991; Richman and Moorman, 2000), Sample Entropy
(SampEn; Richman and Moorman, 2000; Lake and Moorman,
2011), Fuzzy Entropy (FuzzyEn; De Luca and Termini, 1972;
Chen et al., 2007), corrected conditional entropy (Porta et al.,
1998), and permutation entropy (Bandt and Pompe, 2002), are
widely used for estimating conditional entropy in various fields.

One of the most important entropy measures is SampEn
(Pincus, 1991; Richman and Moorman, 2000) which lately has
been the most used because it has several advantages, one of
which is that its values are stable with the size of the time series,
SampEn was proposed because the first introduced kernel-based
measure conditional entropy, the ApEn, was usually skewed
(Xiong et al., 2017). One of the most recent and important articles
on the calculation of conditional entropy is that of Xiong et al.
(2017), that analyzed the dependence of the different entropies
on the specific parameters of the estimator, as well as the effects
of three types of non-stationarity due to the artifacts that are
most commonly found in real data (trends, random peaks, and
changes in local variance). In this article they presented for the
first time a quantitative assessment of the impact on entropy
measures of trends originating from the intrinsic dynamics of
systems exhibiting multifractality properties. They considered the
study of human heartbeat fluctuations in different physiological
states and pathological conditions and their results evidenced
advantages and pitfalls of entropy measures and estimators, as
well as provided indications and recommendations for their
optimal use in the study of real-world time series. In the HRV
series analysis, when entropy measurements are applied correctly,
they can characterize changes of specific types in the cardiac
system that are associated with different physiological and clinical
states. Xiong et al. established that a correct interpretation
of the behavior of entropy measurements requires a clear
understanding of the properties of the chosen specific measure
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and estimator, and an adequate choice of preprocessing applied
to the measured signals. This is because when entropy methods
are applied directly to the original HRV signals, there may
be factors present in the data, such as long-range trends or
correlations, which differently affect entropy measurements and
estimators, and therefore can lead to inconsistent results and
make interpretation difficult. In this work SampEn is used for the
analysis of the RR-intervals time series, but the ApEn and Fuzzy
En were also used to reinforce our results.

Exercise can bring out cardiovascular alterations that are not
present at rest and can therefore be used as a means to assess
cardiac function. Comparison between resting HRV time series
or HRV time series during physical activity, using non-linear
techniques has been an important topic (Ivanov et al., 1999b;
Karasik et al., 2002) for several years, for example, in 1999
Ivanov et al. (1999b) compared the scaling properties of cardiac
dynamics during sleep and wake periods for healthy individuals,
subjects with congestive heart failure (CHF) and cosmonauts
during orbital flight, and for the three groups, they found a higher
degree of anti-correlation in the fluctuations in heartbeat during
sleep compared to waking periods, and this difference from sleep-
wake in the exponents of scale for all three groups is comparable
to the difference between healthy and CHF patients. The
observed differences in the scale that they reported (Ivanov et al.,
1999b) are not simply explained by the different levels of activity.
Karasik et al. (2002) studied the HRV of the heartbeat of healthy
individuals at rest and during exercise. They focused on the
correlation properties of the intervals formed by successive peaks
in the time series and found significant scale differences between
rest and exercise. For exercise, the interval series is anti-correlated
on short time scales and correlated on intermediate time scales,
while for rest they observed the opposite crossover pattern. As
mentioned above, they suggested a physiological explanation
to provide an intuitive explanation of the scale differences
between rest and exercise. Of no less interest have been the
analyzes of HRV observed due to circadian regulation and
how it influences cardiac dynamics, for example, Ivanov (2007)
hypothesized that, in addition to known periodic rhythms with a
characteristic time scale, the mechanisms of sleep and circadian
regulation can influence cardiac dynamics on a wide range of
time scales and, therefore, could lead to systematic changes in
the scale properties of heartbeat fluctuations. They found that
scale-invariant characteristics of heartbeat dynamics, which have
previously been associated with the underlying mechanisms of
cardiac regulation, change significantly with the transition from
sleep to wakefulness, through the stages of sleep and circadian
phases, both in healthy and pathological conditions.

The endogenous circadian pacemaker is known to influence
physiological functions, it is normally synchronized with the
sleep-wake cycle, and HRV often exhibits complex continuous
fluctuations, even in healthy resting conditions (Ivanov et al.,
1996, 1999a,b; Bunde et al., 2000; Ivanov et al., 2001; Hu et al.,
2004). Heartbeat fluctuations in healthy subjects possess a self-
similar temporal structure related to the underlying cardiac
control mechanism, characterized by long-range correlations
over a wide range of scales (Peng et al., 1995; Ivanov et al., 2001).
These characteristics change with sleep-wake states (Ivanov et al.,

1999b; Bunde et al., 2000; Kantelhardt et al., 2002; Penzel et al.,
2003; Hu et al., 2004), exercise (Karasik et al., 2002; Martinis
et al., 2004), and in pathological conditions (Goldberger, 1996;
Ho et al., 1997; Ivanov et al., 2001). Ivanov et al. (2007) established
in a relevant article that physical activity affects the average
heart rate, but it is not known how the dynamic scale-invariant
measures of these two physiological variables are related. They
investigated the activity and heartbeat data in healthy subjects at
all circadian phases and determined whether circadian influences
on static or dynamic characteristics of heart rate regulation are
decoupled from circadian influences on activity regulation. They
noted that exercise, may also be an independent contributing
factor to increased cardiac risk when living outside of the
laboratory setting.

The stress test (ST) is a procedure diagnostic that assesses
the response of the heart to a progressive physical exercise.
The ST is one of the most common non-invasive tests in
cardiology to establish or confirm the diagnosis and prognosis
of heart disease and to assess the effect of its treatment. The
presence of cardiovascular abnormalities can be manifested by
alterations of the parameters that are determined during the
test. Thus, undergoing additional work for the heart, while
watching the patient and his ECG monitors, it is possible to
discover heart problems that are not evident in the subject
at rest. It has been shown that heart rate increases during
exercise due to both parasympathetic withdrawal and increased
sympathetic activity. The relative role of these two impulses
depends on the intensity of the exercise (Aubert et al., 2003).
It has been reported in animal models that obtaining physical
conditioning, before an induced pathology, can reduce the
problems caused by the disease (Amaral et al., 2016). In this
work we measured how active the study subjects were by using
the IPAQ (International Physical Activity Questionnaire; Booth,
2000; Booth et al., 2000; Craig et al., 2003; International Physical
Activity Questionnaire [IPAQ], 2016) questionnaire, although
there are different ways to study physical activity data, the use
of this scoring method enhances the comparability between
surveys. IPAQ is an instrument specially designed to monitor the
population of physical activity among adults.

In this work the SampEn, ApEn, and FuzzyEn algorithms
were applied to the analysis of tachograms obtained from healthy
adults both at rest and during STs. The ST consisted of walking
on a treadmill for 30 min. We worked with three groups of
people: A group of young sedentary people around 20 years of
age, another group of adults around 50 years also of sedentary
habits, and another group of people that without being athletes
perform physical activity daily on a regular basis. Significant
differences were found between the entropy values from the rest
series and entropy values during the STs for the three groups.
In the sedentary groups (both young and middle-aged adults)
there is a decrease in the entropy. But in the case of people
who regularly do exercise there is a different trend. Finally, in
a test of longer duration (60 min) entropy decreases as the ST
progresses, this last test was performed both on treadmill and
running track and in both cases the trend is the same. Insights
about the influence of physical condition on the entropy values
can be obtained from the results.
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The paper is organized as follows. The method and the
procedure to obtain the data are described in section “Materials
and methods.” In section “Results” we present our results and
in the Discussion section we analyze and interpret the results
obtained for the entropy in the different situations. Finally, we
present our conclusions.

MATERIALS AND METHODS

From a time series with N points given by the expression {xi, 1 ≤
i ≤ N}, a set of vectors of length m is constructed. There are
various methods to evaluate entropy (Kurths et al., 1995), we have
chosen three of them in the present work, that we will describe
below. SampEn is our principal method and ApEn and FuzzyEn
have been used for comparison purposes and to reinforce our
results. SampEn does not present major changes due to the length
of the time series. In previous research it had been proven that
the method gives excellent results for synthetic and physiological
time series (Muñoz-Diosdado et al., 2017).

Algorithm of Approximate Entropy
The evaluation of entropy can be thought of as the conditional
probability that two templates matching within an arbitrary
tolerance will continue to match at the next point. Entropy
is estimated with greater precision when more events are
counted. For a length m < N and starting point i, the template
xm(i) is the vector containing the m consecutive intervals
xi, xi+1, · · · , xi+m−1 (Richman and Moorman, 2000), m is the
length of sequences to be compared, and r is the tolerance
for accepting matches. The ApEn measures the irregularity
of a time series by comparing subseries of length m, each
subseries represents a pattern, which is subsequently compared
with the other patterns of the same length. Therefore, the more
repeatability there is between the patterns, the more predictable,
or regular the time series will be. For a time series {xi, 1 ≤
i ≤ N} ApEn can be calculated by the following procedure
(Shi et al., 2017).

Exi =
(
xi, xi+τ, · · · , xi+(m−1)τ

)
Here m indicates the embedding dimension and τ the time delay.
In this way, N −mτ+ 1 vectors of length m can be constructed,
for example, for τ = 1 and m = 3, the first three vectors are:
(x1, x2, x3) , Ex2 = (x2, x3, x 4) y Ex3 = (x3, x4, x5 ).

The distance between the vectors Exi and Exj is defined as the
maximum difference in absolute value of the components of the
vectors, that is,

di,j = max (
∣∣Exi+k − Exj+k∣∣ , 0 ≤ k ≤ m− 1).

For a vector Exi of length m we calculate the percentage of vectors
Exj whose distance is less than a threshold factor r, that is, di,j ≤ r:

Cm
i =

Nm
i (r)

N −m

Where Nm
i (r) is the total number of vectors v “similar” to the

vector Exi, on the other hand. Is important to consider that if

the series are not normalizad the r factor is normally considered
as a fraction of the standard deviation of the time series,(
σx = std(xi)

)
, usually r = 0.2 σx (Richman and Moorman,

2000). In the evaluation of entropy it is quite common that the
series is normalized with a standard deviation equal to 1, that is
why the tolerance in that case is simply equal to r.

The average of the percentages for the time series {xi, 1 ≤ i ≤
N} is defined as:

8m (r) =
N−m∑
i=1

ln
[
Cm
i (r)

]
N −m

The above process is repeated to calculate 8m+1 (r). ApEn of the
time series is calculated by:

ApEn (m, r) = 8m(r)−8m+1(r)

Algorithm of Sample Entropy
The sampling entropy (SampEn) was developed because it
has a better representation of the entropy of the analyzed
signals compared to the ApEn (Richman and Moorman, 2000).
The motivation for this method is the classification of the
complex system that includes both deterministic and stochastic
characteristics of time series with a limited number of data points
compared to other measures such as the correlation dimension
(Grasberger and Procaccia, 1983).

In a similar way to what is done for the ApEn, the vectors Exi
and Exj of length m are obtained.

Thus, in this context two vectors Exi and Exj are similar if they
meet that di,j < r, where r is a threshold value that depends on
established conditions. Analogously to the case of ApEn it is
chosen as: r = 0.2 σx if the time series is not normalized.

For a lengthm and threshold r, the number of vectors of length
m similar to Exi is calculated by:

nmi =
N−m∑
j = 1
j 6= i

δ(i, j, m, r)

Where

δ
(
i, j, m, r

)
=

{
1 if di,j < r
0 otherwise

It is noteworthy that i 6= j, means that the self-comparison of a
vector with itself is not considered in the sum. The similarity Am

i
of the vector set Exi y Exj for a length m is calculated by:

Am
i =

1
N −m

nmi , i = 1, 2, · · · , N-m

Now the average similarity can be obtained by the expression

Am
=

1
N −m

N−m∑
i=1

Am
i

Using the same time series and tolerance r, the average similarity
is calculated for a vector of length m+ 1, that is, it is
calculated Am+1 .
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The so-called SampEn is obtained by,

Sample En (m, r) = −ln
Am+1

Am

Algorithm of Fuzzy Entropy
The FuzzyEn is a methodology very similar to the SampEn, as
in the previous cases the vectors of longitude m, Exi and Exj are
defined from the time series {xi, 1 ≤ i ≤ N}. The counting of
similar vectors is now done by changing the reference r by the
membership function:

µ
(
di,j, r

)
= exp(−ln (2)

(
di,j
r

)2
)

Where di,j represents the distance:

di,j = max
(∣∣[Exi+k − xi

]
−
[
Exj+k − xj

]∣∣ , 0 ≤ k ≤ m− 1
)
.

Where

xi =
1
m

m−1∑
k=0

Exi+k

In this case, xi and xj are, respectively, the averages of the vectors
Exi and Exj, this eliminates the local average of vectors. In this way,
FuzzyEn evaluates the similarity between vectors based primarily
on their shape. From the above it is obtained that the degree of
similarity is in this case:

Bmi =
1

N −m

N−m∑
j = 1
j 6= i

µ
(
di,j, r

)
, i = 1, 2, · · · , N-m

From now on the calculations are identical to those made for
the SampEn. Again r = 0.2 σx as in the previous methods. The
average similarity for the FuzzyEn is:

Bm =
1

N −m

N−m∑
i=1

Bmi

With the same parameters Bm+1 is evaluated, finally FuzzyEn
is obtained:

fuzzy En (m, r) = −ln
Bm+1

Bm

All three methods require values of the parameters m, r, and
τ, based on our previous experience and that reported by other
authors (Pincus, 1991; Richman and Moorman, 2000; Lake and
Moorman, 2011; Muñoz-Diosdado et al., 2017; Shi et al., 2017)
we obtained better results for the set of values: of r = 0.2, m = 2,
and τ = 1 for present calculations, although we had previously
used m = 3 and the results were also good. For example, Shi
et al. (2017) used the values of m = 2, r = 0.1, and τ = 1 for
the calculations they made, for ApEn, SampEn, and FuzzyEn
and other entropies they used. Richman and Moorman (Richman
and Moorman, 2000) showed that for series with more than
100 points, the SampEn values with m = 2, and r = 0.2 have
deviations less than 3% of the predicted values, while for very

short series, the values obtained for SampEn have deviations up to
35%. Lake and Moorman (2011) used r = 0.2 and different values
of m, they obtained excellent results for both m = 1 and m = 2.
Muñoz-Diosdado et al. (2017) also obtained good results using
r = 0.2 and m = 3, this m-value was chosen because they analyzed
series with 10,000 points. Pincus (1991) analyzed the ApEn for
values of m = 1, 2, and r between 0.1 and 0.25. We can show,
for time series generated by us for white, Brownian and pink
(1/f) noises, the performance of these three methodologies for
different parameter values. The self-affine series were generated
with N = 3000 data and different values of the spectral exponent
β: β = 0 (white noise), β = 1 (pink noise), and β = 2 (Brownian
noise), to generate the series we followed the methodology of
the references (Mandelbrot and Van Ness, 1968; Malamud and
Turcotte, 1999; Gálvez Coyt et al., 2010).

As a comparison of the three methods to calculate the
entropies, three time series of length N = 3000 data were used, the
first series corresponds to white noise, the second to Brownian
noise and the third to 1/f noise. For the three series, the three
entropies were calculated for values of m = 1, 2, 3, and 4 and
r = 0.1, 0.2, and 0.3 (multiplied by the standard deviation of
the time series). All the results obtained are summarized in
Figure 1. Figure 1A shows the results for white noise, Figure 1B
for Brownian noise and Figure 1C for 1/f noise. Since they
are not real-world series, they were not preprocessed. As can
be seen, the highest entropy values are obtained for 1/f noise,
then for white noise and finally for Brownian noise. Considering
the variation of the entropies with the m-value, it turns out
that the graphs for the SampEn (in red color) are practically
horizontal lines for all cases (m = 1, 2, 3, and 4). For the ApEn
(blue), the variations are stronger in all cases, although in the
case of Brownian noise, their variations are not as dramatic as
in the case of 1/f noise and white noise. The FuzzyEn (green)
also presents important variations, but for cases m = 3 and
4, its values for m = 1 and m = 2 are very similar, so its
performance is better for m = 1 and 2. This last observation is
also valid for the ApEn. In other words, the SampleEn is the
most stable when changing the size of the m-value. As for the
variation of the entropies with respect to r, it causes a vertical
displacement for all of them. This is a well-known fact: For
instance, Xiong et al. (2017) have reported that the width of r
determines the size of the cells used for the probability estimation:
when it decreases, less r points are included in the cell used to
estimate the probabilities; therefore the estimated probabilities
are lower, giving higher entropy estimates. On the contrary,
when r increases, more points are included in the vicinity of
any reference point, which increases the estimated probability
and therefore leads to lower entropy estimates. Since taking the
tolerance equal to 0.2 σx gives the intermediate values for all
entropies, in this work we chose to evaluate the entropies with
this tolerance value.

In this manuscript we work with HRV series at rest and
HRV series when exercising, we report the observed changes in
entropy, that is, we evaluate SampEn, ApEn, and FuzzyEn and
we calculate the exercise-rest variations and report such changes,
obviously the changes do not have the same values, but the
trends are the same, that is, if we notice that there is a decrease
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FIGURE 1 | Values of SampEn (A; red), ApEn (B; blue), and FuzzyEn (C; Green) for self-affine time series with 3000 data and different values of m (1, 2, 3, and 4) and
r (0.1, 0.2, and 0.3). SampEn behaves stably for different values of m, the variations in entropy values with respect to r are normal, the largest entropy values
correspond to the smallest values of r and vice versa, the smallest entropy values correspond to the larger values of r.

in entropy, such decrease is observed in the three entropies,
although the average changes do not have the same value.

Therefore, although the three entropies were evaluated, the
values shown in the graphs correspond to SampEn if not stated
otherwise, because as shown in Figure 1, this entropy has more
stable values and the calculations are more robust than the other
entropies, the choice of m = 2 and r = 0.2 provides good estimates
for the three entropies, but mainly for SampEn.

We know that the accuracy of the estimates is highly
dependent on the time series length, so very long time series
would be needed to yield accurate estimation of conditional
entropy if there are strong positive long-range correlations.
However, based on our experience and in the other authors
(Richman and Moorman, 2000; Lake and Moorman, 2011;
Muñoz-Diosdado et al., 2017; Shi et al., 2017), SampEn is the
most stable entropy with respect to the time series length. In our
case, we chose to use series of the same length to assess entropy.

Physionet
To illustrate how the methods work and how they can give
good results, SampEn, ApEn, and FuzzyEn were implemented
in the analysis of tachograms obtained from the beat to beat
time of the Physionet datasets of CHF RR Interval Database

(Goldberger et al., 2000) with 29 CHF patients, the BIDMC
CHF Database with 15 CHF patients subjects, and the Normal
Sinus Rhythm RR Interval Database with 54 patients with
normal sinus rhythm. We obtained 6-h subseries when the
subjects were sleeping, but it was only possible to obtain these
subseries for 52 healthy subjects and 39 patients. The results
are shown in Figure 2, we applied T-Student tests with a
significance level of 0.05 to show that there is a statistically
significant difference between the average entropies for healthy
subjects and CHF patients, the same behavior is observed for
SampEn, ApEn, and FuzzyEn. For SampEn, we obtained for the
patients with CHF: SampEnCHF = 0.6567± 0.2923 and for the
healthy SampEnH = 0.8398± 0.2039, the values are statistically
different with a p-value of pSampEn = 0.00060; for ApEn we
obtained: ApEnCHF = 0.8067± 0.2602 and ApEnH = 0.9967±
0.1851 and these average values are statistically different, pApEn =
0.0001, and finally, for the FuzzyEn: FuzzyEnCHF = 0.3273±
0.0938 and FuzzyEn H = 0.3995± 0.0823, and there is also
a significant difference, with pFuzzyEn = 0.0002. In general,
there is a diminution in the entropy associated to the CHF
disease (Martinis et al., 2004; Goya-Esteban et al., 2012). After
appreciating that the three entropies could properly differentiate
between healthy and congestive subjects, the methods were used
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FIGURE 2 | Entropy comparison of the asleep period time series of the 39 congestive patients and 52 healthy subjects. The time series correspond to the 6-h
records while the subjects are asleep. (A) Sample Entropy. (B) Approximate Entropy. (C) Fuzzy Entropy.

for people in a cardiac stress condition, as we will describe in the
following. But in order not to be repetitive and since the same
behavior is observed for the three entropies, the graphs illustrate
preferably the SampEn.

Physical Activity
Physical inactivity is a global health problem, one of the most
standardized approaches to measure it was proposed by Craig
et al. (2003), based on a proposal by Booth (2000). Its objective
was to develop an appropriate measure to assess the levels of
physical activity of the population in all countries.

The questionnaire they proposed, the IPAQ, was designed to
be used in adults between 18 and 65 years old. There is a short
version that provides information on the time spent walking, in
activities of vigorous and moderate intensity and in sedentary
activities. The long version, which was the one we use in this
work, was designed to collect detailed information within the
domains of domestic and garden work activities, occupational
activity, transportation and physical activity in leisure time, as
well as sedentary activity. IPAQ instruments have been used to
collect reliable and valid physical activity data in many countries
(Booth et al., 2000; International Physical Activity Questionnaire
[IPAQ], 2016).

The detailed explanation of the method can be consulted
in International Physical Activity Questionnaire [IPAQ]
(2016); here we will only say that the questionnaire allows
classifying populations into three levels of physical activity: high,
moderate, and low.

High: This category was developed to describe the highest
levels of physical activity. Although the greatest health benefits
are associated with higher levels of activity, there is no consensus
on the exact amount of activity to obtain maximum benefit. The
IPAQ Research Committee proposed a measure that is equivalent
to at least 1 h per day or more, of physical activity above the
baseline level of physical activity (walking about 5000 steps per
day), this category is considered for those who walk at least
12,500 steps per day, or the equivalent in moderate and vigorous
activities. This represents at least one more hour of activity of
moderate intensity above the baseline level of activity, or half an
hour of activity of vigorous intensity above baseline levels daily.

Moderate: This category corresponds to an activity level
equivalent to half an hour of physical activity at least of moderate
intensity on most days.

Low: This is simply defined as not meeting any of the criteria
for any of the other classifications.

In this paper, we want to highlight the differences in the
calculated entropy values for sedentary people and for active
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people, comparing the entropy values at rest and exercising.
Therefore, we define a person as sedentary if their physical
activity result using the IPAQ questionnaire is “low”; a person
is active if they obtained a result of “high” in the physical
activity evaluation according to the IPAQ questionnaire. To
avoid confusion, the individuals who obtained “moderate” in the
evaluation were excluded from the present study.

Stress Test
Tachograms of thirty-eight subjects were analyzed at rest and
in a cardiac ST. The population was divided by age and by the
amount of physical activity according to the IPAQ classification.
Twenty-five young sedentary subjects were analyzed at rest and
in a cardiac ST. The subjects were 5 men and 20 women with
an average age of 23 years old. Another 6 young subjects who
regularly do exercise every day and that are in good physical
condition even though they are not athletes, with an average age
of 23 years were also considered for comparison purposes.

The measures were repeated for six middle-aged subjects
with an average age of 50 years, two women and four men, all
of them are sedentary. We also have two active middle-aged
adults. The conditions were the same that for the first group,
but we decreased the speed of the ST to 3.5 miles per hour. The
time series used to perform the calculations are available in the
Supplementary Material of this article. Complete ECG records
are available on request to the correspondence author.

For each subject, the personal information was collected,
including age and gender. Subjects with any disease that could
affect the cardiovascular system were not included in the study.
Subjects should not be taking medications previous and during
the STs. They were asked to have adequate sleep during the
previous night. All tests were performed in the morning (∼10
a.m.) in a quiet room with a temperature between 20 and 21
centigrade degrees.

The body mass indices of the subjects are as follows, for active
youth it is 24.01± 1.76, for sedentary youth it is 24.00± 4.07, and
for sedentary adults it is 26.11± 2.69.

For each recording, there were two measures, a 60 min’
rest record and a 30 min’ cardiac ST was recorded. For this
experimentation, the study was designed by taking the patients
into a complete rest state while ECG recording was obtained
with a Fukuda Denshi Holter monitor model FM-150 with
sampling frequency of 125 Hz, once the 60 min’ rest period
had finished, the subjects were taken into a commercial electric
treadmill at 4.0 miles per hour (mph) during 30 min. The beat
to beat signal or tachogram was obtained for each digitalized
ECG and then processed with the entropy algorithms. One of
the measured time series is shown in Figure 3, in the tachograms
it is easily recognizable when the subjects are at rest and when
they are doing the walking test. Therefore, it was easy to obtain
the tachograms at rest and the tachograms at the ST. It was
mentioned in the introduction section that Karasik et al. (2002)
provided a qualitative explanation of the remarkable differences
in the amplitude of fluctuations at rest and during exercise, when
the walker is between the two levels of attraction, no net force
acts on him, so there is a small probability of going several
steps in the same direction and in the case of a single level

of attraction, there is a restriction that changes its direction.
Therefore at rest when both levels are active, the fluctuations
are greater compared to exercise when there is a single level of
attraction (see Figure 3C). As the HRV time series are complex,
physiological interpretations based on entropy measures should
be provided with caution (Xiong et al., 2017; Faes et al., 2019).
As Xiong et al. (2017) have stated, entropy measurements can
only differentiate changes of specific types in cardiac dynamics
and that proper preprocessing is vital for correct estimation and
interpretation. They recommended some strategies to analyze
the HRV time series. The entropy measurements depend on the
length of the time series, but as we mentioned earlier, SampEn
is very stable with respect to the length of the time series, and
we take the length of the series of the same length, at rest we
analyze series with 1024 points and in the ST we also analyzed
1024 points. Although trends have a big impact on the detection
of the dynamical complexity of stochastic processes, we decided
not to eliminate the trends in our data because for two main
reasons, the time series are quite short and because we want
to analyze the effect that fatigue has on the time series. Spikes
are commonly encountered in a large variety of measurements;
we took special care to eliminate the artifacts. Fortunately, since
the measurements were made at rest and at low speeds, the
operation of the Holter Fukuda Denshi FM 150 is very stable
and the measured signal was very clean, there were few spikes,
their values were replaced by the average of the previous and next
data. Although the data were normalized for the calculation of
entropy, the calculations were also made without normalization
and the same results were obtained. As we can see in our time
series (available in Supplementary Material) we did not have
segments of high variance, and fortunately the presence of this
sort of non-stationarity does not affect results as much as other
types of non-stationarity (Xiong et al., 2017).

An important point to highlight is the fact that the time series
for the STs were not taken since the subject got on the treadmill,
it took a few seconds for the signal to stabilize, that is, we did not
take points in the rest-exercise transition region.

Long-lasting one-h records were also measured for seven
sedentary youth who walked at a speed of 3.5 miles per hour.
These records were 2-h length, 1 h for the rest period, and 1 h for
the cardiac stress episode. The tachogram that corresponds to the
ST was divided into four parts, equivalent of 15 min of recording
and for each 15-min segment we calculated the entropies.

This research was approved by the Secretaría de Investigación
y Posgrado of the Instituto Politécnico Nacional of Mexico with
the grants SIP20171974, SIP20182121, and SIP20196318 and by
the Secretaría de Educación, Ciencia y Tecnología (SECTEI) of
Mexico City with the project SECTEI/271/2019. Given that the
project only considers measuring the ECG in healthy people at
rest and walking slightly at low speeds, we were not required to
present the proposal to the Ethics Committee of the Institution.

The participants were voluntary and signed the informed
consent form. Medical staff confirmed that the participants
were healthy, individuals who presented cardiovascular diseases
or risk factors such as hypertriglyceridemia, hypertension, or
diabetes were excluded. Specialized personnel were always
present during the measurements. All the research was in
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FIGURE 3 | We show ECG and RR time series for a sedentary young subject. First, a segment of the digitized ECG signal obtained with the Holter (A), the
localization of the R points was obtained with an algorithm previously designed (B), the difference (in seconds) between the R points gives the RR time series or
tachogram, note that it is easily distinguishable when the subject is at rest and when the subject is walking in the treadmill (C). The tachogram belongs to a healthy
young subject, the first part belongs to the rest period, and the second half of the time-series belongs to the cardiac stress test, we can obtain subseries
corresponding to the rest and to the exercise (D). Note that there is a decreasing trend in RR intervals as time progresses and the individual experiences some
fatigue.

compliance with the Ethics Code of the World Medical
Association (Helsinki Declaration).

RESULTS

A general behavior is observed for all sedentary people; at rest
they have a higher entropy value than when they are exercising.
This difference in entropy is statistically significant. This behavior
is shown in Figure 4A for a sedentary young person, the first
point corresponds to the value of SampEn at rest, the second
point to the value obtained when he walked on the treadmill
at a speed of 3.5 mph, then he was asked to rest for half an
hour and to walk another 30 min at a speed of 4 mph, the third
point corresponds to the value of the SampEn for the speed of
4 mph. SampEn decreases as the speed increases. As the same
behavior is observed for ApEn and FuzzyEn we do not show the
corresponding figures.

The behavior of entropy is the same for all sedentary, similar
to that of Figure 4A, we mean that in all the time series of
sedentary subjects, the 25 young subjects and the 6 middle-
aged adults, this decrease in entropy is observed. So SampEn

(and ApEn and FuzzyEn) decreases while stressing the hearth
of the sedentary subjects. In order to prove that the obtained
result was not random and thinking whether or not the results
are reproducible, one sedentary subject was tested seven times
in order to confirm that the observed pattern of the graph
was reproducible. In Figure 4B we can observe the comparison
between seven different experiments with the same subject. As
we can observe, in all the measures the pattern can be observed.
There are variations, as expected in these complex systems, but
in general the pattern is repeated. As observed in the Figure 4A,
the loss of entropy when stressing the hearth of the subjects is
notorious, this can be seen as a negative slope while drawing a
line between both values as we can visualize in Figure 4B.

We show in Figure 5A, the values of slope obtained for the 25
sedentary young person’s when using the three different entropy
methods mentioned before, and with the aim of comparison
we show in Figure 5B, the results obtained for the six middle-
aged adults with low physical activity. As mentioned, all entropy
decreases for sedentary subjects when doing the ST, but as can
be seen in Figure 5, the difference between youth and adults
is not significant. The average change in Entropy for young
persons is 1SampEn = −0.62± 0.56, 1ApEn = −0.47± 0.43,
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FIGURE 4 | (A) SampEn for one subject where the first record belongs to the rest period, the second record to a cardiac stress condition at 3.5 mph and the third
measure to a cardiac stress condition at 4 mph. (B) SampEn values for rest and cardiac stress tests of one subject in seven measures. The mean of SampEn at rest
is 1.3541 ± 0.187 and at cardiac stress SampEn mean is 0.4344 ± 0. 2475.

FIGURE 5 | SampEn values for rest and cardiac stress tests for (A) 25 young subjects and (B) six middle aged adults. The speeds for the stress tests were 4 mph
and 3.5 mph, respectively. There are no significant statistical differences.

and 1FuzzyEn = −0.36± 0.19 and the values for adults with
a sedentary lifestyle are 1SampEn = −0.54± 0.43, 1ApEn =
−0.3969± 0.3680, and 1FuzzyEn = −0.39± 0.17.

The other group of six young subjects that regularly do
exercise was analyzed with the same methodology. These six
evaluated individuals have a particular difference with respect to
the other young subjects, probably due to physical activity. In
comparison with the observed results in Figure 5, the straight
lines have in average positive values, that is, the entropy of
the time-series tends to increase or maintain its values while
performing the cardiac stress episodes (Figure 6). But it should
be clear that this increase in entropy is observed when going from
rest to the ST when walking at 4 miles per hour, if we increase the
speed, eventually the entropy decreases (see Discussion section).

Entropy values behave similarly for people that have similar
patterns of physical activity independently of their age. In order
to stress this idea, a comparison of both populations was made.
Adults and young people with low physical activity were grouped
together and were compared with adults and young people with
high levels of physical activity.

FIGURE 6 | Sample entropy values for rest and cardiac stress tests for six
young subjects that do regular physical activity.

For this test, the slope of the line between the value of
entropy at rest and the ST was compared for the two groups
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FIGURE 7 | Comparison of people with high physical activity and people with
low physical activity for the three entropy methods, ApEn, FuzzyEn, and
SampEn. The means of these populations are statistically different with p
values 0.0011, 0.0052, and 0.0033 for the three methods, respectively.

for the three entropy methods having the following values for
the group of sedentary people are 1SampEn = −0.64± 0.69,
1ApEn = −0.51± 0.47, and 1FuzzyEn = −0.35± 0.20. The
following values for people who reported to have physical activity
in a daily basis: 1SampEn = 0.17± 0.07, 1ApEn = 0.07± 0.09,
and 1FuzzyEn = −0.11± 0.12. This comparison was made for
the three types of entropy as it is possible to visualize in
Figure 7. As always, the sampling entropy is the one that gives
us the best results.

In the last experiment, we are interested in seeing how entropy
varies as the test progresses, that is, as fatigue accumulates. As
previously mentioned, seven sedentary young subjects were asked
to walk during an hour after a rest period of an hour. The entropy
was calculated every 15 min, having a total of four SampEn results
for each subject. These results are shown in Figure 8A. The speed
of the treadmill was 3.5 mph. The graph in Figure 8B, belongs
to the same subjects, but this time they did not walk on the
treadmill but on a running track, the speed is approximately
of 3.5 mph although it is difficult to control the speed in the
running track.

DISCUSSION

The present work shows that there is a variation in SampEn,
ApEn, and FuzzyEn values for beat to beat time-series of subjects
in different conditions. It has been reported that the tachograms
of healthy persons tend to have higher entropy values than the
tachograms of the population diagnosed with CHF, this lack
of entropy implies a loss of complexity of the signal. This is
similar to what we observed in the present work, when sedentary
people are at rest their tachograms have SampEn, ApEn, and
FuzzyEn values that decrease when they undergo STs, therefore
the beat to beat time series are less complex when they are
doing exercise.

In order to secure that the results were trustworthy and
the observed pattern where entropy decrease in cardiac stress
situations was replicable, the measures were developed in
different days for a single patient reproducing the conditions
of the test. The analysis of this experiment allowed us to
affirm that the results are reproducible (Figure 4B). As
known, cardiac system has complex dynamics and there are
many factors that affect the cardiac rhythm, in accordance
with this, the measures observed are not identical, but
the tendency of entropy to decrease during the ST is
always observed.

While comparing the subjects, a difference between those who
develop regular physical activity and the ones who do not was
observed. In contrast with the common tendency showed by most
of the tested subjects, a slight increase of the average entropy
values was observed in subjects with regular exercise on a daily
basis. In contrast with the subjects who live more sedentarily, the
entropy measurement of the time series of the cardiac ST may
have an increase compared to the resting time series, or it tends
to maintain its values, or, in the event of a decrease in entropy,
this decrease is small.

Looking for a difference between young sedentary subjects and
middle age sedentary adults, the pattern of decreasing entropy
was appreciated for both groups (Figure 5). But there are not
significant but there are no statistically significant differences
between both groups.

FIGURE 8 | Results of sample entropy for 1-h cardiac stress tests in (A) a treadmill at 3.5 mph and (B) a track at approximately 3.5 mph.
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FIGURE 9 | This figure shows a stress test performed by an active person. (A) Original time series, (B) the stages of the stress test, and (C) sample entropy for the
time subseries of each stage. The different stages of the test are: (I) 1 h at rest, (II) walked half an hour at a speed of 3.5 mph, (III) walked at 4.0 mph preceded by a
half-hour break, (IV) walked at 4.5 mph, also preceded by a half-hour break. In this figure we can see what has already been discussed in the article, an active
person has an entropy-value at rest (I). When walking at moderate speed the value of entropy tends to increase or maintain (II), which is exactly the opposite of what
happens with sedentary people. It is necessary to increase the walking speed so that the decrease in entropy is noticed (III,IV).

FIGURE 10 | Five time series of active young subjects (red) and five time
series of sedentary young subjects (blue) during the stress tests (4 miles per
hour). The points represent SampEn values for subseries obtained from the
time series with overlapping. For active subjects the average change in
sampling entropy is –0.10, and for sedentary subjects is –0.11.

In the one-h cardiac STs, the tendency observed in the
previous experiments is more evident. Comparing the different

values of entropy at different times of the test, it tends to decrease
while the time goes on. The cardiac stress not only depends on
the speed of the test, but in the duration of it.

Summarizing, the entropy of the time series of heartbeat
intervals time series of people who are considered sedentary
is reduced with respect to their resting value when people do
moderate physical activity, in this case walking on a treadmill.
On the other hand, for people who are active, that is to say,
that they exercise regularly, the entropy values when doing
physical activity are maintained or even increase when they
walk at moderate speeds, it is necessary to greatly increase
the speed of the treadmill to observe the decrease in entropy
(Figure 9). This fact could be used to measure the physical
condition of people; it seems important because it is currently
known that regular physical activity of moderate intensity plays
an important role in promoting good health and preventing
diseases (Pate et al., 1995). For older adults, being regularly active
is associated with better physical and even psychological health
(McAuley and Rudolph, 1995). There is evidence indicating
that, among older adults, low physical condition is a risk factor
for functional impairment, and there is a positive effect of
physical activity on functional limitations (Huang et al., 1998;
Morey et al., 1998).
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Finally, we know that when exercising, the heart rate increases,
this is observed in Figure 3C, as well as a decrease in the RR
times, which means that the heart rate tends to increase as the
ST progresses. This led us to think that entropy could probably
change not only due to the change in rest-exercise, but also
due to fatigue. We arbitrarily took five series of active youth
and five series of sedentary youth during the ST at 4 miles
per hour and calculated the sampling entropy, in 1024-point
subseries, then took another 1024-point subseries to the right
but with an overlap with the first series of 100 points and so we
continued to the right until the end of the test, that is to say,
a windowing with overlap was made. The results are shown in
Figure 10, as we can see, the entropy values for active youth are
larger than those for sedentary. On average, there is a decrease
in entropy in both cases, but such decreases are very small
compared to the entropy changes associated with the change
in rest-exercise.

Finally, we mention possible limitations of the present study: it
is known that gender has a substantial effect on HRV. In a future
work the size of the database will be increased to be able to make
precise gender and age distinctions, because these influences need
to be considered when performing HRV studies even if these
influences only partly differ (Voss et al., 2015; Faes et al., 2019). It
is also necessary to complement the study with the application of
other non-linear techniques.

CONCLUSION

It seems to be that beat-to-beat time series entropy analysis from
continuous ECG recordings, while performing physical activity,
may be effective in measuring fitness. We measured the entropy
at rest and only for healthy subjects who do physical activity
regularly a light increase in the entropy values was observed
during the physical activity test, and a decrease in the entropy
values was observed in those subjects with a sedentary lifestyle,
this also happens for middle-aged adults. This work suggests
that SampEn is a good measure of cardiovascular variability
which can be related to physical condition and well-being.
Although the entropy variations and the results obtained are
reproduced for the SampEn, the ApEn, and the FuzzyEn, the
sampling entropy is the best for quantifying the complexity
of the HRV series.

The main finding of the study is the different behavior of
entropy of the RR time series for sedentary and active people.
While for sedentary people, entropy decreases during a ST
compared to the resting state, for active people, entropy increases,
indicating greater complexity in the latter case. The results
are reproducible and different entropic measurements provide
similar results. Although the sample size is relatively small, all
the series are well characterized, they were pre-processed to
ensure that the results are not altered by the length of the series,
the presence of peaks or the presence of regions with extreme
variability. Furthermore, supported by the IPAQ questionnaire,

it was perfectly possible to characterize who of the participating
subjects were sedentary and who were active subjects. It is
important to emphasize that the entropy variations are significant
despite the fact that in the STs the walk was carried out at
very low speeds.
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